Gerald J Prud'homme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8855202/publications.pdf

Version: 2024-02-01

83 papers 4,253 citations

33 h-index 63 g-index

83 all docs 83 docs citations

83 times ranked 5285 citing authors

#	Article	IF	CITATIONS
1	Combined use of GABA and sitagliptin promotes human \hat{I}^2 -cell proliferation and reduces apoptosis. Journal of Endocrinology, 2021, 248, 133-143.	2.6	21
2	Systemic Klotho therapy protects against insulitis and enhances beta-cell mass in NOD mice. Biochemical and Biophysical Research Communications, 2020, 525, 693-698.	2.1	11
3	GABA requires GLP-1R to exert its pancreatic function during STZ challenge. Journal of Endocrinology, 2020, 246, 207-222.	2.6	11
4	Novel GLP-1 Analog Supaglutide Stimulates Insulin Secretion in Mouse and Human Islet Beta-Cells and Improves Glucose Homeostasis in Diabetic Mice. Frontiers in Physiology, 2019, 10, 930.	2.8	9
5	GABAergic regulation of pancreatic islet cells: Physiology and antidiabetic effects. Journal of Cellular Physiology, 2019, 234, 14432-14444.	4.1	35
6	Combined effect of GABA and glucagonâ€like peptideâ€l receptor agonist on cytokineâ€induced apoptosis in pancreatic βâ€cell line and isolated human islets. Journal of Diabetes, 2019, 11, 563-572.	1.8	19
7	Jack of many trades: Multifaceted role of neuropilins in pancreatic cancer. Cancer Medicine, 2018, 7, 5036-5046.	2.8	14
8	The Role of Neuropilins in TGF- \hat{l}^2 Signaling and Cancer Biology. , 2017, , 187-212.		2
9	Current indications and surgical approaches to corneal transplants at the University of Toronto: A clinical-pathological study. Canadian Journal of Ophthalmology, 2017, 52, 74-79.	0.7	28
10	The anti-aging protein Klotho is induced by GABA therapy and exerts protective and stimulatory effects on pancreatic beta cells. Biochemical and Biophysical Research Communications, 2017, 493, 1542-1547.	2.1	36
11	Combined Oral Administration of GABA and DPP-4 Inhibitor Prevents Beta Cell Damage and Promotes Beta Cell Regeneration in Mice. Frontiers in Pharmacology, 2017, 8, 362.	3.5	33
12	Neuropilin-1 is a receptor for extracellular miRNA and AGO2/miRNA complexes and mediates the internalization of miRNAs that modulate cell function. Oncotarget, 2016, 7, 68057-68071.	1.8	43
13	Abstract 2919: Ultrasound-mediated neuropilin-1 shRNA minicircle delivery inhibits tumour growth in an orthotopic human pancreatic adenocarcinoma model. Cancer Research, 2016, 76, 2919-2919.	0.9	2
14	Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget, 2016, 7, 69489-69506.	1.8	35
15	Abstract 3367: Overexpression of neuropilin-1 exacerbates endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma., 2016,,.		0
16	Study of GABA in Healthy Volunteers: Pharmacokinetics and Pharmacodynamics. Frontiers in Pharmacology, 2015, 6, 260.	3.5	55
17	CD8+ T cells are predominantly protective and required for effective steroid therapy in murine models of immune thrombocytopenia. Blood, 2015, 126, 247-256.	1.4	51
18	GABAergic system in the endocrine pancreas: a new target for diabetes treatment. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2015, 8, 79.	2.4	47

#	Article	IF	CITATIONS
19	Immunological GABAergic interactions and therapeutic applications in autoimmune diseases. Autoimmunity Reviews, 2015, 14, 1048-1056.	5.8	98
20	Abstract 4171: Novel regulatory role of Neuropilin-1 in endothelial to mesenchymal transition as a potential source of carcinoma associated fibroblasts. Cancer Research, 2015, 75, 4171-4171.	0.9	0
21	GABA Promotes Human \hat{l}^2 -Cell Proliferation and Modulates Glucose Homeostasis. Diabetes, 2014, 63, 4197-4205.	0.6	125
22	GABA protects pancreatic beta cells against apoptosis by increasing SIRT1 expression and activity. Biochemical and Biophysical Research Communications, 2014, 452, 649-654.	2.1	33
23	Non–Small Cell Bronchial Carcinoma Metastasizing into a Prolactin-Producing Pituitary Adenoma. International Journal of Surgical Pathology, 2013, 21, 68-71.	0.8	16
24	Optimization of Ultrasound-mediated Anti-angiogenic Cancer Gene Therapy. Molecular Therapy - Nucleic Acids, 2013, 2, e94.	5.1	29
25	GABA Protects Human Islet Cells Against the Deleterious Effects of Immunosuppressive Drugs and Exerts Immunoinhibitory Effects Alone. Transplantation, 2013, 96, 616-623.	1.0	67
26	Cancer Stem Cells and Novel Targets for Antitumor Strategies. Current Pharmaceutical Design, 2012, 18, 2838-2849.	1.9	121
27	Neuropilin-1 is expressed by breast cancer stem-like cells and is linked to NF-κB activation and tumor sphere formation. Biochemical and Biophysical Research Communications, 2012, 425, 775-780.	2.1	53
28	Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget, 2012, 3, 921-939.	1.8	228
29	GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11692-11697.	7.1	316
30	Tranilast treatment decreases cell growth, migration and inhibits colony formation of human breast cancer cells. Experimental and Molecular Pathology, 2011, 90, 116-122.	2.1	38
31	Immunity against a therapeutic xenoprotein/Fc construct delivered by gene transfer is reduced through binding to the inhibitory receptor $Fc\hat{l}^3R$ IIb. Journal of Gene Medicine, 2011, 13, 470-477.	2.8	4
32	Neuropilin-1 exerts co-receptor function for TGF-beta-1 on the membrane of cancer cells and enhances responses to both latent and active TGF-beta. Carcinogenesis, 2011, 32, 613-621.	2.8	153
33	Tranilast inhibits cell proliferation and migration and promotes apoptosis in murine breast cancer. Anti-Cancer Drugs, 2010, 21, 351-361.	1.4	36
34	Breast Cancer Stem-Like Cells Are Inhibited by a Non-Toxic Aryl Hydrocarbon Receptor Agonist. PLoS ONE, 2010, 5, e13831.	2.5	117
35	A site-specific genomic integration strategy for sustained expression of glucagon-like peptide-1 in mouse muscle for controlling energy homeostasis. Biochemical and Biophysical Research Communications, 2010, 403, 172-177.	2.1	11
36	Novel GLP-1 Fusion Chimera as Potent Long Acting GLP-1 Receptor Agonist. PLoS ONE, 2010, 5, e12734.	2.5	39

#	Article	IF	CITATIONS
37	Abstract LB-290: Tranilast inhibits breast cancer stem cells. , 2010, , .		O
38	A New Application for the Drug Tranilast: Effects on Breast Cancer Cell Proliferation, Migration, and Invasion. FASEB Journal, 2010, 24, 354.9.	0.5	0
39	Tranilast inhibits the growth and metastasis of mammary carcinoma. Anti-Cancer Drugs, 2009, 20, 334-345.	1.4	56
40	Impaired negative regulation of homeostatically proliferating T cells. Blood, 2009, 113, 622-625.	1.4	19
41	Neuropilin-1 is a receptor for transforming growth factor \hat{l}^2 -1, activates its latent form, and promotes regulatory T cell activity. Journal of Leukocyte Biology, 2008, 84, 302-310.	3.3	212
42	Sarcoidosis Complicated by Cirrhosis and Hepatopulmonary Syndrome. Canadian Respiratory Journal, 2008, 15, 124-126.	1.6	32
43	Neuropilinâ€1 is a receptor for latent and active TGFβâ€1 and is involved in suppression by regulatory T cells. FASEB Journal, 2008, 22, 664.4.	0.5	1
44	Pathobiology of transforming growth factor \hat{l}^2 in cancer, fibrosis and immunologic disease, and therapeutic considerations. Laboratory Investigation, 2007, 87, 1077-1091.	3.7	370
45	Electroporation-Enhanced Nonviral Gene Transfer for the Prevention or Treatment of Immunological, Endocrine and Neoplastic Diseases. Current Gene Therapy, 2006, 6, 243-273.	2.0	173
46	Protective Regulatory T Cell Generation in Autoimmune Diabetes by DNA Covaccination with Islet Antigens and a Selective CTLA-4 Ligand. Molecular Therapy, 2006, 14, 578-587.	8.2	27
47	DNA vaccination against tumors. Journal of Gene Medicine, 2005, 7, 3-17.	2.8	102
48	A mutant B7-1/lg fusion protein that selectively binds to CTLA-4 ameliorates anti-tumor DNA vaccination and counters regulatory T cell activity. Vaccine, 2005, 23, 4553-4564.	3.8	9
49	Immunogene Therapy with Nonviral Vectors. , 2005, , 43-70.		1
50	DNA Vaccination against Autoimmune Diseases. , 2005, , 112-136.		4
51	Altering immune tolerance therapeutically: the power of negative thinking. Journal of Leukocyte Biology, 2004, 75, 586-599.	3.3	18
52	Plasmids encoding membrane-bound IL-4 or IL-12 strongly costimulate DNA vaccination against carcinoembryonic antigen (CEA). Vaccine, 2004, 22, 1199-1205.	3.8	28
53	Gene Therapy with Plasmids Encoding Cytokine- or Cytokine Receptor-lgG Chimeric Proteins. , 2003, 215, 153-170.		2
54	Regulatory cytokine production stimulated by DNA vaccination against an altered form of glutamic acid decarboxylase 65 in nonobese diabetic mice. Journal of Molecular Medicine, 2003, 81, 175-184.	3.9	11

#	Article	IF	CITATIONS
55	Gene therapy of streptozotocin-induced diabetes by intramuscular delivery of modified preproinsulin genes. Journal of Gene Medicine, 2003, 5, 425-437.	2.8	39
56	Intramuscular gene transfer of soluble B7.1/IgG1 fusion cDNA induces potent antitumor immunity as an adjuvant for DNA vaccination. Cancer Gene Therapy, 2003, 10, 491-499.	4.6	14
57	Prevention of autoimmune diabetes by DNA vaccination. Expert Review of Vaccines, 2003, 2, 533-540.	4.4	12
58	Immune Modulation by Plasmid DNA-mediated Cytokine Gene Transfer. Current Pharmaceutical Design, 2003, 9, 83-94.	1.9	16
59	Immunoinhibitory DNA Vaccine Protects Against Autoimmune Diabetes Through cDNA Encoding a Selective CTLA-4 (CD152) Ligand. Human Gene Therapy, 2002, 13, 395-406.	2.7	45
60	In Vivo Generation of Dendritic Cells by Intramuscular Codelivery of FLT3 Ligand and GM-CSF Plasmids. Molecular Therapy, 2002, 6, 407-414.	8.2	16
61	The Phosphodiesterase Inhibitors Pentoxifylline and Rolipram Suppress Macrophage Activation and Nitric Oxide Production in Vitro and in Vivo. Clinical Immunology, 2001, 98, 272-279.	3.2	73
62	Immunotherapeutic gene transfer into muscle. Trends in Immunology, 2001, 22, 149-155.	6.8	63
63	Inhibitors of Phosphodiesterase Isoforms III or IV Suppress Islet-Cell Nitric Oxide Production. Laboratory Investigation, 2001, 81, 1109-1117.	3.7	18
64	Anticytokine gene therapy of autoimmune diseases. Expert Opinion on Biological Therapy, 2001, 1, 359-373.	3.1	17
65	Gene therapy of autoimmune diseases with vectors encoding regulatory cytokines or inflammatory cytokine inhibitors. Journal of Gene Medicine, 2000, 2, 222-232.	2.8	78
66	The Inhibitory Effects of Transforming Growth Factor-Beta-1 (TGF- \hat{l}^21) in Autoimmune Diseases. Journal of Autoimmunity, 2000, 14, 23-42.	6.5	258
67	Treatment of murine lupus with cDNA encoding IFN-γR/Fc. Journal of Clinical Investigation, 2000, 106, 207-215.	8.2	157
68	Prevention of Experimental Allergic Encephalomyelitis by Intramuscular Gene Transfer with Cytokine-Encoding Plasmid Vectors. Human Gene Therapy, 1999, 10, 1915-1922.	2.7	48
69	Alginate-poly-L-lysine microcapsule biocompatibility: A novel RT-PCR method for cytokine gene expression analysis in pericapsular infiltrates., 1999, 45, 223-230.		17
70	Intramuscular administration of expression plasmids encoding interferon-î³ receptor/lgG1 or IL-4/lgG1 chimeric proteins protects from autoimmunity. Journal of Gene Medicine, 1999, 1, 415-423.	2.8	62
71	Effects of Cyclosporin A, Rapamycin, and FK520 on Peripheral T-Cell Deletion and Anergy. Cellular Immunology, 1995, 164, 47-56.	3.0	16
72	Quantitative polymerase chain reaction analysis reveals marked overexpression of interleukin- $1\hat{l}^2$, interleukin-10 and interferon- \hat{l}^3 mRNA in the lymph nodes of lupus-prone mice. Molecular Immunology, 1995, 32, 495-503.	2.2	123

#	Article	IF	CITATIONS
73	Regulation of CD4 T Cell Reactivity to Self and Non-Self. International Reviews of Immunology, 1995, 13, 147-160.	3.3	13
74	Cyclosporine, Tolerance, and Autoimmunity. Clinical Immunology and Immunopathology, 1993, 66, 185-192.	2.0	34
75	T-cell maturation and clonal deletion in cyclosporine-induced autoimmunity. Journal of Autoimmunity, 1991, 4, 357-368.	6.5	13
76	Cyclosporine-Induced Autoimmunity and Immune Hyperreactivity. Autoimmunity, 1991, 9, 345-356.	2.6	39
77	Analysis of Pancreas-Infiltrating T Cells in Diabetic NOD Mice: Fusion with BW5147 Yields a High Frequency of Islet-Reactive Hybridomas. Autoimmunity, 1991, 10, 285-289.	2.6	5
78	Natural suppressor-like cells in local graft-vs-host disease. Cellular Immunology, 1989, 118, 516-525.	3.0	4
79	Role of T Helper Lymphocytes in Autoimmune Diseases. , 1989, , 117-131.		5
80	Autoimmunity-prone BB rats lack functional cytotoxic T cells. Cellular Immunology, 1988, 114, 198-208.	3.0	14
81	Cellular immune abnormalities and autoreactive T lymphocytes in insulin-dependent diabetes mellitus in rats. Trends in Immunology, 1985, 6, 160-162.	7.5	18
82	Gamma-Aminobutyric Acid Requires GLP-1 Receptor to Effectively Exert Its Pancreatic Function During Streptozotocin Challenge. SSRN Electronic Journal, 0, , .	0.4	0
83	Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. Frontiers in Aging, 0, 3,	2.6	35