Daniel F Jarosz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8855195/publications.pdf

Version: 2024-02-01

186265 223800 4,807 52 28 46 h-index citations g-index papers 61 61 61 5701 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature Reviews Molecular Cell Biology, 2010, 11, 515-528.	37.0	1,559
2	Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature, 2012, 482, 363-368.	27.8	374
3	Cryptic Variation in Morphological Evolution: HSP90 as a Capacitor for Loss of Eyes in Cavefish. Science, 2013, 342, 1372-1375.	12.6	319
4	Hsp90 and Environmental Stress Transform the Adaptive Value of Natural Genetic Variation. Science, 2010, 330, 1820-1824.	12.6	304
5	A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates. Nature, 2006, 439, 225-228.	27.8	227
6	Protein Homeostasis and the Phenotypic Manifestation of Genetic Diversity: Principles and Mechanisms. Annual Review of Genetics, 2010, 44, 189-216.	7.6	170
7	Intrinsically Disordered Proteins Drive Emergence and Inheritance of Biological Traits. Cell, 2016, 167, 369-381.e12.	28.9	165
8	Cross-Kingdom Chemical Communication Drives a Heritable, Mutually Beneficial Prion-Based Transformation of Metabolism. Cell, 2014, 158, 1083-1093.	28.9	158
9	Protein-Based Inheritance: Epigenetics beyond the Chromosome. Molecular Cell, 2018, 69, 195-202.	9.7	138
10	Y-family DNA polymerases in Escherichia coli. Trends in Microbiology, 2007, 15, 70-77.	7.7	137
11	An Evolutionarily Conserved Prion-like Element Converts Wild Fungi from Metabolic Specialists to Generalists. Cell, 2014, 158, 1072-1082.	28.9	106
12	UmuD and RecA Directly Modulate the Mutagenic Potential of the Y Family DNA Polymerase DinB. Molecular Cell, 2007, 28, 1058-1070.	9.7	99
13	It's not magic – Hsp90 and its effects on genetic and epigenetic variation. Seminars in Cell and Developmental Biology, 2019, 88, 21-35.	5.0	80
14	Y-family DNA polymerases respond to DNA damage-independent inhibition of replication fork progression. EMBO Journal, 2006, 25, 868-879.	7.8	78
15	A Non-amyloid Prion Particle that Activates a Heritable Gene Expression Program. Molecular Cell, 2020, 77, 251-265.e9.	9.7	69
16	Mapping Causal Variants with Single-Nucleotide Resolution Reveals Biochemical Drivers of Phenotypic Change. Cell, 2018, 172, 478-490.e15.	28.9	62
17	DNA Polymerase V Allows Bypass of Toxic Guanine Oxidation Products in Vivo. Journal of Biological Chemistry, 2007, 282, 12741-12748.	3.4	59
18	Comprehensive and quantitative mapping of RNA–protein interactions across a transcribed eukaryotic genome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3619-3624.	7.1	54

#	Article	IF	Citations
19	A Prion Epigenetic Switch Establishes an Active Chromatin State. Cell, 2020, 180, 928-940.e14.	28.9	54
20	A common bacterial metabolite elicits prion-based bypass of glucose repression. ELife, 2016, 5, .	6.0	50
21	Rebels with a cause: molecular features and physiological consequences of yeast prions. FEMS Yeast Research, 2014, 14, 136-147.	2.3	47
22	Characterization of Escherichia coli Translesion Synthesis Polymerases and Their Accessory Factors. Methods in Enzymology, 2006, 408, 318-340.	1.0	46
23	A DinB variant reveals diverse physiological consequences of incomplete TLS extension by a Y-family DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21137-21142.	7.1	44
24	More than Just a Phase: Prions at the Crossroads of Epigenetic Inheritance and Evolutionary Change. Journal of Molecular Biology, 2018, 430, 4607-4618.	4.2	42
25	Specification of Physiologic and Disease States by Distinct Proteins and Protein Conformations. Cell, 2017, 171, 1001-1014.	28.9	39
26	Widespread Prion-Based Control of Growth and Differentiation Strategies in Saccharomyces cerevisiae. Molecular Cell, 2020, 77, 266-278.e6.	9.7	38
27	Hsp90. Advances in Cancer Research, 2016, 129, 225-247.	5.0	32
28	It Pays To Be in Phase. Biochemistry, 2018, 57, 2520-2529.	2.5	32
29	Proficient and Accurate Bypass of Persistent DNA Lesions by DinB DNA Polymerases. Cell Cycle, 2007, 6, 817-822.	2.6	26
30	Molecular Origins of Complex Heritability in Natural Genotype-to-Phenotype Relationships. Cell Systems, 2019, 8, 363-379.e3.	6.2	26
31	Pernicious Pathogens or Expedient Elements of Inheritance: The Significance of Yeast Prions. PLoS Pathogens, 2014, 10, e1003992.	4.7	22
32	Amyloid Prions in Fungi. Microbiology Spectrum, 2016, 4, .	3.0	17
33	Organizing biochemistry in space and time using prion-like self-assembly. Current Opinion in Systems Biology, 2018, 8, 16-24.	2.6	16
34	The Hunt for Ancient Prions: Archaeal Prion-Like Domains Form Amyloid-Based Epigenetic Elements. Molecular Biology and Evolution, 2021, 38, 2088-2103.	8.9	15
35	A prion accelerates proliferation at the expense of lifespan. ELife, 2021, 10, .	6.0	12
36	Mutations, protein homeostasis, and epigenetic control of genome integrity. DNA Repair, 2018, 71, 23-32.	2.8	11

#	Article	IF	Citations
37	What Has a Century of Quantitative Genetics Taught Us About Nature's Genetic Tool Kit?. Annual Review of Genetics, 2020, 54, 439-464.	7.6	11
38	Pervasive function and evidence for selection across standing genetic variation in S. cerevisiae. Nature Communications, 2019, 10, 1222.	12.8	10
39	Massive QTL analysis identifies pleiotropic genetic determinants for stress resistance, aroma formation, and ethanol, glycerol and isobutanol production in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2021, 14, 211.	6.2	7
40	Protein self-assembly: A new frontier in cell signaling. Current Opinion in Cell Biology, 2021, 69, 62-69.	5.4	6
41	Protein aggregation and the evolution of stress resistance in clinical yeast. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200127.	4.0	4
42	Old moms say, no Sir. Science, 2017, 355, 1126-1127.	12.6	3
43	Both ROSy and Grim: The Landscape of Protein Redox during Aging. Cell Metabolism, 2020, 31, 662-663.	16.2	3
44	High-throughput Screening for Protein-based Inheritance in S. cerevisiae . Journal of Visualized Experiments, 2017, , .	0.3	2
45	A Non-Amyloid Prion Particle that Activates a Heritable Gene Expression Program. SSRN Electronic Journal, 0, , .	0.4	2
46	Metabolites control stress granule disassembly. Nature Cell Biology, 2021, 23, 1053-1055.	10.3	2
47	Song: SOS (To the Tune of ABBA's "SOSâ€). Biochemistry and Molecular Biology Education, 2009, 37, 316-316.	1.2	1
48	Widespread Prion-Based Control of Growth and Differentiation Strategies in <i>Saccharomyces Cerevisiae</i> . SSRN Electronic Journal, 0, , .	0.4	1
49	Meeting Report on Experimental Approaches to Evolution and Ecology Using Yeast and Other Model Systems. G3: Genes, Genomes, Genetics, 2017, 7, 3237-3241.	1.8	0
50	Amyloid Prions in Fungi. , 2017, , 673-685.		0
51	Phase separation: from phenomenon to function. Molecular Biology of the Cell, 2020, 31, 405-405.	2.1	0
52	Heritable transformation of adaptive landscapes elicited by transient expression of intrinsically disordered proteins (586.2). FASEB Journal, 2014, 28, 586.2.	0.5	0