Angélique Bordey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8854612/publications.pdf

Version: 2024-02-01

96 papers 6,043 citations

71102 41 h-index 74163 75 g-index

100 all docs

100 docs citations

100 times ranked 7272 citing authors

#	Article	IF	CITATIONS
1	Expression of 4E-BP1 in juvenile mice alleviates mTOR-induced neuronal dysfunction and epilepsy. Brain, 2022, 145, 1310-1325.	7.6	15
2	Neuro2D Lies at the Nexus of Autism, Epilepsy, and Intellectual Disabilities. Epilepsy Currents, 2022, 22, 132-134.	0.8	2
3	Inhibition of MEK-ERK signaling reduces seizures in two mouse models of tuberous sclerosis complex. Epilepsy Research, 2022, 181, 106890.	1.6	10
4	Current Review in Basic Science: Animal Models of Focal Cortical Dysplasia and Epilepsy. Epilepsy Currents, 2022, 22, 234-240.	0.8	6
5	Imaging and optogenetic modulation of vascular mural cells in the live brain. Nature Protocols, 2021, 16, 472-496.	12.0	32
6	Small Extracellular Vesicles Control Dendritic Spine Development through Regulation of HDAC2 Signaling. Journal of Neuroscience, 2021, 41, 3799-3807.	3.6	7
7	Treating Seizures With Low-Frequency Electrical Stimulation. Epilepsy Currents, 2021, 21, 197-198.	0.8	2
8	Rab27a-Dependent Paracrine Communication Controls Dendritic Spine Formation and Sensory Responses in the Barrel Cortex. Cells, 2021, 10, 622.	4.1	4
9	Convergent and Divergent Mechanisms of Epileptogenesis in mTORopathies. Frontiers in Neuroanatomy, 2021, 15, 664695.	1.7	30
10	Treating Post-Traumatic Seizures to Limit Tau Accumulation in Larval Zebrafish. Epilepsy Currents, 2021, 21, 285-286.	0.8	1
11	CD-1 Outbred Mice Produce Less Variable Ultrasonic Vocalizations Than FVB Inbred Mice, While Displaying a Similar Developmental Trajectory. Frontiers in Psychiatry, 2021, 12, 687060.	2.6	4
12	Preimplantation factor modulates oligodendrocytes by H19-induced demethylation of NCOR2. JCI Insight, 2021, 6, .	5.0	5
13	Dual in Utero Electroporation in Mice to Manipulate Two Specific Neuronal Populations in the Developing Cortex. Frontiers in Bioengineering and Biotechnology, 2021, 9, 814638.	4.1	6
14	Ectopic HCN4 expression drives mTOR-dependent epilepsy in mice. Science Translational Medicine, 2020, 12, .	12.4	27
15	Filamin A inhibition reduces seizure activity in a mouse model of focal cortical malformations. Science Translational Medicine, 2020, 12, .	12.4	29
16	In utero electroporation-based translating ribosome affinity purification identifies age-dependent mRNA expression in cortical pyramidal neurons. Neuroscience Research, 2019, 143, 44-52.	1.9	3
17	<scp>GATOR</scp> opathies: The role of amino acid regulatory gene mutations in epilepsy and cortical malformations. Epilepsia, 2019, 60, 2163-2173.	5.1	45
18	mTOR Hyperactivity Levels Influence the Severity of Epilepsy and Associated Neuropathology in an Experimental Model of Tuberous Sclerosis Complex and Focal Cortical Dysplasia. Journal of Neuroscience, 2019, 39, 2762-2773.	3.6	84

#	Article	IF	CITATIONS
19	Hypervascularization in <scp>mTOR</scp> â€dependent focal and global cortical malformations displays differential rapamycin sensitivity. Epilepsia, 2019, 60, 1255-1265.	5.1	17
20	Valnoctamide Inhibits Cytomegalovirus Infection in Developing Brain and Attenuates Neurobehavioral Dysfunctions and Brain Abnormalities. Journal of Neuroscience, 2017, 37, 6877-6893.	3.6	20
21	Outbred CD1 mice are as suitable as inbred C57BL/6J mice in performing social tasks. Neuroscience Letters, 2017, 637, 142-147.	2.1	42
22	Convulsive seizures from experimental focal cortical dysplasia occur independently of cell misplacement. Nature Communications, 2016, 7, 11753.	12.8	78
23	Tsc1 haploinsufficiency is sufficient to increase dendritic patterning and Filamin A levels. Neuroscience Letters, 2016, 629, 15-18.	2.1	7
24	Normalizing translation through 4E-BP prevents mTOR-driven cortical mislamination and ameliorates aberrant neuron integration. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11330-11335.	7.1	51
25	An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior. Nature Neuroscience, 2016, 19, 905-914.	14.8	78
26	Hypoxia-inducible factor-1a contributes to dendritic overgrowth in tuberous sclerosis. Neuroscience Letters, 2016, 612, 43-47.	2.1	9
27	Switching on mTORC1 induces neurogenesis but not proliferation in neural stem cells of young mice. Neuroscience Letters, 2016, 614, 112-118.	2.1	15
28	Mammalian FMRP S499 Is Phosphorylated by CK2 and Promotes Secondary Phosphorylation of FMRP. ENeuro, 2016, 3, ENEURO.0092-16.2016.	1.9	31
29	Voltageâ€dependent K ⁺ currents contribute to heterogeneity of olfactory ensheathing cells. Glia, 2015, 63, 1646-1659.	4.9	9
30	Activating the translational repressor 4E-BP or reducing S6K-GSK3 \hat{I}^2 activity prevents accelerated axon growth induced by hyperactive mTOR <i>in vivo</i> . Human Molecular Genetics, 2015, 24, 5746-5758.	2.9	41
31	Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain. Cold Spring Harbor Perspectives in Biology, 2015, 7, a018846.	5.5	96
32	Embryonic Cerebrospinal Fluid Nanovesicles Carry Evolutionarily Conserved Molecules and Promote Neural Stem Cell Amplification. PLoS ONE, 2014, 9, e88810.	2.5	74
33	GABAergic striatal neurons project dendrites and axons into the postnatal subventricular zone leading to calcium activity. Frontiers in Cellular Neuroscience, 2014, 8, 10.	3.7	30
34	BDNF Promotes Axon Branching of Retinal Ganglion Cells via miRNA-132 and p250GAP. Journal of Neuroscience, 2014, 34, 969-979.	3.6	77
35	MEK-ERK1/2-Dependent FLNA Overexpression Promotes Abnormal Dendritic Patterning in Tuberous Sclerosis Independent of mTOR. Neuron, 2014, 84, 78-91.	8.1	45
36	FMRP S499 Is Phosphorylated Independent of mTORC1-S6K1 Activity. PLoS ONE, 2014, 9, e96956.	2.5	30

#	Article	IF	CITATIONS
37	Hypoxia-inducible factor 1a is a Tsc1-regulated survival factor in newborn neurons in tuberous sclerosis complex. Human Molecular Genetics, 2013, 22, 1725-1734.	2.9	13
38	Newborn cortical neurons: only for neonates?. Trends in Neurosciences, 2013, 36, 51-61.	8.6	46
39	mTORC1 Targets the Translational Repressor 4E-BP2, but Not S6 Kinase 1/2, to Regulate Neural Stem Cell Self-Renewal InÂVivo. Cell Reports, 2013, 5, 433-444.	6.4	124
40	A circuitry and biochemical basis for tuberous sclerosis symptoms: from epilepsy to neurocognitive deficits. International Journal of Developmental Neuroscience, 2013, 31, 667-678.	1.6	72
41	Rheb Activation in Subventricular Zone Progenitors Leads to Heterotopia, Ectopic Neuronal Differentiation, and Rapamycin-Sensitive Olfactory Micronodules and Dendrite Hypertrophy of Newborn Neurons. Journal of Neuroscience, 2013, 33, 2419-2431.	3.6	44
42	Neonatal Subventricular Zone Electroporation. Journal of Visualized Experiments, 2013, , .	0.3	21
43	Postnatal Neurogenesis in the Subventricular Zone: A Manipulable Source for CNS Plasticity and Repair. , $2013, , .$		0
44	Postnatal neurogenesis generates heterotopias, olfactory micronodules and cortical infiltration following single-cell Tsc1 deletion. Human Molecular Genetics, 2012, 21, 799-810.	2.9	64
45	Neural Progenitor Cells Regulate Capillary Blood Flow in the Postnatal Subventricular Zone. Journal of Neuroscience, 2012, 32, 16435-16448.	3.6	64
46	NKCC1 Knockdown Decreases Neuron Production through GABA _A -Regulated Neural Progenitor Proliferation and Delays Dendrite Development. Journal of Neuroscience, 2012, 32, 13630-13638.	3.6	65
47	Preparation of Acute Subventricular Zone Slices for Calcium Imaging. Journal of Visualized Experiments, 2012, , e4071.	0.3	1
48	Transient mGlu5R inhibition enhances the survival of granule cell precursors in the neonatal cerebellum. Neuroscience, 2012, 219, 271-279.	2.3	4
49	S Phase Entry of Neural Progenitor Cells Correlates with Increased Blood Flow in the Young Subventricular Zone. PLoS ONE, 2012, 7, e31960.	2.5	26
50	miR-132 Enhances Dendritic Morphogenesis, Spine Density, Synaptic Integration, and Survival of Newborn Olfactory Bulb Neurons. PLoS ONE, 2012, 7, e38174.	2.5	117
51	Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever!. Frontiers in Cellular Neuroscience, 2012, 6, 35.	3.7	139
52	Neurotransmitters couple brain activity to subventricular zone neurogenesis. European Journal of Neuroscience, 2011, 33, 1123-1132.	2.6	105
53	Adult-born neuron development is controlled by GABAA receptor subtypes (Commentary on Duveau) Tj ETQq1 1	. 0.784314	1 rgBT /Overlo
54	Gap junctionâ€mediated calcium waves define communication networks among murine postnatal neural progenitor cells. European Journal of Neuroscience, 2011, 34, 1895-1905.	2.6	74

#	Article	IF	Citations
55	Control of Adult-Born Neuron Production by Converging GABA and Glutamate Signals., 2011,, 395-406.		2
56	Single-cell Tsc1 knockout during corticogenesis generates tuber-like lesions and reduces seizure threshold in mice. Journal of Clinical Investigation, 2011, 121, 1596-1607.	8.2	140
57	More neurons for respiratory adaptation: Is neurogenesis at work?. Respiratory Physiology and Neurobiology, 2010, 173, 118-119.	1.6	0
58	Neurotransmitter signaling in postnatal neurogenesis: The first leg. Brain Research Reviews, 2010, 63, 60-71.	9.0	81
59	Olfactory ensheathing cell membrane properties are shaped by connectivity. Glia, 2010, 58, 665-678.	4.9	54
60	MicroRNA miR-137 Regulates Neuronal Maturation by Targeting Ubiquitin Ligase Mind Bomb-1. Stem Cells, 2010, 28, 1060-1070.	3.2	349
61	GABAA increases calcium in subventricular zone astrocyte-like cells through L- and T-type voltage-gated calcium channels. Frontiers in Cellular Neuroscience, 2010, 4, 8.	3.7	57
62	Imaging and recording subventricular zone progenitor cells in live tissue of postnatal mice. Frontiers in Neuroscience, 2010, 4, .	2.8	46
63	Prostaglandin E2 induces glutamate release from subventricular zone astrocytes. Neuron Glia Biology, 2010, 6, 201-207.	1.6	14
64	Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates. Molecular and Cellular Neurosciences, 2010, 44, 362-373.	2.2	33
65	NMDA Receptors Activated by Subventricular Zone Astrocytic Glutamate Are Critical for Neuroblast Survival Prior to Entering a Synaptic Network. Neuron, 2010, 65, 859-872.	8.1	206
66	A symphony of signals conducts early and late stages of adult neurogenesis. Neuropharmacology, 2010, 58, 865-876.	4.1	90
67	The stem cell journey: From paradise to purgatory. Neuropharmacology, 2010, 58, 833-834.	4.1	0
68	GFAPâ€GFP neural progenitors are antigenically homogeneous and anchored in their enclosed mosaic niche. Glia, 2009, 57, 66-78.	4.9	100
69	GABA increases Ca ²⁺ in cerebellar granule cell precursors via depolarization: Implications for proliferation. IUBMB Life, 2009, 61, 496-503.	3.4	14
70	Ependymal cells along the lateral ventricle express functional P2X7 receptors. Purinergic Signalling, 2009, 5, 299-307.	2.2	40
71	Activation of adenosine A2B receptors enhances ciliary beat frequency in mouse lateral ventricle ependymal cells. Cerebrospinal Fluid Research, 2009, 6, 15.	0.5	19
72	GABA's Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches. Physiology, 2009, 24, 171-185.	3.1	109

#	Article	IF	CITATIONS
73	Control of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain. Journal of Physiology, 2008, 586, 3739-3743.	2.9	94
74	Tonic activation of GLU _{K5} kainate receptors decreases neuroblast migration in wholeâ€mounts of the subventricular zone. Journal of Physiology, 2008, 586, 3783-3793.	2.9	52
75	The astrocyte odyssey. Progress in Neurobiology, 2008, 86, 342-67.	5.7	428
76	GABAA Receptors, Anesthetics and Anticonvulsants in Brain Development. CNS and Neurological Disorders - Drug Targets, 2008, 7, 211-224.	1.4	55
77	Enigmatic GABAergic networks in adult neurogenic zones. Brain Research Reviews, 2007, 53, 124-134.	9.0	59
78	GABA and glutamate signaling: homeostatic control of adult forebrain neurogenesis. Journal of Molecular Histology, 2007, 38, 303-311.	2.2	44
79	GABA and glutamate signaling: homeostatic control of adult forebrain neurogenesis. Journal of Molecular Histology, 2007, 38, 601-610.	2.2	33
80	GFAPâ€expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia, 2006, 54, 394-410.	4.9	154
81	Adult Neurogenesis: Basic Concepts of Signaling. Cell Cycle, 2006, 5, 722-728.	2.6	48
82	Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nature Neuroscience, 2005, 8, 1179-1187.	14.8	395
83	Assays for measuring extracellular GABA levels and cell migration rate in acute slices. Brain Research Protocols, 2005, 14, 126-134.	1.6	22
84	Glial Glutamate Transporters Limit Spillover Activation of Presynaptic NMDA Receptors and Influence Synaptic Inhibition of Purkinje Neurons. Journal of Neuroscience, 2004, 24, 5659-5669.	3.6	71
85	GABA Release and Uptake Regulate Neuronal Precursor Migration in the Postnatal Subventricular Zone. Journal of Neuroscience, 2004, 24, 7623-7631.	3.6	295
86	Bergmann glial GlyT1 mediates glycine uptake and release in mouse cerebellar slices. Journal of Physiology, 2004, 560, 721-736.	2.9	44
87	Distinct electrophysiological alterations in dentate gyrus versus CA1 glial cells from epileptic humans with temporal lobe sclerosis. Epilepsy Research, 2004, 59, 107-122.	1.6	24
88	GABA Depolarizes Neuronal Progenitors of the Postnatal Subventricular Zone Via GABA A Receptor Activation. Journal of Physiology, 2003, 550, 785-800.	2.9	173
89	Chemokine modulation of high-conductance Ca2+-sensitive K+ currents in microglia from human hippocampi. European Journal of Neuroscience, 2003, 18, 2893-2898.	2.6	41
90	Modulation of Glutamatergic Transmission by Bergmann Glial Cells in Rat Cerebellum In Situ. Journal of Neurophysiology, 2003, 89, 979-988.	1.8	37

AngéLique Bordey

#	Article	IF	CITATION
91	Carrierâ€mediated uptake and release of taurine from Bergmann glia in rat cerebellar slices. Journal of Physiology, 2002, 541, 753-767.	2.9	34
92	Differential Inhibition of Glial K ⁺ Currents by 4-AP. Journal of Neurophysiology, 1999, 82, 3476-3487.	1.8	35
93	Properties of human glial cells associated with epileptic seizure foci. Epilepsy Research, 1998, 32, 286-303.	1.6	239
94	Electrophysiological Properties of Human Astrocytic Tumor Cells In Situ: Enigma of Spiking Glial Cells. Journal of Neurophysiology, 1998, 79, 2782-2793.	1.8	97
95	Postnatal Development of Ionic Currents in Rat Hippocampal Astrocytes In Situ. Journal of Neurophysiology, 1997, 78, 461-477.	1.8	150
96	Electrophysiological Evidence for Multiple Glycinergic Inputs to Neonatal Rat Sympathetic Preganglionic NeuronsIn Vitro. European Journal of Neuroscience, 1997, 9, 1711-1719.	2.6	16