
Didier Reinhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8854301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Law and order in plants – the origin and functional relevance of phyllotaxis. Trends in Plant Science, 2022, 27, 1017-1032.	8.8	11
2	Lineage-Specific Genes and Cryptic Sex: Parallels and Differences between Arbuscular Mycorrhizal Fungi and Fungal Pathogens. Trends in Plant Science, 2021, 26, 111-123.	8.8	25
3	VAPYRIN attenuates defence by repressing PR gene induction and localized lignin accumulation during arbuscular mycorrhizal symbiosis of <i>Petunia hybrida</i> . New Phytologist, 2021, 229, 3481-3496.	7.3	18
4	Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotechnology, 2021, 16, 344-353.	31.5	172
5	Phosphate Suppression of Arbuscular Mycorrhizal Symbiosis Involves Gibberellic Acid Signaling. Plant and Cell Physiology, 2021, 62, 959-970.	3.1	29
6	VAPYRIN-like is required for development of the moss <i>Physcomitrella patens</i> . Development (Cambridge), 2020, 147, .	2.5	7
7	Strigolactones Play an Important Role in Shaping Exodermal Morphology via a KAI2-Dependent Pathway. IScience, 2019, 17, 144-154.	4.1	24
8	VAPYRIN Marks an Endosomal Trafficking Compartment Involved in Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science, 2019, 10, 666.	3.6	16
9	From Imaging to Functional Traits in Interactions Between Roots and Microbes. Rhizosphere Biology, 2019, , 227-239.	0.6	1
10	LCO Receptors Involved in Arbuscular Mycorrhiza Are Functional for Rhizobia Perception in Legumes. Current Biology, 2019, 29, 4249-4259.e5.	3.9	41
11	Beneficial Services of Arbuscular Mycorrhizal Fungi – From Ecology to Application. Frontiers in Plant Science, 2018, 9, 1270.	3.6	337
12	Deregulation of MADS-box transcription factor genes in a mutant defective in the <i>WUSCHEL-LIKE HOMEOBOX</i> gene <i>EVERGREEN</i> of <i>Petunia hybrida</i> . Plant Signaling and Behavior, 2018, 13, e1471299.	2.4	6
13	Diet of Arbuscular Mycorrhizal Fungi: Bread and Butter?. Trends in Plant Science, 2017, 22, 652-660.	8.8	158
14	An Automated Confocal Micro-Extensometer Enables in Vivo Quantification of Mechanical Properties with Cellular Resolution. Plant Cell, 2017, 29, 2959-2973.	6.6	47
15	Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida. BMC Genomics, 2017, 18, 589.	2.8	72
16	Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature Plants, 2016, 2, 16074.	9.3	311
17	The Petunia GRAS Transcription Factor ATA/RAM1 Regulates Symbiotic Gene Expression and Fungal Morphogenesis in Arbuscular Mycorrhiza. Plant Physiology, 2015, 168, 788-797.	4.8	64
18	Phyllotaxis involves auxin drainage through leaf primordia. Development (Cambridge), 2015, 142, 1992-2001.	2.5	22

DIDIER REINHARDT

#	Article	IF	CITATIONS
19	Flowers and mycorrhizal roots $\hat{a} \in$ "closer than we think?. Trends in Plant Science, 2015, 20, 344-350.	8.8	10
20	Mathematical Modeling of the Dynamics of Shoot-Root Interactions and Resource Partitioning in Plant Growth. PLoS ONE, 2015, 10, e0127905.	2.5	38
21	Comprehensive Transcriptome Analysis Unravels the Existence of Crucial Genes Regulating Primary Metabolism during Adventitious Root Formation in Petunia hybrida. PLoS ONE, 2014, 9, e100997.	2.5	38
22	A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants. BMC Plant Biology, 2014, 14, 333.	3.6	91
23	The role of the cell wall compartment in mutualistic symbioses of plants. Frontiers in Plant Science, 2014, 5, 238.	3.6	53
24	Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida. PLoS ONE, 2014, 9, e90841.	2.5	222
25	How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza. Frontiers in Plant Science, 2012, 3, 223.	3.6	81
26	A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, 2012, 483, 341-344.	27.8	502
27	Elastic Domains Regulate Growth and Organogenesis in the Plant Shoot Apical Meristem. Science, 2012, 335, 1096-1099.	12.6	279
28	Successful joint ventures of plants: arbuscular mycorrhiza and beyond. Trends in Plant Science, 2011, 16, 356-362.	8.8	41
29	Conserved residues in the ankyrin domain of VAPYRIN indicate potential protein-protein interaction surfaces. Plant Signaling and Behavior, 2011, 6, 680-684.	2.4	31
30	High resolution linkage maps of the model organism <i>Petunia</i> reveal substantial synteny decay with the related genome of tomato. Genome, 2011, 54, 327-340.	2.0	34
31	The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN. Plant Journal, 2010, 64, 470-481.	5.7	85
32	A petunia chorismate mutase specialized for the production of floral volatiles. Plant Journal, 2010, 61, 145-155.	5.7	53
33	Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal, 2010, 64, 1002-1017.	5.7	354
34	Starch Granule Biosynthesis in <i>Arabidopsis</i> Is Abolished by Removal of All Debranching Enzymes but Restored by the Subsequent Removal of an Endoamylase. Plant Cell, 2009, 20, 3448-3466.	6.6	129
35	Development and Function of the Arbuscular Mycorrhizal Symbiosis in Petunia. , 2009, , 131-156.		1
36	A transgenic dTph1 insertional mutagenesis system for forward genetics in mycorrhizal phosphate transport of Petunia. Plant Journal, 2008, 54, 1115-1127.	5.7	42

DIDIER REINHARDT

#	Article	IF	CITATIONS
37	A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. Plant Journal, 2007, 51, 739-750.	5.7	54
38	Programming good relations — development of the arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2007, 10, 98-105.	7.1	78
39	A plausible model of phyllotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1301-1306.	7.1	554
40	Phyllotaxis — a new chapter in an old tale about beauty and magic numbers. Current Opinion in Plant Biology, 2005, 8, 487-493.	7.1	46
41	Regulation of phyllotaxis. International Journal of Developmental Biology, 2005, 49, 539-546.	0.6	53
42	Microsurgical and laser ablation analysis of leaf positioning and dorsoventral patterning in tomato. Development (Cambridge), 2005, 132, 15-26.	2.5	136
43	Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. EMBO Journal, 2003, 22, 3314-3325.	7.8	141
44	Vascular Patterning: More Than Just Auxin?. Current Biology, 2003, 13, R485-R487.	3.9	37
45	The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. Plant Journal, 2003, 33, 119-129.	5.7	185
46	Regulation of phyllotaxis by polar auxin transport. Nature, 2003, 426, 255-260.	27.8	1,361
47	Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development (Cambridge), 2003, 130, 4073-4083.	2.5	196
48	The auxin influx carrier is essential for correct leaf positioning. Plant Journal, 2002, 32, 509-517.	5.7	62
49	Plant architecture. EMBO Reports, 2002, 3, 846-851.	4.5	247
50	Auxin and phyllotaxis. Trends in Plant Science, 2001, 6, 187-189.	8.8	69
51	Auxin Regulates the Initiation and Radial Position of Plant Lateral Organs. Plant Cell, 2000, 12, 507-518.	6.6	897
52	Localized Upregulation of a New Expansin Gene Predicts the Site of Leaf Formation in the Tomato Meristem. Plant Cell, 1998, 10, 1427-1437.	6.6	234
53	Localized Upregulation of a New Expansin Gene Predicts the Site of Leaf Formation in the Tomato Meristem. Plant Cell, 1998, 10, 1427.	6.6	12
54	Localization of the Ethylene-Forming Enzyme from Tomatoes, 1-Aminocyclopropane-1-Carboxylate Oxidase, in Transgenic Yeast. Journal of Plant Physiology, 1992, 140, 681-686.	3.5	20

#	Article	IF	CITATIONS
55	Induction of Ethylene Biosynthesis in Compatible and Incompatible Interactions of Soybean Roots with Phytophthora megasperma f. sp. glycinea and its Relation to Phytoalexin Accumulation. Journal of Plant Physiology, 1991, 138, 394-399.	3.5	14
56	Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its mRNA in Xenopus laevis oocytes EMBO Journal, 1991, 10, 2007-2013.	7.8	151
57	How Strigolactone Shapes Shoot Architecture. Frontiers in Plant Science, 0, 13, .	3.6	9