Daliang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8853857/publications.pdf

Version: 2024-02-01

76326 58581 7,392 84 40 82 citations h-index g-index papers 91 91 91 10076 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Unconventional Doping Effect Leads to Ultrahigh Average Thermoelectric Power Factor in Cu ₃ SbSe ₄ â€Based Composites. Advanced Materials, 2022, 34, e2109952.	21.0	28
2	Cryogenic Focused Ion Beam Enables Atomic-Resolution Imaging of Local Structures in Highly Sensitive Bulk Crystals and Devices. Journal of the American Chemical Society, 2022, 144, 3182-3191.	13.7	28
3	Chemically Stable Guanidinium Covalent Organic Framework for the Efficient Capture of Low-Concentration lodine at High Temperatures. Journal of the American Chemical Society, 2022, 144, 6821-6829.	13.7	89
4	Low-Dose Electron Microscopy Imaging of Electron Beam-Sensitive Crystalline Materials. Accounts of Materials Research, 2022, 3, 552-564.	11.7	17
5	Tailoring interfacial microenvironment of palladiumâ€zeolite catalysts for the efficient lowâ€temperature hydrodeoxygenation of vanillin in water. ChemCatChem, 2022, 14, .	3.7	3
6	Possible Misidentification of Heteroatom Species in Scanning Transmission Electron Microscopy Imaging of Zeolites. Journal of Physical Chemistry C, 2021, 125, 18952-18960.	3.1	8
7	Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSMâ€5. Angewandte Chemie - International Edition, 2020, 59, 819-825.	13.8	125
8	Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSMâ€5. Angewandte Chemie, 2020, 132, 829-835.	2.0	33
9	Bulk and local structures of metal–organic frameworks unravelled by high-resolution electron microscopy. Communications Chemistry, 2020, 3, .	4.5	57
10	Quasi-ZIF-67 for Boosted Oxygen Evolution Reaction Catalytic Activity via a Low Temperature Calcination. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25037-25041.	8.0	86
11	Investigating the Origin of Enhanced C ₂₊ Selectivity in Oxide-/Hydroxide-Derived Copper Electrodes during CO ₂ Electroreduction. Journal of the American Chemical Society, 2020, 142, 4213-4222.	13.7	236
12	Engineering effective structural defects of metal–organic frameworks to enhance their catalytic performances. Journal of Materials Chemistry A, 2020, 8, 4464-4472.	10.3	66
13	Atomicâ€Resolution Imaging of Halide Perovskites Using Electron Microscopy. Advanced Energy Materials, 2020, 10, 1904006.	19.5	57
14	Cryo Focused Ion Beam Applications in High Resolution Electron Microscopy Studies of Beam Sensitive Crystals. Microscopy and Microanalysis, 2019, 25, 1402-1403.	0.4	3
15	Direct Imaging of Tunable Crystal Surface Structures of MOF MIL-101 Using High-Resolution Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 12021-12028.	13.7	93
16	Direct, Selective Production of Aromatic Alcohols from Ethanol Using a Tailored Bifunctional Cobalt–Hydroxyapatite Catalyst. ACS Catalysis, 2019, 9, 7204-7216.	11.2	49
17	Quantum-Dot-Derived Catalysts for CO2 Reduction Reaction. Joule, 2019, 3, 1703-1718.	24.0	106
18	Advancing Atomic-Resolution TEM of Electron Beam-Sensitive Crystalline Materials from "Impossible― to "Routine― Microscopy and Microanalysis, 2019, 25, 1676-1677.	0.4	0

#	Article	IF	CITATIONS
19	Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nature Chemistry, 2019, 11, 622-628.	13.6	371
20	Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science, 2018, 359, 675-679.	12.6	374
21	Ordered macro-microporous metal-organic framework single crystals. Science, 2018, 359, 206-210.	12.6	836
22	Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li–S Batteries. ACS Nano, 2018, 12, 836-843.	14.6	76
23	Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nature Communications, 2018, 9, 4299.	12.8	151
24	Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters. Nanoscale, 2018, 10, 15980-15988.	5.6	17
25	Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer. Nanoscale Research Letters, 2018, 13, 41.	5.7	17
26	Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries. Nano Letters, 2017, 17, 1302-1311.	9.1	118
27	Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ~350 nm via step quantum well structure design. Journal Physics D: Applied Physics, 2017, 50, 245101.	2.8	47
28	Synthesis and application of a MOF-derived Ni@C catalyst by the guidance from an in situ hot stage in TEM. RSC Advances, 2017, 7, 26377-26383.	3.6	27
29	InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. RSC Advances, 2017, 7, 26665-26672.	3.6	32
30	MOF-derived Co@N-C nanocatalyst for catalytic reduction of 4-nitrophenol to 4-aminophenol. Microporous and Mesoporous Materials, 2017, 241, 346-354.	4.4	65
31	Simple coordination complex-derived Ni NP anchored N-doped porous carbons with high performance for reduction of nitroarenes. CrystEngComm, 2017, 19, 6612-6619.	2.6	17
32	In-situ self-polymerization restriction to form core-shell LiFePO4/C nanocomposite with ultrafast rate capability for high-power Li-ion batteries. Nano Energy, 2017, 39, 346-354.	16.0	58
33	Nitrogenâ€Doped Nanoporous Carbons through Direct Carbonization of a Metalâ€Biomolecule Framework for Supercapacitor. Chinese Journal of Chemistry, 2016, 34, 203-209.	4.9	5
34	Beyond Creation of Mesoporosity: The Advantages of Polymerâ∈Based Dualâ∈Function Templates for Fabricating Hierarchical Zeolites. Advanced Functional Materials, 2016, 26, 1881-1891.	14.9	66
35	An elaborate structure investigation of the chiral polymorph A-enriched zeolite beta. CrystEngComm, 2016, 18, 1782-1789.	2.6	19
36	Guidance from an in situ hot stage in TEM to synthesize magnetic metal nanoparticles from a MOF. Chemical Communications, 2016, 52, 10513-10516.	4.1	27

#	Article	IF	Citations
37	Mesoporous and Al-rich MFI crystals assembled with aligned nanorods in the absence of organic templates. Microporous and Mesoporous Materials, 2016, 233, 133-139.	4.4	24
38	Reversible De/hydriding Reactions between Two New Mgâ€"Inâ€"Ni Compounds with Improved Thermodynamics and Kinetics. Journal of Physical Chemistry C, 2015, 119, 26858-26865.	3.1	25
39	Porous ZnCo ₂ O ₄ nanoparticles derived from a new mixed-metal organic framework for supercapacitors. Inorganic Chemistry Frontiers, 2015, 2, 177-183.	6.0	130
40	Design and synthesis of high performance LiFePO ₄ /C nanomaterials for lithium ion batteries assisted by a facile H ⁺ /Li ⁺ ion exchange reaction. Journal of Materials Chemistry A, 2015, 3, 8062-8069.	10.3	24
41	Metal–Organic Framework Based upon the Synergy of a Brønsted Acid Framework and Lewis Acid Centers as a Highly Efficient Heterogeneous Catalyst for Fixed-Bed Reactions. Journal of the American Chemical Society, 2015, 137, 4243-4248.	13.7	242
42	Hybrid metal-organic framework nanomaterials with enhanced carbon dioxide and methane adsorption enthalpy by incorporation of carbon nanotubes. Inorganic Chemistry Communication, 2015, 58, 79-83.	3.9	40
43	Synthesis of chiral polymorph A-enriched zeolite Beta with an extremely concentrated fluoride route. Scientific Reports, 2015, 5, 11521.	3.3	43
44	Creating extra pores in microporous carbon via a template strategy for a remarkable enhancement of ambient-pressure CO2uptake. Chemical Communications, 2015, 51, 8683-8686.	4.1	11
45	Investigating the Influence of Mesoporosity in Zeolite Beta on Its Catalytic Performance for the Conversion of Methanol to Hydrocarbons. ACS Catalysis, 2015, 5, 5837-5845.	11.2	84
46	ZIF-78 membrane derived from amorphous precursors with permselectivity for cyclohexanone/cyclohexanol mixture. Microporous and Mesoporous Materials, 2014, 192, 29-34.	4.4	28
47	Highly Mesoporous Single-Crystalline Zeolite Beta Synthesized Using a Nonsurfactant Cationic Polymer as a Dual-Function Template. Journal of the American Chemical Society, 2014, 136, 2503-2510.	13.7	266
48	N-Methyl-2-pyrrolidone assisted synthesis of hierarchical ZSM-5 with house-of-cards-like structure. RSC Advances, 2014, 4, 21301-21305.	3.6	25
49	An Aluminophosphate Molecular Sieve with 36 Crystallographically Distinct Tetrahedral Sites. Angewandte Chemie - International Edition, 2014, 53, 7480-7483.	13.8	23
50	Hydrothermal synthesis of single-crystalline mesoporous beta zeolite assisted by N-methyl-2-pyrrolidone. RSC Advances, 2014, 4, 39297-39300.	3.6	7
51	Transmission electron microscopy studies of metal organic framework structures (MOFs). Scientia Sinica Chimica, 2014, 44, 229-235.	0.4	0
52	Direct observations of the MOF (UiO-66) structure by transmission electron microscopy. CrystEngComm, 2013, 15, 9356.	2.6	62
53	Preparation of a MOF membrane with 3-aminopropyltriethoxysilane as covalent linker for xylene isomers separation. Inorganic Chemistry Communication, 2013, 30, 74-78.	3.9	26
54	Ordered mesoporous silica materials with complicated structures. Current Opinion in Chemical Engineering, 2012, 1, 129-137.	7.8	36

#	Article	IF	Citations
55	Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy and Environmental Science, 2012, 5, 8370.	30.8	234
56	Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography. Nature Chemistry, 2012, 4, 188-194.	13.6	178
57	Targeted synthesis of an electroactive organic framework. Journal of Materials Chemistry, 2011, 21, 18208.	6.7	68
58	Extensive Inspection of an Unconventional Mesoporous Silica Material at All Length-Scales. Chemistry of Materials, 2011, 23, 229-238.	6.7	14
59	Controlled Synthesis of the Tricontinuous Mesoporous Material IBN-9 and Its Carbon and Platinum Derivatives. Chemistry of Materials, 2011, 23, 3775-3786.	6.7	25
60	Gas storage in porous aromatic frameworks (PAFs). Energy and Environmental Science, 2011, 4, 3991.	30.8	429
61	Structure study of the tri-continuous mesoporous silica IBN-9 by electron crystallography. Microporous and Mesoporous Materials, 2011, 146, 88-96.	4.4	11
62	Precession electron diffraction using a digital sampling method. Ultramicroscopy, 2010, 111, 47-55.	1.9	22
63	Impregnation of zeolite membranes for enhanced selectivity. Journal of Membrane Science, 2010, 365, 188-197.	8.2	19
64	Collecting 3D electron diffraction data by the rotation method. Zeitschrift FÃ $\frac{1}{4}$ r Kristallographie, 2010, 225, 94-102.	1.1	254
65	Quantitative Electron Diffraction for Crystal Structure Determination. Materials Research Society Symposia Proceedings, 2009, 1184, 31.	0.1	0
66	The ITQ-37 mesoporous chiral zeolite. Nature, 2009, 458, 1154-1157.	27.8	526
67	A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. Nature Chemistry, 2009, 1, 123-127.	13.6	131
68	Open-Framework Germanate Built from the Hexagonal Packing of Rigid Cylinders. Inorganic Chemistry, 2009, 48, 9962-9964.	4.0	25
69	Novel mesoporous silica spheres with ultra-large pore sizes and their application in protein separation. Journal of Materials Chemistry, 2009, 19, 2013.	6.7	63
70	3D Structure Determination from HRTEM and Electron Diffraction Tomography. Microscopy and Microanalysis, 2009, 15, 56-57.	0.4	0
71	Synthesis and Structure of Polymorph B of Zeolite Beta. Chemistry of Materials, 2008, 20, 3218-3223.	6.7	80
72	Zeolite structure determination using electron crystallography. Studies in Surface Science and Catalysis, 2008, 174, 799-804.	1.5	3

#	ARTICLE	IF	CITATIONS
73	In situ synthesis of dye-doped stainless-steel-net-supported mesostructured silica film for solid-state laser material. Microporous and Mesoporous Materials, 2007, 102, 95-100.	4.4	5
74	Controlled release of Captopril by regulating the pore size and morphology of ordered mesoporous silica. Microporous and Mesoporous Materials, 2006, 92, 1-9.	4.4	258
75	Facile synthesis of crystal like shape mesoporous silica SBA-16. Microporous and Mesoporous Materials, 2006, 97, 141-144.	4.4	30
76	Drug Self-Templated Synthesis of Ibuprofen/Mesoporous Silica for Sustained Release. European Journal of Inorganic Chemistry, 2006, 2006, 3943-3947.	2.0	38
77	Large-Scale Synthesis of Necklace-Like Single-Crystalline PbTiO3 Nanowires. Macromolecular Rapid Communications, 2006, 27, 76-80.	3.9	55
78	A Stable Hexagonal Mesoporous Aluminophosphate Assembled from Preformed Aluminophosphate Precursors. Chemistry Letters, 2005, 34, 516-517.	1.3	7
79	A surface modification scheme for incorporation of nanocrystals in mesoporous silica matrix. Journal of Solid State Chemistry, 2005, 178, 2980-2986.	2.9	10
80	High-temperature synthesis of stable ordered mesoporous silica materials using mesoporous carbon as a hard template. Microporous and Mesoporous Materials, 2005, 86, 81-88.	4.4	21
81	Adsorption of vitamin B12 on ordered mesoporous carbons coated with PMMA. Carbon, 2005, 43, 2344-2351.	10.3	60
82	Rigid Nanoscopic Containers for Highly Dispersed, Stable Metal and Bimetal Nanoparticles with Both Size and Site Control. Chemistry - A European Journal, 2005, 11, 4975-4982.	3.3	39
83	Synthesis and Structural Identification of a Highly Ordered Mesoporous Organosilica with Large Cagelike Pores. Journal of Physical Chemistry B, 2005, 109, 764-768.	2.6	66
84	Novel Supramolecular Frameworks Self-Assembled from One-Dimensional Polymeric Coordination Chains. European Journal of Inorganic Chemistry, 2004, 2004, 185-191.	2.0	210