

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/885273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ergodic Capacity of Intelligent Omni-Surface-Aided Communication Systems With Phase Quantization Errors and Outdated CSI. IEEE Systems Journal, 2023, 17, 1889-1898.	4.6	3
2	Parameter Adaptation and Situation Awareness of <i>LTE-R</i> Handover for High-Speed Railway Communication. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 1767-1781.	8.0	11
3	Wireless Image Transmission Using Deep Source Channel Coding With Attention Modules. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 2315-2328.	8.3	59
4	OTFS-TSMA for Massive Internet of Things in High-Speed Railway. IEEE Transactions on Wireless Communications, 2022, 21, 519-531.	9.2	19
5	Spectrum Situation Awareness Based on Time-Series Depth Networks for LTE-R Communication System. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 8629-8640.	8.0	5
6	Worst-Case Energy Efficiency in Secure SWIPT Networks With Rate-Splitting ID and Power-Splitting EH Receivers. IEEE Transactions on Wireless Communications, 2022, 21, 1870-1885.	9.2	10
7	A Millimeter-Wave Wideband Dual-Polarized Antenna Array With 3-D-Printed Air-Filled Differential Feeding Cavities. IEEE Transactions on Antennas and Propagation, 2022, 70, 1020-1032.	5.1	23
8	Experience-Driven Power Allocation Using Multi-Agent Deep Reinforcement Learning for Millimeter-Wave High-Speed Railway Systems. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 5490-5500.	8.0	17
9	Joint Activity Detection and Channel Estimation in Massive MIMO Systems With Angular Domain Enhancement. IEEE Transactions on Wireless Communications, 2022, 21, 2999-3011.	9.2	9
10	Vehicle Localization Based on Hypothesis Test in NLOS Scenarios. IEEE Transactions on Vehicular Technology, 2022, 71, 2198-2203.	6.3	7
11	Performance Analysis and Optimization of NOMA-Based Cell-Free Massive MIMO for IoT. IEEE Internet of Things Journal, 2022, 9, 9625-9639.	8.7	16
12	Improving Sum-Rate of Cell-Free Massive MIMO With Expanded Compute-and-Forward. IEEE Transactions on Signal Processing, 2022, 70, 202-215.	5.3	42
13	Multiple Residual Dense Networks for Reconfigurable Intelligent Surfaces Cascaded Channel Estimation. IEEE Transactions on Vehicular Technology, 2022, 71, 2134-2139.	6.3	17
14	Space-Air-Ground Integrated Network Development and Applications in High-Speed Railways: A Survey. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 10066-10085.	8.0	12
15	A 3D Printed Nearly Isotropic Luneburg Lens Antenna for Millimeter-Wave Vehicular Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 1145-1155.	6.3	17
16	When mmWave High-Speed Railway Networks Meet Reconfigurable Intelligent Surface: A Deep Reinforcement Learning Method. IEEE Wireless Communications Letters, 2022, 11, 533-537.	5.0	20
17	Space-Air-Sea-Ground Integrated Monitoring Network-Based Maritime Transportation Emergency Forecasting. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 2843-2852.	8.0	7
18	A Novel Denoising Method Based on Machine Learning in Channel Measurements. IEEE Transactions on Vehicular Technology, 2022, 71, 994-999.	6.3	4

#	Article	IF	CITATIONS
19	A Joint Design for STAR-RIS Enhanced NOMA-CoMP Networks: A Simultaneous-Signal-Enhancement-and-Cancellation-Based (SSECB) Design. IEEE Transactions on Vehicular Technology, 2022, 71, 1043-1048.	6.3	29
20	Coverage Performance of UAV-Assisted SWIPT Networks With Directional Antennas. IEEE Internet of Things Journal, 2022, 9, 10600-10609.	8.7	4
21	Deep-Learning-Based Spatial–Temporal Channel Prediction for Smart High-Speed Railway Communication Networks. IEEE Transactions on Wireless Communications, 2022, 21, 5333-5345.	9.2	25
22	Smart Rail Mobility. Springer Series in Optical Sciences, 2022, , 123-130.	0.7	0
23	Content Distribution Based on Joint V2I and V2V Scheduling in mmWave Vehicular Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 3201-3213.	6.3	10
24	A 3D Geometry-Based THz Channel Model for 6G Ultra Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2022, 71, 2251-2266.	6.3	19
25	Reconfigurable Intelligent Surfaces With Outdated Channel State Information: Centralized vs. Distributed Deployments. IEEE Transactions on Communications, 2022, 70, 2742-2756.	7.8	32
26	Prior Information Aided Deep Learning Method for Grant-Free NOMA in mMTC. IEEE Journal on Selected Areas in Communications, 2022, 40, 112-126.	14.0	10
27	Robust Symbol-Level Precoding and Passive Beamforming for IRS-Aided Communications. IEEE Transactions on Wireless Communications, 2022, 21, 5486-5499.	9.2	5
28	Energy-Efficient Collaborative Offloading in NOMA-Enabled Fog Computing for Internet of Things. IEEE Internet of Things Journal, 2022, 9, 13794-13807.	8.7	12
29	Blind Modulation Classification Under Uncertain Noise Conditions: A Multitask Learning Approach. IEEE Communications Letters, 2022, 26, 1027-1031.	4.1	5
30	Enhanced Path Loss Model by Image-Based Environmental Characterization. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 903-907.	4.0	4
31	Downlink Power Control for Cell-Free Massive MIMO With Deep Reinforcement Learning. IEEE Transactions on Vehicular Technology, 2022, 71, 6772-6777.	6.3	19
32	Comparison of Different Sounding Waveforms for a Wideband Correlation Channel Sounder. Lecture Notes in Electrical Engineering, 2022, , 119-126.	0.4	1
33	Deep Reinforcement Learning Coordinated Receiver Beamforming for Millimeter-Wave Train-Ground Communications. IEEE Transactions on Vehicular Technology, 2022, 71, 5156-5171.	6.3	8
34	Artificial Intelligence Enabled Radio Propagation for Communications—Part I: Channel Characterization and Antenna-Channel Optimization. IEEE Transactions on Antennas and Propagation, 2022, 70, 3939-3954.	5.1	36
35	Artificial Intelligence Enabled Radio Propagation for Communications—Part II: Scenario Identification and Channel Modeling. IEEE Transactions on Antennas and Propagation, 2022, 70, 3955-3969. 	5.1	58
36	Uplink Performance of Cell-Free Massive MIMO With Multi-Antenna Users Over Jointly-Correlated Rayleigh Fading Channels. IEEE Transactions on Wireless Communications, 2022, 21, 7391-7406.	9.2	25

#	Article	IF	CITATIONS
37	A survey on user-centric cell-free massive MIMO systems. Digital Communications and Networks, 2022, 8, 695-719.	5.0	44
38	Cluster-Based Characterization and Modeling for UAV Air-to-Ground Time-Varying Channels. IEEE Transactions on Vehicular Technology, 2022, 71, 6872-6883.	6.3	9
39	Modeling and channel estimation for piezo-acoustic backscatter assisted underwater acoustic communications. China Communications, 2022, 19, 297-307.	3.2	1
40	Performance analysis of reconfigurable intelligent surface assisted systems under channel aging. Intelligent and Converged Networks, 2022, 3, 74-85.	4.8	6
41	Cell Edge User Capacity-Coverage Reliability Tradeoff for 5G-R Systems With Overlapped Linear Coverage. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 17936-17951.	8.0	1
42	Terahertz Enabled Use Cases for Smart Mobility towards B5G and 6G Communications. , 2022, , .		0
43	Mobility Support for Millimeter Wave Communications: Opportunities and Challenges. IEEE Communications Surveys and Tutorials, 2022, 24, 1816-1842.	39.4	18
44	The New Empirical Path Loss Model for Line of Sight Propagation in HSR Communication System Using Optimization Technique. IEEE Wireless Communications Letters, 2022, 11, 1810-1814.	5.0	7
45	Resource Allocation and Computation Offloading in a Millimeter-Wave Train-Ground Network. IEEE Transactions on Vehicular Technology, 2022, 71, 10615-10630.	6.3	6
46	Spatially Correlated RIS-Aided CF Massive MIMO Systems With Generalized MR Combining. IEEE Transactions on Vehicular Technology, 2022, 71, 11245-11250.	6.3	5
47	A UAV-Assisted Search and Localization Strategy in Non-Line-of-Sight Scenarios. IEEE Internet of Things Journal, 2022, 9, 23841-23851.	8.7	15
48	Vehicle-to-Vehicle Channel Characteristics in Intersection Environment. , 2022, , .		5
49	5G Channel Models for Railway Use Cases at mmWave Band and the Path Towards Terahertz. IEEE Intelligent Transportation Systems Magazine, 2021, 13, 146-155.	3.8	7
50	Machine-Learning-Based Scenario Identification Using Channel Characteristics in Intelligent Vehicular Communications. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 3961-3974.	8.0	26
51	Optimization of Time–Frequency Resource Management Based on Probabilistic Graphical Models in Railway Internet-of-Things Networking. IEEE Internet of Things Journal, 2021, 8, 4788-4801.	8.7	4
52	Geometry-Cluster-Based Stochastic MIMO Model for Vehicle-to-Vehicle Communications in Street Canyon Scenarios. IEEE Transactions on Wireless Communications, 2021, 20, 755-770.	9.2	24
53	Multicarrier Tandem Spreading Multiple Access (MC-TSMA) for High-Speed Railway (HSR) Scenario. IEEE Internet of Things Journal, 2021, 8, 3490-3499.	8.7	5
54	Uplink Performance of Cell-Free Massive MIMO Over Spatially Correlated Rician Fading Channels. IEEE Communications Letters, 2021, 25, 1348-1352.	4.1	43

#	Article	IF	CITATIONS
55	Channel Sounding and Ray Tracing for Intrawagon Scenario at mmWave and Sub-mmWave Bands. IEEE Transactions on Antennas and Propagation, 2021, 69, 1007-1019.	5.1	34
56	Measuring Sparsity of Wireless Channels. IEEE Transactions on Cognitive Communications and Networking, 2021, 7, 133-144.	7.9	20
57	Structured Massive Access for Scalable Cell-Free Massive MIMO Systems. IEEE Journal on Selected Areas in Communications, 2021, 39, 1086-1100.	14.0	102
58	Emulation of Radio Technologies for Railways: A Tapped-Delay-Line Channel Model for Tunnels. IEEE Access, 2021, 9, 1512-1523.	4.2	11
59	Coalition Game Based User Association for mmWave Mobile Relay Systems in Rail Traffic Scenarios. IEEE Transactions on Vehicular Technology, 2021, 70, 10528-10540.	6.3	2
60	Impact of Channel Aging on Cell-Free Massive MIMO Over Spatially Correlated Channels. IEEE Transactions on Wireless Communications, 2021, 20, 6451-6466.	9.2	59
61	Energy-Constrained Computation Offloading in Space-Air-Ground Integrated Networks Using Distributionally Robust Optimization. IEEE Transactions on Vehicular Technology, 2021, 70, 12113-12125.	6.3	28
62	Channel Estimation for Semi-Passive Reconfigurable Intelligent Surfaces With Enhanced Deep Residual Networks. IEEE Transactions on Vehicular Technology, 2021, 70, 11083-11088.	6.3	36
63	Artificial Intelligence Empowered Power Allocation for Smart Railway. IEEE Communications Magazine, 2021, 59, 28-33.	6.1	11
64	Machine-Learning-Based Fast Angle-of-Arrival Recognition for Vehicular Communications. IEEE Transactions on Vehicular Technology, 2021, 70, 1592-1605.	6.3	30
65	Performance analysis of dual-hop UAV relaying systems over mixed fluctuating two-ray and Nakagami-m fading channels. Science China Information Sciences, 2021, 64, 1.	4.3	4
66	Handover-Aware Cross-Layer Aided TCP With Deep Reinforcement Learning for High-Speed Railway Networks. IEEE Networking Letters, 2021, 3, 31-35.	1.9	8
67	Vehicle-to-Vehicle Channel Characterization Based on Ray-Tracing for Urban Road Scenarios. Wireless Communications and Mobile Computing, 2021, 2021, 1-15.	1.2	6
68	OTFS modulation performance in a satellite-to-ground channel at sub-6-GHz and millimeter-wave bands with high mobility. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 517-526.	2.6	8
69	Millimeter Wave Communications With Reconfigurable Intelligent Surfaces: Performance Analysis and Optimization. IEEE Transactions on Communications, 2021, 69, 2752-2768.	7.8	63
70	A novel channel prediction method for MIMOâ€OFDM in highâ€speed environment. IET Communications, 2021, 15, 1723-1732.	2.2	0
71	Performance Analysis of RIS-Aided Systems With Practical Phase Shift and Amplitude Response. IEEE Transactions on Vehicular Technology, 2021, 70, 4501-4511.	6.3	48
72	Resource Allocation for Millimeter-Wave Train-Ground Communications in brk? High-Speed Railway Scenarios. IEEE Transactions on Vehicular Technology, 2021, 70, 4823-4838.	6.3	13

#	Article	IF	CITATIONS
73	Reconfigurable Intelligent Surface Assisted Device-to-Device Communications. IEEE Transactions on Wireless Communications, 2021, 20, 2792-2804.	9.2	75
74	Channel Characterization and Capacity Analysis for THz Communication Enabled Smart Rail Mobility. IEEE Transactions on Vehicular Technology, 2021, 70, 4065-4080.	6.3	21
75	IRS-Assisted High-Speed Train Communications: Outage Probability Minimization with Statistical CSI. , 2021, , .		15
76	Wireless Power Transfer for UAV Communications with Cell-Free Massive MIMO Systems. , 2021, , .		2
77	Wireless Caching: Cell-Free versus Small Cells. , 2021, , .		7
78	Block Chain and Big Data-Enabled Intelligent Vehicular Communication. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 3904-3906.	8.0	9
79	A Tutorial to Orthogonal Time Frequency Space Modulation for Future Wireless Communications. , 2021, , .		5
80	Terahertz Channel Measurement and Characterization on a Desktop from 75 to 400 GHz. , 2021, , .		3
81	Measurement and Ray-Tracing Simulation for Millimeter-Wave Automotive Radar. , 2021, , .		7
82	Wireless Channel Sparsity: Measurement, Analysis, and Exploitation in Estimation. IEEE Wireless Communications, 2021, 28, 113-119.	9.0	52
83	ADMM Based Channel Estimation for RISs Aided Millimeter Wave Communications. IEEE Communications Letters, 2021, 25, 2894-2898.	4.1	33
84	A Non-Stationary Geometry-Based MIMO Channel Model for Millimeter-Wave UAV Networks. IEEE Journal on Selected Areas in Communications, 2021, 39, 2960-2974.	14.0	35
85	UAV Communications With WPT-Aided Cell-Free Massive MIMO Systems. IEEE Journal on Selected Areas in Communications, 2021, 39, 3114-3128.	14.0	39
86	Local Partial Zero-Forcing Combining for Cell-Free Massive MIMO Systems. IEEE Transactions on Communications, 2021, 69, 8459-8473.	7.8	43
87	Physical Layer Security Enhancement With Reconfigurable Intelligent Surface-Aided Networks. IEEE Transactions on Information Forensics and Security, 2021, 16, 3480-3495.	6.9	50
88	Deep Reinforcement Learning for Handover-Aware MPTCP Congestion Control in Space-Ground Integrated Network of Railways. IEEE Wireless Communications, 2021, 28, 200-207.	9.0	15
89	Solving Sparse Linear Inverse Problems in Communication Systems: A Deep Learning Approach With Adaptive Depth. IEEE Journal on Selected Areas in Communications, 2021, 39, 4-17.	14.0	14
90	Dynamic Clustering of Multipath Components for Time-Varying Propagation Channels. IEEE Transactions on Vehicular Technology, 2021, 70, 13396-13400.	6.3	3

#	Article	IF	CITATIONS
91	A TTSVD-Enhanced Fast and Accurate Channel Estimation Method for Dual-Polarized Massive MIMO Systems. , 2021, , .		1
92	Principal Multipath Component Analysis for Outdoor Microcell Scenario at 39 GHz. , 2021, , .		0
93	Outage Probability of Reconfigurable Intelligent Surface Aided THz Communications. , 2021, , .		1
94	Performance Analysis and Power Control of Cell-Free Massive MIMO over Non-Reciprocal Channels. , 2021, , .		0
95	Joint Channel Estimation and Data Detection for Intelligent Transparent Surface (ITS) Aided Wireless Communications on Railways. , 2021, , .		3
96	A 3D Geometry-Based Non-Stationary MIMO Channel Model for RIS-Assisted Communications. , 2021, , .		6
97	A Study of Clustering Algorithms for Time-Varying Multipath Components in Wireless Channels. , 2021, , .		1
98	Multipath Fading Channel Modeling with Aerial Intelligent Reflecting Surface. , 2021, , .		3
99	Image Encryption Methods in Deep Joint Source Channel Coding: A Review and Performance Evaluation. , 2021, , .		3
100	Performance analysis of Doppler effect suppression by subcarrier spacing in ultra-high-speed environment. , 2021, , .		2
101	RIS-Aided Next-Generation High-Speed Train Communications: Challenges, Solutions, and Future Directions. IEEE Wireless Communications, 2021, 28, 145-151.	9.0	35
102	Deep Learning-Based Power Control for Uplink Cell-Free Massive MIMO Systems. , 2021, , .		7
103	When High-Speed Railway Networks Meet Multipath TCP: Supporting Dependable Communications. IEEE Wireless Communications Letters, 2020, 9, 202-205.	5.0	20
104	A Wideband Non-Stationary Air-to-Air Channel Model for UAV Communications. IEEE Transactions on Vehicular Technology, 2020, 69, 1214-1226.	6.3	78
105	On the Distribution of the Ratio of Products of Fisher-Snedecor \$mathcal {F}\$ Random Variables and Its Applications. IEEE Transactions on Vehicular Technology, 2020, 69, 1855-1866.	6.3	21
106	Channel Estimation for mmWave Massive MIMO With Convolutional Blind Denoising Network. IEEE Communications Letters, 2020, 24, 95-98.	4.1	49
107	Tabu-Search-Based Pilot Assignment for Cell-Free Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2020, 69, 2286-2290.	6.3	75
108	A \$Ka\$ -Band 3-D-Printed Wideband Stepped Waveguide-Fed Magnetoelectric Dipole Antenna Array. IEEE Transactions on Antennas and Propagation, 2020, 68, 2724-2735.	5.1	36

#	Article	IF	CITATIONS
109	Frequency-Dependent Line-of-Sight Probability Modeling in Built-Up Environments. IEEE Internet of Things Journal, 2020, 7, 699-709.	8.7	18
110	Propagation Channels of 5G Millimeter-Wave Vehicle-to-Vehicle Communications: Recent Advances and Future Challenges. IEEE Vehicular Technology Magazine, 2020, 15, 16-26.	3.4	174
111	Tensor Denoising Using Low-Rank Tensor Train Decomposition. IEEE Signal Processing Letters, 2020, 27, 1685-1689.	3.6	14
112	Deep Transfer Learning-Based Downlink Channel Prediction for FDD Massive MIMO Systems. IEEE Transactions on Communications, 2020, 68, 7485-7497.	7.8	92
113	Channel Characterization and Hybrid Modeling for Millimeter-Wave Communications in Metro Train. IEEE Transactions on Vehicular Technology, 2020, 69, 12408-12417.	6.3	16
114	Contention Based Massive Access Scheme for B5C: A Compressive Sensing Method. , 2020, , .		1
115	Learning While Tracking: A Practical System Based on Variational Gaussian Process State-Space Model and Smartphone Sensory Data. , 2020, , .		3
116	Performance Analysis of Dual-Hop Mixed FSO/mmWave Systems. , 2020, , .		1
117	QoS-Aware Bandwidth Allocation and Concurrent Scheduling for Terahertz Wireless Backhaul Networks. IEEE Access, 2020, 8, 125814-125825.	4.2	10
118	Measurements and Cluster-Based Modeling of Vehicle-to-Vehicle Channels With Large Vehicle Obstructions. IEEE Transactions on Wireless Communications, 2020, 19, 5860-5874.	9.2	35
119	Clustering Performance Evaluation Algorithm for Vehicle-to-Vehicle Radio Channels. , 2020, , .		1
120	Optimized Scheme of Antenna Diversity for Radio Wave Coverage in Tunnel Environment. IEEE Access, 2020, 8, 127226-127233.	4.2	7
121	Identification of Vehicle Obstruction Scenario Based on Machine Learning in Vehicle-to-vehicle Communications. , 2020, , .		5
122	Licensed and Unlicensed Spectrum Management for Cognitive M2M: A Context-Aware Learning Approach. IEEE Transactions on Cognitive Communications and Networking, 2020, 6, 915-925.	7.9	25
123	Impact of Meteorological Attenuation on Channel Characterization at 300 GHz. Electronics (Switzerland), 2020, 9, 1115.	3.1	13
124	NOMA-Based Cell-Free Massive MIMO Over Spatially Correlated Rician Fading Channels. , 2020, , .		9
125	Time-Dependent Pricing for Bandwidth Slicing Under Information Asymmetry and Price Discrimination. IEEE Transactions on Communications, 2020, 68, 6975-6989.	7.8	21
126	A Novel Power Weighted Multipath Component Clustering Algorithm Based on Spectral Clustering. , 2020, , .		4

#	Article	IF	CITATIONS
127	Efficient Receiver for Cell-Free Massive MIMO Systems with Low-Resolution ADCs. , 2020, , .		5
128	Game Theory-Based Multi-Objective Optimization Interference Alignment Algorithm for HSR 5G Heterogeneous Ultra-Dense Network. IEEE Transactions on Vehicular Technology, 2020, 69, 13371-13382.	6.3	16
129	Concepts on Train-to-Ground Wireless Communication System for Hyperloop: Channel, Network Architecture, and Resource Management. Energies, 2020, 13, 4309.	3.1	14
130	Channel Characterization for Vehicle-to-Infrastructure Communications at the Terahertz Band. , 2020, , .		3
131	Implementation and Evaluation of Ray-Tracing Acceleration Methods in Wireless Communication. , 2020, , .		2
132	Artificial Neural Network Based Path Loss Prediction for Wireless Communication Network. IEEE Access, 2020, 8, 199523-199538.	4.2	64
133	A Grant-Free Method for Massive Machine-Type Communication With Backward Activity Level Estimation. IEEE Transactions on Signal Processing, 2020, 68, 6665-6680.	5.3	12
134	Measurement and Simulation for Vehicle-to-Infrastructure Communications at 3.5 GHz for 5G. Wireless Communications and Mobile Computing, 2020, 2020, 1-13.	1.2	3
135	Impact of UAV Rotation on MIMO Channel Characterization for Air-to-Ground Communication Systems. IEEE Transactions on Vehicular Technology, 2020, 69, 12418-12431.	6.3	72
136	Coalition Game Based Full-Duplex Popular Content Distribution in mmWave Vehicular Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 13836-13848.	6.3	8
137	An Improved Interference Alignment Algorithm With User Mobility Prediction for High-Speed Railway Wireless Communication Networks. IEEE Access, 2020, 8, 80468-80479.	4.2	6
138	Dual-Hop Relaying Communications Over Fisher-Snedecor <i>F</i> -Fading Channels. IEEE Transactions on Communications, 2020, 68, 2695-2710.	7.8	26
139	Design and Characterization of Nanopore- Assisted Weakly-Coupled Few-Mode Fiber for Simpler MIMO Space Division Multiplexing. IEEE Access, 2020, 8, 76173-76181.	4.2	10
140	5G Key Technologies for Smart Railways. Proceedings of the IEEE, 2020, 108, 856-893.	21.3	192
141	Efficient Hybrid Beamforming With Anti-Blockage Design for High-Speed Railway Communications. IEEE Transactions on Vehicular Technology, 2020, 69, 9643-9655.	6.3	28
142	Multidimensional Channel Characteristics Analysis in High‧peed Train Scenarios. Radio Science, 2020, 55, e2020RS007076.	1.6	0
143	Channel Non-Line-of-Sight Identification Based on Convolutional Neural Networks. IEEE Wireless Communications Letters, 2020, 9, 1500-1504.	5.0	32
144	Satelliteâ€Terrestrial Channel Characterization in Highâ€Speed Railway Environment at 22.6ÂGHz. Radio Science, 2020, 55, e2019RS006995.	1.6	3

#	Article	IF	CITATIONS
145	Al-Enabled Sub-6-GHz and mm-Wave Hybrid Communications: Considerations for Use With Future HSR Wireless Systems. IEEE Vehicular Technology Magazine, 2020, 15, 59-67.	3.4	11
146	Graph Coloring Based Pilot Assignment for Cell-Free Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2020, 69, 9180-9184.	6.3	67
147	Sub-Channel Allocation for Full-Duplex Access and Device-to-Device Links Underlaying Heterogeneous Cellular Networks Using Coalition Formation Games. IEEE Transactions on Vehicular Technology, 2020, 69, 9736-9749.	6.3	7
148	Backscatter Aided Wireless Communications on High-Speed Rails: Capacity Analysis and Transceiver Design. IEEE Journal on Selected Areas in Communications, 2020, 38, 2864-2874.	14.0	8
149	Learning-Based Energy-Efficient Channel Selection for Edge Computing-Empowered Cognitive Machine-to-Machine Communications. , 2020, , .		2
150	Efficient Receiver Design for Uplink Cell-Free Massive MIMO With Hardware Impairments. IEEE Transactions on Vehicular Technology, 2020, 69, 4537-4541.	6.3	53
151	Channel Characterization for Vehicle-to-Infrastructure Communications in Millimeter-Wave Band. IEEE Access, 2020, 8, 42325-42341.	4.2	16
152	A Compact Hepta-Band Mode-Composite Antenna for Sub (6, 28, and 38) GHz Applications. IEEE Transactions on Antennas and Propagation, 2020, 68, 2593-2602.	5.1	53
153	Machine Learning-Enabled LOS/NLOS Identification for MIMO Systems in Dynamic Environments. IEEE Transactions on Wireless Communications, 2020, 19, 3643-3657.	9.2	85
154	Trajectory-Joint Clustering Algorithm for Time-Varying Channel Modeling. IEEE Transactions on Vehicular Technology, 2020, 69, 1041-1045.	6.3	37
155	Sum of Fisher-Snedecor <i>F</i> Random Variables and Its Applications. IEEE Open Journal of the Communications Society, 2020, 1, 342-356.	6.9	21
156	On the Performance of Dual-Hop Systems Over Mixed FSO/mmWave Fading Channels. IEEE Open Journal of the Communications Society, 2020, 1, 477-489.	6.9	30
157	Wireless Channel Pattern Recognition Using k-Nearest Neighbor Algorithm for High-Speed Railway. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 579-588.	0.3	1
158	Transmission Schemes for Backscatter Aided Wireless Communications on High Speed Rails. , 2020, , .		1
159	Channel Sounding and Ray Tracing for THz Channel Characterization. , 2020, , .		8
160	Outage Probability of Two-Way Relaying Systems Over Mixed Fluctuating Two-Ray and Nakagami-m Fading Channels. , 2020, , .		0
161	Reconfigurable Intelligent Surface Assisted D2D Networks: Power and Discrete Phase Shift Design. , 2020, , .		3
162	Joint Beamforming and Power Allocation in Millimeter-Wave High-Speed Railway Systems. , 2020, , .		5

#	Article	IF	CITATIONS
163	Feeder Communication for Integrated Networks. IEEE Wireless Communications, 2020, 27, 20-27.	9.0	10
164	Power Allocation for Millimeter-Wave Railway Systems with Multi-Agent Deep Reinforcement Learning. , 2020, , .		1
165	Cell-Free Massive MIMO with Channel Aging and Pilot Contamination. , 2020, , .		9
166	Experimental Assessment of a Method to Perform High Velocity Measurement at Low Velocity. , 2020, , .		0
167	Influence of Meteorological Attenuation on the Channel Characteristics for High-Speed Railway at the Millimeter-Wave Band. , 2020, , .		2
168	Angle-of-Arrival Estimation for Vehicle-to-vehicle Communications based on Machine Learning. , 2020, , .		9
169	QoE-Aware Coordinated Caching for Adaptive Video Streaming in High-speed Railways. , 2020, , .		1
170	Impact of UAV Rotation on MIMO Channel Space-Time Correlation. , 2020, , .		5
171	Influence Analysis of Typical Objects in Rural Railway Environments at 28 GHz. IEEE Transactions on Vehicular Technology, 2019, 68, 2066-2076.	6.3	28
172	Realizing Railway Cognitive Radio: A Reinforcement Base-Station Multi-Agent Model. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 1452-1467.	8.0	15
173	Spatial Modulation Aided Layered Division Multiplexing: A Spectral Efficiency Perspective. IEEE Transactions on Broadcasting, 2019, 65, 20-29.	3.2	7
174	Measurement-Based Markov Modeling for Multi-Link Channels in Railway Communication Systems. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 985-999.	8.0	12
175	The Design and Applications of High-Performance Ray-Tracing Simulation Platform for 5G and Beyond Wireless Communications: A Tutorial. IEEE Communications Surveys and Tutorials, 2019, 21, 10-27.	39.4	221
176	On 3D Cluster-Based Channel Modeling for Large-Scale Array Communications. IEEE Transactions on Wireless Communications, 2019, 18, 4902-4914.	9.2	18
177	Channel Estimation and Self-Positioning for UAV Swarm. IEEE Transactions on Communications, 2019, 67, 7994-8007.	7.8	16
178	Task Offloading for Vehicular Fog Computing under Information Uncertainty: A Matching-Learning Approach. , 2019, , .		15
179	Energy-Efficient Power Control of Train–Ground mmWave Communication for High-Speed Trains. IEEE Transactions on Vehicular Technology, 2019, 68, 7704-7714.	6.3	16
180	Measurement-Based Modeling and Analysis of UAV Air-Ground Channels at 1 and 4ÂGHz. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 1804-1808.	4.0	40

#	Article	IF	CITATIONS
181	Ultra-Reliable Communications for Industrial Internet of Things: Design Considerations and Channel Modeling. IEEE Network, 2019, 33, 104-111.	6.9	38
182	Cell-Free Massive MIMO: A New Next-Generation Paradigm. IEEE Access, 2019, 7, 99878-99888.	4.2	285
183	Coping with Chip-Level Asynchronicity of Coded Tandem Spreading Multiple Access for Massive Machine-Type Communications. , 2019, , .		9
184	On Hybrid Beamforming of mmWave MU-MIMO System for High-Speed Railways. , 2019, , .		5
185	Reliable Task Offloading for Vehicular Fog Computing Under Information Asymmetry and Information Uncertainty. IEEE Transactions on Vehicular Technology, 2019, 68, 8322-8335.	6.3	112
186	Lowâ€altitude UAV airâ€ground propagation channel measurement and analysis in a suburban environment at 3.9 GHz. IET Microwaves, Antennas and Propagation, 2019, 13, 1503-1508.	1.4	18
187	Channel characterisation in rural railway environment at 28 GHz. IET Microwaves, Antennas and Propagation, 2019, 13, 1052-1059.	1.4	3
188	Distributed Gaussian Processes Hyperparameter Optimization for Big Data Using Proximal ADMM. IEEE Signal Processing Letters, 2019, 26, 1197-1201.	3.6	19
189	Train-to-Infrastructure Channel Modeling and Simulation in MmWave Band. IEEE Communications Magazine, 2019, 57, 44-49.	6.1	11
190	Relay Assisted Concurrent Scheduling to Overcome Blockage in Full-Duplex Millimeter Wave Small Cells. IEEE Access, 2019, 7, 105755-105767.	4.2	5
191	Expanded Compute-and-Forward for Backhaul-Limited Cell-Free Massive MIMO. , 2019, , .		5
192	Sub-Channel Allocation for Device-to-Device Underlaying Full-Duplex mmWave Small Cells Using Coalition Formation Games. IEEE Transactions on Vehicular Technology, 2019, 68, 11915-11927.	6.3	12
193	A 3D Air-to-Air Wideband Non-Stationary Channel Model of UAV Communications. , 2019, , .		8
194	Vehicular Channel in Urban Environments at 23 GHz for Flexible Access Common Spectrum Application. International Journal of Antennas and Propagation, 2019, 2019, 1-13.	1.2	4
195	Channel Estimation for Cell-Free mmWave Massive MIMO Through Deep Learning. IEEE Transactions on Vehicular Technology, 2019, 68, 10325-10329.	6.3	124
196	A Grant-Free Access and Data Recovery Method for Massive Machine-Type Communications. , 2019, , .		12
197	Channel Characteristics of High-Speed Railway Station Based on Ray-Tracing Simulation at 5G mmWave Band. International Journal of Antennas and Propagation, 2019, 2019, 1-10.	1.2	8
198	An Efficient MIMO Channel Model for LTE-R Network in High-Speed Train Environment. IEEE Transactions on Vehicular Technology, 2019, 68, 3189-3200.	6.3	33

#	Article	IF	CITATIONS
199	On Modeling of Dense Multipath Component for Indoor Massive MIMO Channels. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 526-530.	4.0	9
200	Two-Way Hybrid Terrestrial-Satellite Relaying Systems: Performance Analysis and Relay Selection. IEEE Transactions on Vehicular Technology, 2019, 68, 7011-7023.	6.3	30
201	Channel Characterization for Intra-Wagon Communication at 60 and 300 GHz Bands. IEEE Transactions on Vehicular Technology, 2019, 68, 5193-5207.	6.3	68
202	Wireless powered UAV relay communications over fluctuating two-ray fading channels. Physical Communication, 2019, 35, 100724.	2.1	26
203	Sum of Squared Fluctuating Two-Ray Random Variables With Wireless Applications. IEEE Transactions on Vehicular Technology, 2019, 68, 8173-8177.	6.3	26
204	A Cluster-Based Channel Model for Massive MIMO Communications in Indoor Hotspot Scenarios. IEEE Transactions on Wireless Communications, 2019, 18, 3856-3870.	9.2	21
205	Measurement, Simulation, and Characterization of Train-to-Infrastructure Inside-Station Channel at the Terahertz Band. IEEE Transactions on Terahertz Science and Technology, 2019, 9, 291-306.	3.1	60
206	Cooperative Learning for Spectrum Management in Railway Cognitive Radio Network. IEEE Transactions on Vehicular Technology, 2019, 68, 5809-5819.	6.3	9
207	Guest Editorial 5G Tactile Internet: An Application for Industrial Automation. IEEE Transactions on Industrial Informatics, 2019, 15, 2992-2994.	11.3	3
208	A Cluster-Based Three-Dimensional Channel Model for Vehicle-to-Vehicle Communications. IEEE Transactions on Vehicular Technology, 2019, 68, 5208-5220.	6.3	54
209	Multi-Antenna Channel Interpolation via Tucker Decomposed Extreme Learning Machine. IEEE Transactions on Vehicular Technology, 2019, 68, 7160-7163.	6.3	13
210	Fast Simulation of Vehicular Channels Using Finite-State Markov Models. IEEE Wireless Communications Letters, 2019, 8, 1056-1059.	5.0	14
211	Resource Allocation for Device-to-Device Communications in Multi-Cell Multi-Band Heterogeneous Cellular Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 4760-4773.	6.3	38
212	Relay-Assisted and QoS Aware Scheduling to Overcome Blockage in mmWave Backhaul Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 1733-1744.	6.3	34
213	Millimeter-Wave Propagation Modeling and Measurements for 5G Mobile Networks. IEEE Wireless Communications, 2019, 26, 72-77.	9.0	43
214	Channel Measurement-based Ray-tracing Analysis for High Speed Railway Scenario at 800MHz. , 2019, , .		0
215	Cross-Layer Assisted TCP for Dependable Communications in High-Speed Railway Networks. , 2019, , .		2
216	Propagation Modeling for Air-Ground Channel over Rough Sea Surface in Low Altitudes. , 2019, , .		2

#	Article	IF	CITATIONS
217	Channel Characterization for Satellite Link and Terrestrial Link of Vehicular Communication in the mmWave Band. IEEE Access, 2019, 7, 173559-173570.	4.2	7
218	Energy-Efficient Full-Duplex Concurrent Scheduling Based on Contention Graph in mmWave Backhaul Networks. IEEE Access, 2019, 7, 178007-178019.	4.2	2
219	Millimeter-Wave Channel Measurement Based Ray-Tracing Calibration and Analysis in Metro. , 2019, , .		10
220	Edge Caching and Content Delivery with Minimized Delay for Both High-Speed Train and Local Users. , 2019, , .		11
221	Directional Analysis of Vehicle-to-Vehicle Channels with Large Vehicle Obstructions. , 2019, , .		3
222	Performance Evaluation of Autoencoder for Coding and Modulation in Wireless Communications. , 2019, , .		2
223	The Application of NOMA on High-Speed Railway with Partial CSI. , 2019, , .		1
224	Multi-frequency channel characterization for massive MIMO communications in lobby environment. China Communications, 2019, 16, 79-92.	3.2	3
225	V2V channel characterization and modeling for underground parking garages. China Communications, 2019, 16, 93-105.	3.2	21
226	Characterization for the Vehicle-to-Infrastructure Channel in Urban and Highway Scenarios at the Terahertz Band. IEEE Access, 2019, 7, 166984-166996.	4.2	26
227	Deep Learning Based Fast Multiuser Detection for Massive Machine-Type Communication. , 2019, , .		18
228	Mixed-ADC/DAC Multipair Massive MIMO Relaying Systems: Performance Analysis and Power Optimization. IEEE Transactions on Communications, 2019, 67, 140-153.	7.8	125
229	On the Modeling of Near-Field Scattering of Vehicles in Vehicle-to-X Wireless Channels Based on Scattering Centers. IEEE Access, 2019, 7, 3264-3274.	4.2	8
230	An Empirical Air-to-Ground Channel Model Based on Passive Measurements in LTE. IEEE Transactions on Vehicular Technology, 2019, 68, 1140-1154.	6.3	72
231	Device-to-Device Communications Enabled Multicast Scheduling for mmWave Small Cells Using Multi-Level Codebooks. IEEE Transactions on Vehicular Technology, 2019, 68, 2724-2738.	6.3	20
232	Device-to-Device Communications Enabled Multicast Scheduling with the Multi-level Codebook in mmWave Small Cells. Mobile Networks and Applications, 2019, 24, 1603-1617.	3.3	5
233	A Power-Angle-Spectrum Based Clustering and Tracking Algorithm for Time-Varying Radio Channels. IEEE Transactions on Vehicular Technology, 2019, 68, 291-305.	6.3	27
234	5-GHz Obstructed Vehicle-to-Vehicle Channel Characterization for Internet of Intelligent Vehicles. IEEE Internet of Things Journal, 2019, 6, 100-110.	8.7	74

4

#	Article	IF	CITATIONS
235	Clustering Enabled Wireless Channel Modeling Using Big Data Algorithms. , 2018, 56, 177-183.		84
236	Cluster-Based 3-D Channel Modeling for Massive MIMO in Subway Station Environment. IEEE Access, 2018, 6, 6257-6272.	4.2	24
237	Mobility Model-Based Non-Stationary Mobile-to-Mobile Channel Modeling. IEEE Transactions on Wireless Communications, 2018, 17, 4388-4400.	9.2	54
238	Bayesian-based Distributed Sequential Decision In Rail Transit Cognitive Radio. Procedia Computer Science, 2018, 129, 382-388.	2.0	2
239	Stochastic Channel Modeling for Railway Tunnel Scenarios at 25ÂGHz. ETRI Journal, 2018, 40, 39-50.	2.0	16
240	Influence of Typical Railway Objects in a mmWave Propagation Channel. IEEE Transactions on Vehicular Technology, 2018, 67, 2880-2892.	6.3	32
241	A Geometry-Based Stochastic Channel Model for the Millimeter-Wave Band in a 3GPP High-Speed Train Scenario. IEEE Transactions on Vehicular Technology, 2018, 67, 3853-3865.	6.3	40
242	Channel Estimation With Expectation Maximization and Historical Information Based Basis Expansion Model for Wireless Communication Systems on High Speed Railways. IEEE Access, 2018, 6, 72-80.	4.2	74
243	Geometrical-Based Modeling for Millimeter-Wave MIMO Mobile-to-Mobile Channels. IEEE Transactions on Vehicular Technology, 2018, 67, 2848-2863.	6.3	166
244	Coded Tandem Spreading Multiple Access for Massive Machine-Type Communications. IEEE Wireless Communications, 2018, 25, 75-81.	9.0	30
245	Channel Measurement, Simulation, and Analysis for High-Speed Railway Communications in 5G Millimeter-Wave Band. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 3144-3158.	8.0	117
246	Shadowing Characterization for 5-GHz Vehicle-to-Vehicle Channels. IEEE Transactions on Vehicular Technology, 2018, 67, 1855-1866.	6.3	30
247	Key Issues for GSM-R and LTE-R. Advances in High-speed Rail Technology, 2018, , 19-55.	0.1	2
248	Spectral Efficiency of Multipair Massive MIMO Two-Way Relaying With Hardware Impairments. IEEE Wireless Communications Letters, 2018, 7, 14-17.	5.0	74
249	Energy-Efficient Mobile Crowd Sensing Based on Unmanned Aerial Vehicles. , 2018, , .		3
250	A Cluster-Based 3D Channel Model for Vehicle-to-Vehicle Communications. , 2018, , .		4
251	Measurement-Based Massive MIMO Channel Characterization in Lobby Environment at 11 GHz. , 2018, , .		1

#	Article	IF	CITATIONS
253	Performance Analysis of Wireless Powered UAV Relaying Systems Over <tex>\$kappa-mu\$</tex> Fading Channels. , 2018, , .		8
254	3D LTE Coverage Prediction for Residential District by Ray Tracing Simulation. , 2018, , .		0
255	Wireless Coverage Analysis for Intra-Wagon Scenario at 60 GHz Band. , 2018, , .		2
256	OBSTRUCTED VEHICLE-TO-VEHICLE CHANNEL MODELING FOR INTELLIGENT VEHICULAR COMMUNICATIONS. , 2018, , .		0
257	Directional Analysis of Massive MIMO Channels at 11 GHz in Theater Environment. , 2018, , .		2
258	Mobility-Aware Caching Scheduling for Fog Computing in mmWave Band. IEEE Access, 2018, 6, 69358-69370.	4.2	9
259	Path Loss Analysis and Modeling for Vehicle-to-Vehicle Communications with Vehicle Obstructions. , 2018, , .		15
260	Measurement-based Massive-MIMO Channel Characterization for Outdoor LoS Scenarios. , 2018, , .		3
261	The 3D Spatial Non-Stationarity and Spherical Wavefront in Massive MIMO Channel Measurement. , 2018, , .		10
262	Measurement-based Massive MIMO Channel Characterization in Subway Station. , 2018, , .		1
263	Channel Characteristics in Rural Railway Environment at 28 GHz. , 2018, , .		2
264	A Novel Target Recognition Based Radio Channel Clustering Algorithm. , 2018, , .		3
265	Effective Rate of MISO Systems Over Fisher–Snedecor <inline-formula> <tex-math notation="LaTeX">\$mathcal{F}\$ </tex-math </inline-formula> Fading Channels. IEEE Communications Letters, 2018, 22, 2619-2622.	4.1	39
266	Towards Realistic High-Speed Train Channels at 5G Millimeter-Wave Band—Part I: Paradigm, Significance Analysis, and Scenario Reconstruction. IEEE Transactions on Vehicular Technology, 2018, 67, 9112-9128.	6.3	109
267	Towards Realistic High-Speed Train Channels at 5G Millimeter-Wave Band—Part II: Case Study for Paradigm Implementation. IEEE Transactions on Vehicular Technology, 2018, 67, 9129-9144.	6.3	62
268	Time-Variant Cluster-Based Channel Modeling for V2V Communications. , 2018, , .		3
269	Distance-Azimuth Joint Cram \tilde{A} $\mbox{Cr-Rao}$ Lower Bound for Spherical-wavefront-based Scatterer Localization. , 2018, , .		0
270	User association and wireless backhaul bandwidth allocation for 5G heterogeneous networks in the millimeter-wave band. China Communications, 2018, 15, 1-13.	3.2	8

#	Article	IF	CITATIONS
271	Using Coalition Games for QoS Aware Scheduling in mmWave WPANs. , 2018, , .		3
272	Mobility-Aware Transmission Scheduling Scheme for Millimeter-Wave Cells. IEEE Transactions on Wireless Communications, 2018, 17, 5991-6004.	9.2	20
273	When Mobile Crowd Sensing Meets UAV: Energy-Efficient Task Assignment and Route Planning. IEEE Transactions on Communications, 2018, 66, 5526-5538.	7.8	221
274	Resource Allocation for Device-to-Device Communications Underlaying Heterogeneous Cellular Networks Using Coalitional Games. IEEE Transactions on Wireless Communications, 2018, 17, 4163-4176.	9.2	91
275	Joint Design of Coded Tandem Spreading Multiple Access and Coded Slotted ALOHA for Massive Machine-type Communications. IEEE Transactions on Industrial Informatics, 2018, 14, 4064-4071.	11.3	12
276	Scenario modules, rayâ€tracing simulations and analysis of millimetre wave and terahertz channels for smart rail mobility. IET Microwaves, Antennas and Propagation, 2018, 12, 501-508.	1.4	27
277	Physical Layer Security Over Fluctuating Two-Ray Fading Channels. IEEE Transactions on Vehicular Technology, 2018, 67, 8949-8953.	6.3	57
278	Dynamic mmWave beam tracking for high speed railway communications. , 2018, , .		27
279	Geometrical-Based Statistical Modeling for Polarized MIMO Mobile-to-Mobile Channels. IEEE Transactions on Antennas and Propagation, 2018, 66, 4213-4227.	5.1	9
280	Connected Vehicle Channels: On the Consideration of Electromagnetic Scattering From Local Scatterers. IEEE Transactions on Vehicular Technology, 2018, 67, 7910-7923.	6.3	6
281	LTE-R Network. Advances in High-speed Rail Technology, 2018, , 259-294.	0.1	1
282	Review of the Development of Dedicated Mobile Communications for High-Speed Railway. Advances in High-speed Rail Technology, 2018, , 1-17.	0.1	1
283	Radio Propagation and Wireless Channel for Railway Communications. Advances in High-speed Rail Technology, 2018, , 57-123.	0.1	0
284	Determination of Cell Coverage Area and its Applications in High-Speed Railway Environments. IEEE Transactions on Vehicular Technology, 2017, 66, 3515-3525.	6.3	18
285	A fuzzy-based function approximation technique for reinforcement learning1. Journal of Intelligent and Fuzzy Systems, 2017, 32, 3909-3920.	1.4	7
286	An Automatic Clustering Algorithm for Multipath Components Based on Kernel-Power-Density. , 2017, ,		10
287	On Indoor Millimeter Wave Massive MIMO Channels: Measurement and Simulation. IEEE Journal on Selected Areas in Communications, 2017, 35, 1678-1690.	14.0	188
288	Scenario modules and ray-tracing simulations of millimeter wave and terahertz channels for smart rail mobility. , 2017, , .		22

#	Article	IF	CITATIONS
289	Spatial consistency of dominant components between ray-tracing and stochastic modeling in 3GPP high-speed train scenarios. , 2017, , .		8
290	Ray-tracing simulation and analysis of propagation for 3GPP high speed scenarios. , 2017, , .		10
291	Learning From Big Data: A Survey and Evaluation of Approximation Technologies for Large-Scale Reinforcement Learning. , 2017, , .		2
292	Stochastic Channel Modeling for Kiosk Applications in the Terahertz Band. IEEE Transactions on Terahertz Science and Technology, 2017, 7, 502-513.	3.1	98
293	Terahertz Communication for Vehicular Networks. IEEE Transactions on Vehicular Technology, 2017, 66, 5617-5625.	6.3	180
294	Challenges and chances for smart rail mobility at mmWave and THz bands from the channels viewpoint. , 2017, , .		15
295	Spatial Variation Analysis for Measured Indoor Massive MIMO Channels. IEEE Access, 2017, 5, 20828-20840.	4.2	12
296	The effects of moving speed on handover performances with measurement data. , 2017, , .		1
297	Scatterer Localization Using Large-Scale Antenna Arrays Based on a Spherical Wave-Front Parametric Model. IEEE Transactions on Wireless Communications, 2017, 16, 6543-6556.	9.2	38
298	Indoor massive multiple-input multiple-output channel characterization and performance evaluation. Frontiers of Information Technology and Electronic Engineering, 2017, 18, 773-787.	2.6	16
299	Tandem Spreading Network-Coded Division Multiple Access. IEEE Transactions on Industrial Informatics, 2017, 13, 390-398.	11.3	18
300	A Channel Estimation Method for OFDM Based Wireless Communication System in High Speed Environment. Wireless Personal Communications, 2017, 94, 909-926.	2.7	1
301	Resource allocation in D2D-aided high-speed railway wireless communication systems: a matching theory approach. China Communications, 2017, 14, 87-99.	3.2	7
302	The Effect of Power Adjustment on Handover in High-Speed Railway Communication Networks. IEEE Access, 2017, 5, 26237-26250.	4.2	20
303	Channel characteristics analysis in smart warehouse scenario. , 2017, , .		7
304	Low Complexity and Robust Codebook-Based Analog Beamforming for Millimeter Wave MIMO Systems. IEEE Access, 2017, 5, 19824-19834.	4.2	10
305	Significance Analysis for Typical Objects in mmWave Urban Railway Propagation Environment. , 2017, ,		4
306	Semi-blind adaptive beamforming based on constant modulus algorithm for smart antennas. , 2017, , .		2

#	Article	IF	CITATIONS
307	A Kernel-Power-Density-Based Algorithm for Channel Multipath Components Clustering. IEEE Transactions on Wireless Communications, 2017, 16, 7138-7151.	9.2	119
308	Cognitive Communication in Rail Transit: Awareness, Adaption, and Reasoning. IT Professional, 2017, 19, 45-54.	1.5	12
309	Measurement based ray tracer calibration and channel analysis for high-speed railway viaduct scenario at 93.2 GHz. , 2017, , .		6
310	Non-stationary mobile-to-mobile channel modeling using the Gauss-Markov mobility model. , 2017, , .		8
311	Directional Analysis of Indoor Massive MIMO Channels at 6 GHz Using SAGE. , 2017, , .		7
312	Multi-User Channels With Large-Scale Antenna Arrays in a Subway Environment: Characterization and Modeling. IEEE Access, 2017, 5, 23613-23625.	4.2	9
313	Adaptive beamforming based on subband structure in smart antennas. , 2017, , .		1
314	A research on SAGE algorithm based on massive MIMO channel measurements. , 2017, , .		0
315	Path loss characteristics for vehicle-to-infrastructure channel in urban and suburban scenarios at 5.9 GHz. , 2017, , .		5
316	A two-cylinder based polarized MIMO channel model. , 2017, , .		1
317	Characterization of indoor massive MIMO channel at 11 GHz. , 2017, , .		5
318	Channel analysis for millimeter-wave railway communications in urban environment. , 2017, , .		1
319	A Simplified Multipath Component Modeling Approach for High-Speed Train Channel Based on Ray Tracing. Wireless Communications and Mobile Computing, 2017, 2017, 1-14.	1.2	10
320	User association and backhaul bandwidth allocation for 5G heterogeneous networks in the millimeter-wave band. , 2017, , .		3
321	Efficient environment model for intra-wagon millimeter wave ray-tracing simulation. , 2017, , .		6
322	Scattering studies on sorted materials of high-speed rail scenario for propagation channel simulations. , 2017, , .		0
323	A cluster based geometrical model for millimeter wave mobile-to-mobile channels. , 2017, , .		7
324	On the Feasibility of High Speed Railway mmWave Channels in Tunnel Scenario. Wireless Communications and Mobile Computing, 2017, 2017, 1-17.	1.2	9

#	Article	IF	CITATIONS
325	A Novel Adaptive Beamforming with Combinational Algorithm in Wireless Communications. Lecture Notes in Computer Science, 2017, , 637-646.	1.3	1
326	Ray-Based Statistical Propagation Modeling for Indoor Corridor Scenarios at 15 GHz. International Journal of Antennas and Propagation, 2016, 2016, 1-12.	1.2	8
327	Compressive Sensing Based Multi-User Detection in High Mobility Scenario. , 2016, , .		0
328	Measurement-Based Analysis of Relaying Performance for Vehicle-to-Vehicle Communications with Large Vehicle Obstructions. , 2016, , .		7
329	Performance comparision of antenna array configurations for LTE-R system. , 2016, , .		0
330	Quasi-stationarity regions analysis for channel in composite high-speed railway scenario. , 2016, , .		2
331	An accelerated algorithm for ray tracing simulation based on high-performance computation. , 2016, , .		12
332	Two-Cylinder and Multi-Ring GBSSM for Realizing and Modeling of Vehicle-to-Vehicle Wideband MIMO Channels. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 2787-2799.	8.0	42
333	A survey on high-speed railway communications: A radio resource management perspective. Computer Communications, 2016, 86, 12-28.	5.1	37
334	Stochastic Modeling for Extra Propagation Loss of Tunnel Curve. , 2016, , .		0
335	Impact of Mutual Coupling on LTE-R MIMO Capacity for Antenna Array Configurations in High Speed Railway Scenario. , 2016, , .		4
336	High-Speed Railway Communications: From GSM-R to LTE-R. IEEE Vehicular Technology Magazine, 2016, 11, 49-58.	3.4	240
337	On the influence of mobility: Doppler spread and fading analysis in rapidly time-varying channels. , 2016, , .		1
338	A Sparsity-Based Clustering Framework for Radio Channel Impulse Responses. , 2016, , .		6
339	Measurement-Based Characterizations of Indoor Massive MIMO Channels at 2 GHz, 4 GHz, and 6 GHz Frequency Bands. , 2016, , .		26
340	Channel measurements and modeling for 5G communication systems at 3.5 GHz band. , 2016, , .		15
341	Parameter estimation using SACE algorithm based on Massive MIMO channel measurements. , 2016, , .		3
342	Excess Propagation Loss of Semi-Closed Obstacles for Inter/Intra-Device Communications in the Millimeter-Wave Range. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 676-690.	2.2	14

#	Article	IF	CITATIONS
343	On the Clustering of Radio Channel Impulse Responses Using Sparsity-Based Methods. IEEE Transactions on Antennas and Propagation, 2016, 64, 2465-2474.	5.1	66
344	Measurement and Analysis of Extra Propagation Loss of Tunnel Curve. IEEE Transactions on Vehicular Technology, 2016, 65, 1847-1858.	6.3	21
345	Moving Virtual Array Measurement Scheme in High-Speed Railway. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 706-709.	4.0	10
346	Excess Propagation Loss Modeling of Semiclosed Obstacles for Intelligent Transportation System. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 2171-2181.	8.0	17
347	Channel Measurements and Models for High-Speed Train Communication Systems: A Survey. IEEE Communications Surveys and Tutorials, 2016, 18, 974-987.	39.4	181
348	On the Influence of Scattering From Traffic Signs in Vehicle-to-X Communications. IEEE Transactions on Vehicular Technology, 2016, 65, 5835-5849.	6.3	40
349	Vehicle-to-Vehicle Radio Channel Characterization in Crossroad Scenarios. IEEE Transactions on Vehicular Technology, 2016, 65, 5850-5861.	6.3	74
350	Spectral/Energy Efficiency Tradeoff of Cellular Systems With Mobile Femtocell Deployment. IEEE Transactions on Vehicular Technology, 2016, 65, 3389-3400.	6.3	35
351	Joint Access Control Based on Access Ratio and Resource Utilization for High-Speed Railway Communications. Frequenz, 2015, 69, .	0.9	0
352	Large scale fading characteristics in rail traffic scenarios. , 2015, , .		2
353	Channel Characteristics in High-Speed Railway: A Survey of Channel Propagation Properties. IEEE Vehicular Technology Magazine, 2015, 10, 67-78.	3.4	37
354	Finite-State Markov Modeling for High-Speed Railway Fading Channels. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 954-957.	4.0	52
355	Two-Dimension Direction-of-Arrival Estimation for Massive MIMO Systems. IEEE Access, 2015, 3, 2122-2128.	4.2	65
356	Antenna array configurations for 3D MIMO system in high speed railway scenario. , 2015, , .		3
357	A Method for Generating Correlated Taps in Stochastic Vehicle-to-Vehicle Channel Models. , 2015, , .		4
358	Statistical Characterization of Dynamic Multi-Path Components for Vehicle-to-Vehicle Radio Channels. , 2015, , .		1
359	A Measurement-Based Stochastic Model for High-Speed Railway Channels. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 1120-1135.	8.0	24
360	Deviceâ€toâ€device channel measurements and models: a survey. IET Communications, 2015, 9, 312-325.	2.2	46

#	Article	IF	CITATIONS
361	Characterization of Quasi-Stationarity Regions for Vehicle-to-Vehicle Radio Channels. IEEE Transactions on Antennas and Propagation, 2015, 63, 2237-2251.	5.1	95
362	Measurements and Analysis of Large-Scale Fading Characteristics in Curved Subway Tunnels at 920 MHz, 2400 MHz, and 5705 MHz. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 2393-2405.	8.0	67
363	Three-dimensional modeling, simulation and evaluation of Device-to-Device channels. , 2015, , .		2
364	Future railway services-oriented mobile communications network. IEEE Communications Magazine, 2015, 53, 78-85.	6.1	271
365	A Dynamic Wideband Directional Channel Model for Vehicle-to-Vehicle Communications. IEEE Transactions on Industrial Electronics, 2015, 62, 7870-7882.	7.9	66
366	Reducing the Cost of High-Speed Railway Communications: From the Propagation Channel View. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 2050-2060.	8.0	21
367	The evaluation of geometry-based stochastic models for device-to-device channels. , 2015, , .		1
368	A Non-Stationary Wideband Channel Model for Massive MIMO Communication Systems. IEEE Transactions on Wireless Communications, 2015, 14, 1434-1446.	9.2	183
369	Radio Wave Propagation and Wireless Channel Modeling 2013. International Journal of Antennas and Propagation, 2014, 2014, 1-2.	1.2	1
370	Access control schemes for high-speed train communications. , 2014, , .		1
371	The application of semi-deterministic method on high-speed railway cutting scenario. , 2014, , .		0
372	Measurements and Modeling of Cross-Correlation Property of Shadow Fading in High-Speed Railways. , 2014, , .		12
373	A position-based access scheme for high-speed railway communications. , 2014, , .		2
374	A Standardized Path Loss Model for the GSM-Railway Based High-Speed Railway Communication Systems. , 2014, , .		12
375	Vehicle-to-vehicle channel models with large vehicle obstructions. , 2014, , .		10
376	Shadow Fading Correlation in High-Speed Railway Environments. IEEE Transactions on Vehicular Technology, 2014, , 1-1.	6.3	32
377	A precoding and detection scheme for OFDM based wireless communication system in high-speed environment. IEEE Transactions on Consumer Electronics, 2014, 60, 558-566.	3.6	6

378 Dynamic threshold model based probabilistic latent semantic analysis. , 2014, , .

#	Article	IF	CITATIONS
379	Social Network Services for Rail Traffic Applications. IEEE Intelligent Systems, 2014, 29, 63-69.	4.0	18
380	Propagation Measurements and Modeling of Crossing Bridges on High-Speed Railway at 930 MHz. IEEE Transactions on Vehicular Technology, 2014, 63, 502-517.	6.3	48
381	Handover schemes and algorithms of high-speed mobile environment: A survey. Computer Communications, 2014, 47, 1-15.	5.1	57
382	Propagation Measurements and Analysis for Train Stations of High-Speed Railway at 930 MHz. IEEE Transactions on Vehicular Technology, 2014, 63, 3499-3516.	6.3	84
383	Envelope Level Crossing Rate and Average Fade Duration of Nonisotropic Vehicle-to-Vehicle Ricean Fading Channels. IEEE Transactions on Intelligent Transportation Systems, 2014, 15, 62-72.	8.0	165
384	Challenges Toward Wireless Communications for High-Speed Railway. IEEE Transactions on Intelligent Transportation Systems, 2014, 15, 2143-2158.	8.0	376
385	Vehicle-to-Vehicle Propagation Models With Large Vehicle Obstructions. IEEE Transactions on Intelligent Transportation Systems, 2014, 15, 2237-2248.	8.0	171
386	Novel 3D Geometry-Based Stochastic Models for Non-Isotropic MIMO Vehicle-to-Vehicle Channels. IEEE Transactions on Wireless Communications, 2014, 13, 298-309.	9.2	100
387	Empirical Models for Extra Propagation Loss of Train Stations on High-Speed Railway. IEEE Transactions on Antennas and Propagation, 2014, 62, 1395-1408.	5.1	34
388	A heuristic cross-correlation model of shadow fading in high-speed railway environments. , 2014, , .		1
389	Propagation prediction for composite scenarios of dense semi-closed obstacles in high-speed railway. , 2014, , .		5
390	Short-Term Fading Behavior in High-Speed Railway Cutting Scenario: Measurements, Analysis, and Statistical Models. IEEE Transactions on Antennas and Propagation, 2013, 61, 2209-2222.	5.1	110
391	Semi-Deterministic Path-Loss Modeling for Viaduct and Cutting Scenarios of High-Speed Railway. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 789-792.	4.0	31
392	An Improved Parameter Computation Method for a MIMO V2V Rayleigh Fading Channel Simulator Under Non-Isotropic Scattering Environments. IEEE Communications Letters, 2013, 17, 265-268.	4.1	75
393	Modeling of the Division Point of Different Propagation Mechanisms in the Near-Region Within Arched Tunnels. Wireless Personal Communications, 2013, 68, 489-505.	2.7	21
394	Complete Propagation Model in Tunnels. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 741-744.	4.0	48
395	Measurement based channel modeling with directional antennas for high-speed railways. , 2013, , .		13
396	A double differential space-frequency MIMO precoding scheme of LTE in high-speed railway environment. , 2013, , .		1

#	Article	IF	CITATIONS
397	Deterministic Propagation Modeling for the Realistic High-Speed Railway Environment. , 2013, , .		67
398	Propagation channel measurements and analysis at 2.4 GHz in subway tunnels. IET Microwaves, Antennas and Propagation, 2013, 7, 934-941.	1.4	24
399	Measurements and Analysis of Propagation Channels in High-Speed Railway Viaducts. IEEE Transactions on Wireless Communications, 2013, 12, 794-805.	9.2	164
400	FIVE-ZONE PROPAGATION MODEL FOR LARGE-SIZE VEHICLES INSIDE TUNNELS. Progress in Electromagnetics Research, 2013, 138, 389-405.	4.4	25
401	COMPLETE PROPAGATION MODEL STRUCTURE INSIDE TUNNELS. Progress in Electromagnetics Research, 2013, 141, 711-726.	4.4	15
402	A TDL Based Non-WSSUS Vehicle-to-Vehicle Channel Model. International Journal of Antennas and Propagation, 2013, 2013, 1-8.	1.2	21
403	Propagation and Wireless Channel Modeling Development on Wide-Sense Vehicle-to-X Communications. International Journal of Antennas and Propagation, 2013, 2013, 1-11.	1.2	1
404	Construction and Capacity Analysis of High-Rank LoS MIMO Channels in High Speed Railway Scenarios. , 2012, , .		5
405	Distance-Dependent Model of Ricean K-Factors in High-Speed Rail Viaduct Channel. , 2012, , .		14
406	Measurements and analysis of the directional antenna bottom area in high speed rail. , 2012, , .		6
407	Measurements and analysis of short-term fading behavior for high-speed rail viaduct scenario. , 2012, ,		33
408	Propagation measurements and analysis of fading behavior for high speed rail cutting scenarios. , 2012, , .		21
409	Novel Hybrid Propagation Model inside Tunnels. , 2012, , .		7
410	Analysis of the Relation Between Fresnel Zone and Path Loss Exponent Based on Two-Ray Model. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 208-211.	4.0	32
411	Fading Analysis for the High Speed Railway Viaduct and Terrain Cutting Scenarios. International Journal of Antennas and Propagation, 2012, 2012, 1-9.	1.2	6
412	Radio Wave Propagation Scene Partitioning for High-Speed Rails. International Journal of Antennas and Propagation, 2012, 2012, 1-7.	1.2	59
413	Propagation Mechanism Modeling in the Near-Region of Arbitrary Cross-Sectional Tunnels. International Journal of Antennas and Propagation, 2012, 2012, 1-11.	1.2	14
414	Cooperative MIMO Channel Modeling and Multi-Link Spatial Correlation Properties. IEEE Journal on Selected Areas in Communications, 2012, 30, 388-396.	14.0	153

#	Article	IF	CITATIONS
415	An Efficient OFDM Timing Synchronization for CMMB System. IEICE Transactions on Communications, 2012, E95.B, 3786-3792.	0.7	4
416	Comparison of Antenna Arrays for MIMO System in High Speed Mobile Scenarios. , 2011, , .		15
417	A Novel Path Loss Model for High-Speed Railway Viaduct Scenarios. , 2011, , .		13
418	An Empirical Path Loss Model and Fading Analysis for High-Speed Railway Viaduct Scenarios. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 808-812.	4.0	121
419	High Precision Multi-cell Channel Estimation Algorithm Based on Successive Interference Cancellation. , 2011, , .		1
420	Propagation Mechanism Analysis Before the Break Point Inside Tunnels. , 2011, , .		13
421	Assessment of LTE-R Using High Speed Railway Channel Model. , 2011, , .		87
422	Path loss measurements and analysis for high-speed railway viaduct scene. , 2010, , .		31
423	Research of propagation characteristics of break point. , 2010, , .		9
424	Path loss models in viaduct and plain scenarios of the High-speed Railway. , 2010, , .		47
425	Measurement and modeling of subway near shadowing phenomenon. , 2010, , .		9
426	A Robust Timing and Frequency Synchronization Algorithm for DVB-H Receiver. IEEE Transactions on Consumer Electronics, 2006, 52, 341-346.	3.6	4
427	On the Synchronization Techniques for Wireless OFDM Systems. IEEE Transactions on Broadcasting, 2006, 52, 236-244.	3.2	131
428	Carrier Frequency Recovery Technique in OFDM Systems. Wireless Personal Communications, 2005, 32, 177-188.	2.7	7
429	Decimal Frequency Offset Estimation in COFDM Wireless Communications. IEEE Transactions on Broadcasting, 2004, 50, 154-158.	3.2	13
430	An efficient target detection algorithm via Karhunen‣oÃ∵ve transform for frequency modulated continuous wave (FMCW) radar applications. IET Signal Processing, 0, , .	1.5	2