Yong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8851450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity. Advanced Materials, 2006, 18, 2325-2329.	21.0	1,609
2	Li Storage Properties of Disordered Graphene Nanosheets. Chemistry of Materials, 2009, 21, 3136-3142.	6.7	970
3	Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nature Communications, 2018, 9, 576.	12.8	497
4	Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers. Advanced Materials, 2006, 18, 645-649.	21.0	477
5	Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Applied Catalysis B: Environmental, 2017, 200, 448-457.	20.2	433
6	Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application. Chemistry of Materials, 2005, 17, 3899-3903.	6.7	430
7	Nanoengineering of 2D MXeneâ€Based Materials for Energy Storage Applications. Small, 2021, 17, e1902085.	10.0	398
8	Crystalline Carbon Hollow Spheres, Crystalline Carbonâ^'SnO2Hollow Spheres, and Crystalline SnO2Hollow Spheres:Â Synthesis and Performance in Reversible Li-Ion Storage. Chemistry of Materials, 2006, 18, 1347-1353.	6.7	381
9	NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale, 2011, 3, 2615.	5.6	342
10	Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal–Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage. ACS Nano, 2015, 9, 11462-11471.	14.6	324
11	Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage. Advanced Energy Materials, 2018, 8, 1703482.	19.5	317
12	Microwave-Assisted Morphology Evolution of Fe-Based Metal–Organic Frameworks and Their Derived Fe ₂ O ₃ Nanostructures for Li-Ion Storage. ACS Nano, 2017, 11, 4198-4205.	14.6	263
13	Construction of Complex Co ₃ O ₄ @Co ₃ V ₂ O ₈ Hollow Structures from Metal–Organic Frameworks with Enhanced Lithium Storage Properties. Advanced Materials, 2018. 30. 1702875.	21.0	262
14	Microwave-assisted synthesis of a Co3O4–graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. Journal of Materials Chemistry, 2010, 20, 9735.	6.7	261
15	Synthesis, characterization and photocatalytic performance of novel visible-light-induced Ag/BiOI. Applied Catalysis B: Environmental, 2012, 111-112, 271-279.	20.2	253
16	Sn@CNT Nanostructures Rooted in Graphene with High and Fast Li-Storage Capacities. ACS Nano, 2011, 5, 8108-8114.	14.6	234
17	Few-Layered Boronic Ester Based Covalent Organic Frameworks/Carbon Nanotube Composites for High-Performance K-Organic Batteries. ACS Nano, 2019, 13, 3600-3607.	14.6	233
18	Porous Iron–Cobalt Alloy/Nitrogenâ€Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal–Organic Framework Hybrids for Oxygen Reduction. Advanced Functional Materials, 2018, 28, 1706738.	14.9	227

#	Article	IF	CITATIONS
19	Graphene-Wrapped CoS Nanoparticles for High-Capacity Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2013, 5, 801-806.	8.0	219
20	Nitrogenâ€Doped Porous Carbon Supported Nonprecious Metal Singleâ€Atom Electrocatalysts: from Synthesis to Application. Small Methods, 2019, 3, 1900159.	8.6	218
21	Highâ€Lithiumâ€Affinity Chemically Exfoliated 2D Covalent Organic Frameworks. Advanced Materials, 2019, 31, e1901640.	21.0	217
22	Synthesis of Graphitic Ordered Macroporous Carbon with a Three-Dimensional Interconnected Pore Structure for Electrochemical Applications. Journal of Physical Chemistry B, 2005, 109, 20200-20206.	2.6	195
23	Carbon Nanotubes Rooted in Porous Ternary Metal Sulfide@N/Sâ€Doped Carbon Dodecahedron: Bimetalâ€Organicâ€Frameworks Derivation and Electrochemical Application for Highâ€Capacity and Longâ€Life Lithiumâ€Ion Batteries. Advanced Functional Materials, 2016, 26, 8345-8353.	14.9	192
24	Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chemistry of Materials, 2009, 21, 3210-3215.	6.7	190
25	Bimetal–Organic Framework: Oneâ€Step Homogenous Formation and its Derived Mesoporous Ternary Metal Oxide Nanorod for Highâ€Capacity, Highâ€Rate, and Long ycleâ€Life Lithium Storage. Advanced Functional Materials, 2016, 26, 1098-1103.	14.9	176
26	Exfoliated Triazineâ€Based Covalent Organic Nanosheets with Multielectron Redox for Highâ€Performance Lithium Organic Batteries. Advanced Energy Materials, 2019, 9, 1801010.	19.5	174
27	Efficient Activation of High-Loading Sulfur by Small CNTs Confined Inside a Large CNT for High-Capacity and High-Rate Lithium–Sulfur Batteries. Nano Letters, 2016, 16, 440-447.	9.1	170
28	Fe ₂ O ₃ -Graphene Rice-on-Sheet Nanocomposite for High and Fast Lithium Ion Storage. Journal of Physical Chemistry C, 2011, 115, 20747-20753.	3.1	168
29	Preparation and Characterization of Carbon Nanospheres as Anode Materials in Lithium-Ion Secondary Batteries. Industrial & Engineering Chemistry Research, 2008, 47, 2294-2300.	3.7	162
30	Molten Salt Synthesis of Tin Oxide Nanorods:Â Morphological and Electrochemical Features. Journal of Physical Chemistry B, 2004, 108, 17832-17837.	2.6	161
31	Few-Layered Fluorinated Triazine-Based Covalent Organic Nanosheets for High-Performance Alkali Organic Batteries. ACS Nano, 2019, 13, 14252-14261.	14.6	158
32	Multilayer NiO@Co ₃ O ₄ @graphene quantum dots hollow spheres for high-performance lithium-ion batteries and supercapacitors. Journal of Materials Chemistry A, 2019, 7, 7800-7814.	10.3	152
33	Graphene-based nanocomposite anodes for lithium-ion batteries. Nanoscale, 2014, 6, 11528-11552.	5.6	151
34	Macroporous Co3O4 platelets with excellent rate capability as anodes for lithium ion batteries. Electrochemistry Communications, 2010, 12, 101-105.	4.7	142
35	Morphological Effect of Graphene Nanosheets on Ultrathin CoS Nanosheets and Their Applications for High-Performance Li-Ion Batteries and Photocatalysis. Journal of Physical Chemistry C, 2014, 118, 25355-25364.	3.1	142
36	Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 6636.	6.7	137

#	Article	IF	CITATIONS
37	Hollow carbon spheres with a controllable shell structure. Journal of Materials Chemistry, 2006, 16, 4413.	6.7	135
38	Interconnected Tin Disulfide Nanosheets Grown on Graphene for Li-Ion Storage and Photocatalytic Applications. ACS Applied Materials & amp; Interfaces, 2013, 5, 12073-12082.	8.0	135
39	Graphene supported Sn–Sb@carbon core-shell particles as a superior anode for lithium ion batteries. Electrochemistry Communications, 2010, 12, 1302-1306.	4.7	132
40	MOF-derived yolk–shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 8680-8689.	10.3	130
41	The Progress and Prospect of Tunable Organic Molecules for Organic Lithium-Ion Batteries. ACS Nano, 2021, 15, 47-80.	14.6	130
42	Stable Hollowâ€Structured Silicon Suboxideâ€Based Anodes toward Highâ€Performance Lithiumâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2101796.	14.9	127
43	Bismuth oxyiodide–graphene nanocomposites with high visible light photocatalytic activity. Journal of Colloid and Interface Science, 2013, 398, 161-167.	9.4	123
44	Coordinationâ€Induced Interlinked Covalent―and Metal–Organicâ€Framework Hybrids for Enhanced Lithium Storage. Advanced Materials, 2019, 31, e1903176.	21.0	120
45	Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Nanoscale, 2011, 3, 4323.	5.6	119
46	lonic liquid-templated synthesis of mesoporous CeO2–TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 223, 157-164.	3.9	118
47	Covalent Organic Framework Derived Boron/Oxygen Codoped Porous Carbon on CNTs as an Efficient Sulfur Host for Lithium–Sulfur Batteries. Small Methods, 2019, 3, 1900338.	8.6	109
48	Strong Surfaceâ€Bound Sulfur in Carbon Nanotube Bridged Hierarchical Mo ₂ Câ€Based MXene Nanosheets for Lithium–Sulfur Batteries. Small, 2019, 15, e1804338.	10.0	107
49	Highly efficient water desalination by capacitive deionization on biomass-derived porous carbon nanoflakes. Separation and Purification Technology, 2021, 256, 117771.	7.9	106
50	NiS nanorod-assembled nanoflowers grown on graphene: morphology evolution and Li-ion storage applications. Journal of Materials Chemistry A, 2014, 2, 15152-15158.	10.3	98
51	Sheet-like and fusiform CuO nanostructures grown on graphene by rapid microwave heating for high Li-ion storage capacities. Journal of Materials Chemistry, 2011, 21, 17916.	6.7	97
52	Metal-Organic-Frameworks Derivation of Mesoporous NiO Nanorod for High-Performance Lithium Ion Batteries. Electrochimica Acta, 2016, 213, 351-357.	5.2	95
53	Tin Nanoparticle Loaded Graphite Anodes for Li-Ion Battery Applications. Journal of the Electrochemical Society, 2004, 151, A1804.	2.9	94
54	Microwave hydrothermal synthesis of high performance tin–graphene nanocomposites for lithium ion batteries. Journal of Power Sources, 2012, 216, 22-27.	7.8	92

#	Article	IF	CITATIONS
55	Graphene sheets grafted three-dimensional BiOBr0.210.8 microspheres with excellent photocatalytic activity under visible light. Journal of Hazardous Materials, 2014, 266, 75-83.	12.4	92
56	A Hydrostable Cathode Material Based on the Layered P2@P3 Composite that Shows Redox Behavior for Copper in Highâ€Rate and Longâ€Cycling Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 1412-1416.	13.8	92
57	Microwave Hydrothermal Synthesis of Ni-based Metal–Organic Frameworks and Their Derived Yolk–Shell NiO for Li-Ion Storage and Supported Ammonia Borane for Hydrogen Desorption. ACS Sustainable Chemistry and Engineering, 2015, 3, 1830-1838.	6.7	91
58	One-Step, Confined Growth of Bimetallic Tin–Antimony Nanorods in Carbon Nanotubes Grown In Situ for Reversible Li+ Ion Storage. Angewandte Chemie - International Edition, 2006, 45, 7039-7042.	13.8	89
59	Confined Volume Change in Snâ€Coâ€C Ternary Tubeâ€inâ€Tube Composites for Highâ€Capacity and Longâ€Life Lithium Storage. Advanced Functional Materials, 2013, 23, 893-899.	14.9	89
60	Large and fast reversible Li-ion storages in Fe2O3-graphene sheet-on-sheet sandwich-like nanocomposites. Scientific Reports, 2013, 3, 3502.	3.3	88
61	Functionalized Graphene Quantum Dot Modification of Yolk–Shell NiO Microspheres for Superior Lithium Storage. Small, 2018, 14, e1800589.	10.0	88
62	Morphology tuning of inorganic nanomaterials grown by precipitation through control of electrolytic dissociation and supersaturation. Nature Chemistry, 2019, 11, 695-701.	13.6	86
63	Carbon-coated mixed-metal sulfide hierarchical structure: MOF-derived synthesis and lithium-storage performances. Chemical Engineering Journal, 2019, 366, 622-630.	12.7	86
64	Microwave-assisted synthesis of SnO2–graphite nanocomposites for Li-ion battery applications. Journal of Power Sources, 2005, 144, 220-225.	7.8	85
65	Microwave-assisted solvothermal synthesis of 3D carnation-like SnS2 nanostructures with high visible light photocatalytic activity. Journal of Molecular Catalysis A, 2013, 378, 285-292.	4.8	82
66	Facile synthesis of graphene-supported shuttle- and urchin-like CuO for high and fast Li-ion storage. Electrochemistry Communications, 2012, 14, 82-85.	4.7	80
67	Polyurethane-derived N-doped porous carbon with interconnected sheet-like structure as polysulfide reservoir for lithium–sulfur batteries. Journal of Power Sources, 2015, 293, 119-126.	7.8	78
68	Carbon-Coated MnMoO4 Nanorod for High-Performance Lithium-Ion Batteries. Electrochimica Acta, 2016, 190, 354-359.	5.2	78
69	Organic Cathode Materials for Sodiumâ€lon Batteries: From Fundamental Research to Potential Commercial Application. Advanced Functional Materials, 2022, 32, 2107718.	14.9	75
70	Nanoscale Si coating on the pore walls of SnO2nanotube anode for Li rechargeable batteries. Chemical Communications, 2010, 46, 622-624.	4.1	74
71	Graphene wrapped SnCo nanoparticles for high-capacity lithium ion storage. Journal of Power Sources, 2013, 222, 526-532.	7.8	73
72	Graphene quantum dots modification of yolk-shell Co3O4@CuO microspheres for boosted lithium storage performance. Chemical Engineering Journal, 2019, 373, 985-994.	12.7	73

#	Article	IF	CITATIONS
73	Ultrasmall Tin Nanodots Embedded in Nitrogen-Doped Mesoporous Carbon: Metal-Organic-Framework Derivation and Electrochemical Application as Highly Stable Anode for Lithium Ion Batteries. Electrochimica Acta, 2016, 217, 123-131.	5.2	72
74	Carbon coated mixed-metal selenide microrod: Bimetal-organic-framework derivation approach and applications for lithium-ion batteries. Chemical Engineering Journal, 2018, 351, 169-176.	12.7	71
75	Bimetal-Organic-Framework Derivation of Ball-Cactus-Like Ni-Sn-P@C-CNT as Long-Cycle Anode for Lithium Ion Battery. Small, 2017, 13, 1700521.	10.0	70
76	Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries. Chemical Engineering Journal, 2013, 229, 183-189.	12.7	69
77	Metal–Organic Framework-Derived Nanoconfinements of CoF ₂ and Mixed-Conducting Wiring for High-Performance Metal Fluoride-Lithium Battery. ACS Nano, 2021, 15, 1509-1518.	14.6	69
78	General Dimension ontrolled Synthesis of Hollow Carbon Embedded with Metal Singe Atoms or Core–Shell Nanoparticles for Energy Storage Applications. Advanced Energy Materials, 2018, 8, 1801101.	19.5	66
79	Controlled Synthesis of V-shaped SnO2Nanorods. Journal of Physical Chemistry B, 2004, 108, 13589-13593.	2.6	65
80	MOF-templated nanorice–nanosheet core–satellite iron dichalcogenides by heterogeneous sulfuration for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 19179-19188.	10.3	64
81	Multi-metal–Organic Frameworks and Their Derived Materials for Li/Na-Ion Batteries. Electrochemical Energy Reviews, 2020, 3, 127-154.	25.5	64
82	In-situ structural evolution analysis of Zr-doped Na3V2(PO4)2F3 coated by N-doped carbon layer as high-performance cathode for sodium-ion batteries. Journal of Energy Chemistry, 2022, 65, 514-523.	12.9	62
83	Sulfur film-coated reduced graphene oxide composite for lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 9173.	10.3	61
84	General and facile synthesis of metal sulfide nanostructures: In situ microwave synthesis and application as binder-free cathode for Li-ion batteries. Chemical Engineering Journal, 2016, 306, 251-259.	12.7	59
85	Hierarchical "tube-on-fiber―carbon/mixed-metal selenide nanostructures for high-performance hybrid supercapacitors. Nanoscale, 2019, 11, 13996-14009.	5.6	57
86	Preparation of SnO2–graphite nanocomposite anodes by urea-mediated hydrolysis. Electrochemistry Communications, 2003, 5, 292-296.	4.7	55
87	Standing carbon-coated molybdenum dioxide nanosheets on graphene: morphology evolution and lithium ion storage properties. Journal of Materials Chemistry A, 2015, 3, 4706-4715.	10.3	55
88	Recent developments of aprotic lithium-oxygen batteries: functional materials determine the electrochemical performance. Science Bulletin, 2017, 62, 442-452.	9.0	54
89	A reduced graphene oxide supported Cu3SnS4 composite as an efficient visible-light photocatalyst. Dalton Transactions, 2014, 43, 7491.	3.3	52
90	Self-assembly and template-free synthesis of ZnO hierarchical nanostructures and their photocatalytic properties. Journal of Colloid and Interface Science, 2015, 448, 367-373.	9.4	52

#	Article	IF	CITATIONS
91	A rational synthesis of single-atom iron–nitrogen electrocatalysts for highly efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 16271-16282.	10.3	52
92	Eco-friendly synthesis of rutile TiO2 nanostructures with controlled morphology for efficient lithium-ion batteries. Chemical Engineering Journal, 2016, 304, 156-164.	12.7	51
93	Microemulsion Syntheses of Sn and SnO[sub 2]-Graphite Nanocomposite Anodes for Li-Ion Batteries. Journal of the Electrochemical Society, 2004, 151, A563.	2.9	49
94	Bi7O9I3/reduced graphene oxide composite as an efficient visible-light-driven photocatalyst for degradation of organic contaminants. Journal of Molecular Catalysis A, 2014, 391, 175-182.	4.8	49
95	Ultrasmall MoC nanoparticles embedded in 3D frameworks of nitrogen-doped porous carbon as anode materials for efficient lithium storage with pseudocapacitance. Journal of Materials Chemistry A, 2018, 6, 13705-13716.	10.3	48
96	Boosting the Capacity of Aqueous Liâ€lon Capacitors via Pinpoint Surgery in Nanocoralâ€Like Covalent Organic Frameworks. Small Methods, 2022, 6, .	8.6	46
97	Topotactical conversion of carbon coated Fe-based electrodes on graphene aerogels for lithium ion storage. Journal of Materials Chemistry A, 2015, 3, 14741-14749.	10.3	45
98	Visible light-driven Bi2Sn2O7/reduced graphene oxide nanocomposite for efficient photocatalytic degradation of organic contaminants. Separation and Purification Technology, 2015, 142, 25-32.	7.9	41
99	Covalent Organic Frameworks for Nextâ€Generation Batteries. ChemElectroChem, 2020, 7, 3905-3926.	3.4	41
100	Boosting lithium-ion storage performance by synergistically coupling Zn0.76Co0.24S with N-/S-doped carbon anofiber. Chemical Engineering Journal, 2018, 346, 376-387.	12.7	40
101	Halogen-functionalized triazine-based organic frameworks towards high performance supercapacitors. Chemical Engineering Journal, 2020, 400, 125967.	12.7	40
102	Rational Design of a P2-Type Spherical Layered Oxide Cathode for High-Performance Sodium-Ion Batteries. ACS Central Science, 2019, 5, 1937-1945.	11.3	39
103	Progress and Perspective of Metal―and Covalentâ€Organic Frameworks and their Derivatives for Lithiumâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 72-97.	4.7	39
104	Bridging mesoporous carbon particles with carbon nanotubes. Microporous and Mesoporous Materials, 2007, 98, 323-329.	4.4	38
105	Antimony-doped tin oxide nanotubes for high capacity lithium storage. Electrochemistry Communications, 2011, 13, 433-436.	4.7	37
106	One-dimensional SnO2nanostructures: facile morphology tuning and lithium storage properties. Nanotechnology, 2009, 20, 345704.	2.6	36
107	Construction of point-line-plane (0-1-2 dimensional) Fe2O3-SnO2/graphene hybrids as the anodes with excellent lithium storage capability. Nano Research, 2017, 10, 121-133.	10.4	36
108	Multiscale Hierarchically Engineered Carbon Nanosheets Derived from Covalent Organic Framework for Potassiumâ€lon Batteries. Small Methods, 2020, 4, 2000159.	8.6	36

#	Article	IF	CITATIONS
109	Cobalt Coordinated Cyano Covalent-Organic Framework for High-Performance Potassium-Organic Batteries. ACS Applied Materials & Interfaces, 2021, 13, 48913-48922.	8.0	36
110	Unusual Conformal Li Plating on Alloyable Nanofiber Frameworks to Enable Dendrite Suppression of Li Metal Anode. ACS Applied Energy Materials, 2019, 2, 4379-4388.	5.1	35
111	Microwave hydrothermal growth of In2S3 interconnected nanoflowers and nanoparticles on graphene for high-performance Li-ion batteries. RSC Advances, 2014, 4, 8582.	3.6	34
112	Two-dimensional metal-organic framework materials for energy conversion and storage. Journal of Power Sources, 2020, 477, 228919.	7.8	34
113	Microemulsion Synthesis of Tin Oxide-Graphite Nanocomposites as Negative Electrode Materials for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2003, 6, A19.	2.2	33
114	Lithiophilic Vertical Cactusâ€Like Framework Derived from Cu/Znâ€Based Coordination Polymer through In Situ Chemical Etching for Stable Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2008514.	14.9	32
115	A microemulsion-based preparation of tin/tin oxide core/shell nanoparticles with particle size control. Journal of Materials Chemistry, 2004, 14, 362.	6.7	30
116	Four‣ayer Tin–Carbon Nanotube Yolk–Shell Materials for Highâ€Performance Lithiumâ€lon Batteries. ChemSusChem, 2014, 7, 1407-1414.	6.8	30
117	Flexible and rechargeable Zn–air batteries based on green feedstocks with 75% round-trip efficiency. Sustainable Energy and Fuels, 2017, 1, 1909-1914.	4.9	30
118	Revealing the effect of cobalt-doping on Ni/Mn-based coordination polymers towards boosted Li-Storage performances. Energy Storage Materials, 2020, 25, 846-857.	18.0	29
119	Integrating Mixed Metallic Selenides/Nitrogen-Doped Carbon Heterostructures in One-Dimensional Carbon Fibers for Efficient Oxygen Reduction Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 8391-8401.	6.7	29
120	Rational Construction of Yolk–Shell Bimetal-Modified Quinonyl-Rich Covalent Organic Polymers with Ultralong Lithium-Storage Mechanism. ACS Nano, 2022, 16, 9830-9842.	14.6	29
121	CNT boosted two-dimensional flaky metal-organic nanosheets for superior lithium and potassium storage. Chemical Engineering Journal, 2022, 430, 133023.	12.7	28
122	A metal–organic-framework approach to engineer hollow bimetal oxide microspheres towards enhanced electrochemical performances of lithium storage. Dalton Transactions, 2019, 48, 2019-2027.	3.3	27
123	High-Performance Removal of Phosphate from Water by Graphene Nanosheets Supported Lanthanum Hydroxide Nanoparticles. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	26
124	Dendrite-Free and Stable Lithium Metal Battery Achieved by a Model of Stepwise Lithium Deposition and Stripping. Nano-Micro Letters, 2021, 13, 170.	27.0	26
125	Carbonyl Functional Group Modified Metal–Organic Coordination Polymer with Improved Lithium-Storage Performance. ACS Applied Energy Materials, 2020, 3, 11378-11387.	5.1	25
126	Metal-organic frameworks derived germanium oxide nanosheets for large reversible Li-ion storage. Electrochemistry Communications, 2017, 84, 80-85.	4.7	24

#	Article	IF	CITATIONS
127	Ultrafine ternary metal oxide particles with carbon nanotubes: a metal–organic-framework-based approach and superior lithium-storage performance. Dalton Transactions, 2019, 48, 4413-4419.	3.3	23
128	Organic supramolecular protective layer with rearranged and defensive Li deposition for stable and dendrite-free lithium metal anode. Energy Storage Materials, 2020, 32, 261-271.	18.0	23
129	Polyaniline nanowires aligned on MOFs-derived nanoporous carbon as high-performance electrodes for supercapacitor. Electrochimica Acta, 2021, 390, 138804.	5.2	22
130	Bifunctional iron nickel phosphide nanocatalysts supported on porous carbon for highly efficient overall water splitting. Sustainable Materials and Technologies, 2019, 22, e00117.	3.3	21
131	Fluorine/Nitrogen Co-Doped Porous Carbons Derived from Covalent Triazine Frameworks for High-Performance Supercapacitors. ACS Applied Energy Materials, 2021, 4, 4519-4529.	5.1	21
132	Conversion of Bulk Metallurgical Silicon into Photocatalytic Nanoparticles by Copper-Assisted Chemical Etching. ACS Sustainable Chemistry and Engineering, 2016, 4, 6590-6599.	6.7	20
133	Threeâ€Dimensional Molybdenum Disulfide Nanoflowers Decorated on Graphene Nanosheets for Highâ€Performance Lithiumâ€lon Batteries. ChemElectroChem, 2016, 3, 1503-1512.	3.4	20
134	Reduced graphene oxide modified with naphthoquinone for effective immobilization of polysulfides in high-performance Li-S batteries. Chemical Engineering Journal, 2020, 383, 123111.	12.7	20
135	N-doped carbon nanofibers encapsulated Cu2-xSe with the improved lithium storage performance and its structural evolution analysis. Electrochimica Acta, 2021, 367, 137449.	5.2	20
136	Indium Tin Oxide@Carbon Core–Shell Nanowire and Jagged Indium Tin Oxide Nanowire. Nanoscale Research Letters, 2010, 5, 1682-1685.	5.7	19
137	Novel 3D flowerlike Au/BiOBr0.210.8 composites with highly enhanced visible-light photocatalytic performances. Separation and Purification Technology, 2014, 133, 343-350.	7.9	19
138	Self-assembled 3D Fe2(MoO4)3 microspheres with amorphous shell as anode of lithium-ion batteries with superior electrochemical performance. Chemical Engineering Science, 2020, 217, 115517.	3.8	18
139	Construction of Anthraquinone-Containing Covalent Organic Frameworks/Graphene Hybrid Films for a Flexible High-Performance Microsupercapacitor. Industrial & Engineering Chemistry Research, 2022, 61, 7480-7488.	3.7	17
140	Plasmonic Ag coated BiOBr0.210.8 nanosheets grown on graphene with excellent visible-light photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 326, 30-40.	3.9	16
141	Concrete-like high sulfur content cathodes with enhanced electrochemical performance for lithium-sulfur batteries. Journal of Energy Chemistry, 2020, 42, 174-179.	12.9	16
142	Ultra-small Fe ₃ O ₄ nanodots encapsulated in layered carbon nanosheets with fast kinetics for lithium/potassium-ion battery anodes. RSC Advances, 2021, 11, 1261-1270.	3.6	16
143	<i>In situ</i> encapsulation of metal sulfide into hierarchical nanostructured electrospun nanofibers as self-supported electrodes for flexible quasi-solid-state supercapacitors. Journal of Materials Chemistry C, 2022, 10, 542-548.	5.5	16
144	Self-assembly nanostructures of one-dimensional antimony oxide and oxychloride. Materials Letters, 2009, 63, 1481-1484.	2.6	14

#	Article	IF	CITATIONS
145	New Cr ₂ Mo ₃ O ₁₂ -based anodes: morphology tuning and Li-storage properties. Journal of Materials Chemistry A, 2015, 3, 15030-15038.	10.3	14
146	Nitrogenâ€Doped Carbonâ€Coated Bimetal Selenides for Highâ€Performance Lithiumâ€Ion Storage through the Selfâ€Accommodation of Volume Change. ChemElectroChem, 2019, 6, 3736-3741.	3.4	12
147	Imineâ€Induced Metalâ€Organic and Covalent Organic Coexisting Framework with Superior Liâ€Storage Properties and Activation Mechanism. ChemSusChem, 2021, 14, 3283-3292.	6.8	12
148	Atomic layer deposition of alumina onto yolk-shell FeS/MoS2 as universal anodes for Li/Na/K-Ion batteries. Electrochimica Acta, 2022, 402, 139471.	5.2	12
149	Triazine organic framework derived Fe single-atom bifunctional electrocatalyst for high performance zinc air batteries. Journal of Power Sources, 2022, 542, 231583.	7.8	11
150	Microwave-assisted synthesis of porous nickel oxide nanostructures as anode materials for lithium-ion batteries. Rare Metals, 2011, 30, 59-62.	7.1	10
151	Two-dimensional imine-based covalent–organic-framework derived nitrogen-doped porous carbon nanosheets for high-performance lithium–sulfur batteries. New Journal of Chemistry, 2021, 45, 8683-8692.	2.8	9
152	Lowâ€Temperature Synthesis of Amorphous Silicon and Its Ballâ€inâ€Ball Hollow Nanospheres as Highâ€Performance Anodes for Sodiumâ€Ion Batteries. Advanced Materials Interfaces, 2022, 9, .	3.7	9
153	Pomegranate-Inspired Nitrogen-Doped Carbon-Coated Bimetallic Sulfides as a High-Performance Anode of Sodium-Ion Batteries and Their Structural Evolution Analysis. ACS Applied Energy Materials, 2022, 5, 3199-3207.	5.1	9
154	Self-Assembly Behaviors of Heterogemini Surfactant in Aqueous Solution Investigated by Dissipative Particle Dynamics. Journal of Dispersion Science and Technology, 2014, 35, 1300-1307.	2.4	8
155	Graphene-supported nickel chloride and cobalt chloride nanoparticles as highly efficient catalysts for dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2015, 40, 15389-15397.	7.1	8
156	Designing cobalt-based coordination polymers for high-performance sodium and lithium storage: from controllable synthesis to mechanism detection. Materials Today Energy, 2020, 17, 100478.	4.7	8
157	Revealing the effect of phosphorus doping on Co@carbon in boosting oxygen evolution catalytic activity. Journal of Alloys and Compounds, 2020, 843, 156001.	5.5	8
158	Functionalized Graphene Quantum Dots Modified Dioxinâ€Linked Covalent Organic Frameworks for Superior Lithium Storage. Chemistry - A European Journal, 2022, 28, e202103901.	3.3	8
159	Dissipative particle dynamics simulation for the effect of interaction on the self-assembly behaviours of heterogemini surfactant in aqueous solution. Molecular Physics, 2016, 114, 304-314.	1.7	7
160	Redox-Active Tetramino-Benzoquinone π–Ĩ€ Stacking and H-Bonding onto Multiwalled Carbon Nanotubes toward a High-Performance Asymmetric Supercapacitor. ACS Applied Energy Materials, 2022, 5, 8112-8122.	5.1	7
161	Microwave-Assisted Synthesis of Antimony Oxide Nanostructures and their Electrochemical Properties. Materials Science Forum, 0, 650, 157-162.	0.3	5
162	High-temperature synthesis of highly hydrothermal stable mesoporous silica and Fe–SiO2 using ionic liquid as a template. Journal of Solid State Chemistry, 2011, 184, 509-515.	2.9	5

#	Article	IF	CITATIONS
163	Iron-Modified Graphites toward Boosted Lithium/Sodium Storage Performance and Long-Term Cyclability. Industrial & Engineering Chemistry Research, 2018, 57, 9420-9429.	3.7	5
164	Unusual Inside–Outside Li Deposition within Three-Dimensional Honeycomb-like Hierarchical Nitrogen-Doped Framework for a Dendrite-Free Lithium Metal Anode. ACS Applied Energy Materials, 2021, 4, 2838-2846.	5.1	5
165	Uniform Distribution of Li Deposition and High Utilization of Transferred Metallic Li Achieved by an Unusual Free-Standing Skeleton for High-Performance Li Metal Batteries. ACS Applied Energy Materials, 2022, 5, 539-548.	5.1	5
166	Boosted π-Li Cation Effect in the Stabilized Small Organic Molecule Electrode via Hydrogen Bonding with MXene. ACS Applied Materials & Interfaces, 2022, 14, 29974-29985.	8.0	5
167	Tin oxide nanocubes, and tin-core/tin oxide-shell nanostructures, with and without a hollow interior. Journal of Nanoparticle Research, 2006, 8, 1053-1057.	1.9	4
168	Rational Design of Niâ€Based Electrocatalysts by Modulation of Iron Ions and Carbon Nanotubes for Enhanced Oxygen Evolution Reaction. Advanced Sustainable Systems, 2020, 4, 2000227.	5.3	4
169	Valence State Modulation of Chromium in Selective Hydrogen Peroxide Production Electrocatalysts. ACS Applied Energy Materials, 2021, 4, 10114-10123.	5.1	2
170	Insideâ€Outside Li Deposition Achieved by the Unusual Strategy of Constructing the Hierarchical Lithiophilicity for Dendriteâ€Free and Durable Li Metal Anode. Batteries and Supercaps, 0, , .	4.7	2
171	Rational design of a self-supporting skeleton decorated with dual lithiophilic Sn-containing and N-doped carbon tubes for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2022, 10, 11458-11469.	10.3	2
172	Dissipative Particle Dynamics Simulation of Microscopic Properties in Diblock Copolymer Films. Chinese Journal of Chemical Physics, 2010, 23, 274-280.	1.3	1
173	Depletion phenomenon in diblock copolymer films: a dissipative particle dynamics simulation. Molecular Simulation, 2010, 36, 468-473.	2.0	1