
Ana M Casas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8848805/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Molecular and Structural Characterization of Barley Vernalization Genes. Plant Molecular Biology, 2005, 59, 449-467.	3.9	258
2	BARLEYMAP: physical and genetic mapping of nucleotide sequences and annotation of surrounding loci in barley. Molecular Breeding, 2015, 35, 1.	2.1	91
3	Genetic diversity of Prunus rootstocks analyzed by RAPD markers. Euphytica, 1999, 110, 139-149.	1.2	66
4	Adaptation of barley to mild winters: A role for PPDH2. BMC Plant Biology, 2011, 11, 164.	3.6	66
5	Analysis of Plant Pan-Genomes and Transcriptomes with GET_HOMOLOGUES-EST, a Clustering Solution for Sequences of the Same Species. Frontiers in Plant Science, 2017, 8, 184.	3.6	63
6	Patterns of genetic and eco-geographical diversity in Spanish barleys. Theoretical and Applied Genetics, 2008, 116, 271-282.	3.6	62
7	Yield QTL affected by heading date in Mediterranean grown barley. Plant Breeding, 2009, 128, 46-53.	1.9	62
8	Heading date QTL in a springÂ×Âwinter barley cross evaluated in Mediterranean environments. Molecular Breeding, 2008, 21, 455-471.	2.1	58
9	Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days. Journal of Experimental Botany, 2011, 62, 1939-1949.	4.8	57
10	Large Differences in Gene Expression Responses to Drought and Heat Stress between Elite Barley Cultivar Scarlett and a Spanish Landrace. Frontiers in Plant Science, 2017, 8, 647.	3.6	54
11	Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cellular and Developmental Biology - Plant, 1997, 33, 92-100.	2.1	53
12	Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs. Theoretical and Applied Genetics, 2011, 122, 1605-1616.	3.6	53
13	Quantitative trait loci for agronomic traits in an elite barley population for Mediterranean conditions. Molecular Breeding, 2014, 33, 249-265.	2.1	52
14	Screening the Spanish Barley Core Collection for disease resistance. Plant Breeding, 2010, 129, 45-52.	1.9	51
15	Genetic control of pre-heading phases and other traits related to development in a double-haploid barley (Hordeum vulgare L.) population. Field Crops Research, 2010, 119, 36-47.	5.1	51
16	HvFT1 polymorphism and effectââ,¬â€survey of barley germplasm and expression analysis. Frontiers in Plant Science, 2014, 5, 251.	3.6	49
17	Dormancy, ABA content and sensitivity of a barley mutant to ABA application during seed development and after ripening. Journal of Experimental Botany, 2001, 52, 1499-1506.	4.8	47
18	Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics approach. Journal of Experimental Botany, 2008, 59, 2707-2715.	4.8	47

#	Article	IF	CITATIONS
19	Spanish barley landraces outperform modern cultivars at lowâ€productivity sites. Plant Breeding, 2014, 133, 218-226.	1.9	44
20	HvFT1 (VrnH3) drives latitudinal adaptation in Spanish barleys. Theoretical and Applied Genetics, 2011, 122, 1293-1304.	3.6	43
21	Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. Theoretical and Applied Genetics, 2021, 134, 1867-1897.	3.6	41
22	Expression of Osmotin-Like Genes in the Halophyte Atriplex nummularia L. Plant Physiology, 1992, 99, 329-337.	4.8	37
23	Molecular characterization and genetic diversity of Prunus rootstocks. Scientia Horticulturae, 2009, 120, 237-245.	3.6	36
24	Use of new EST markers to elucidate the genetic differences in grain protein content between European and North American two-rowed malting barleys. Theoretical and Applied Genetics, 2004, 110, 116-125.	3.6	31
25	Fine mapping of the Rrs1 resistance locus against scald in two large populations derived from Spanish barley landraces. Theoretical and Applied Genetics, 2013, 126, 3091-3102.	3.6	30
26	Assessing different barley growth habits under Egyptian conditions for enhancing resilience to climate change. Field Crops Research, 2018, 224, 67-75.	5.1	30
27	Joint analysis for heading date QTL in small interconnected barley populations. Molecular Breeding, 2008, 21, 383-399.	2.1	29
28	Harnessing Novel Diversity From Landraces to Improve an Elite Barley Variety. Frontiers in Plant Science, 2019, 10, 434.	3.6	28
29	A mutant induced in the malting barley cv Triumph with reduced dormancy and ABA response. Theoretical and Applied Genetics, 1999, 98, 347-355.	3.6	27
30	Fine mapping and comparative genomics integration of two quantitative trait loci controlling resistance to powdery mildew in a Spanish barley landrace. Theoretical and Applied Genetics, 2012, 124, 49-62.	3.6	25
31	Molecular characterization of Miraflores peach variety and relatives using SSRs. Scientia Horticulturae, 2007, 111, 140-145.	3.6	24
32	Quantitative Trait Loci and Candidate Loci for Heading Date in a Large Population of a Wide Barley Cross. Crop Science, 2012, 52, 2469-2480.	1.8	24
33	RFLP markers associated with major genes controlling heading date evaluated in a barley germ plasm pool. Heredity, 1999, 83, 551-559.	2.6	22
34	Development of a costâ€effective pyrosequencing approach for SNP genotyping in barley. Plant Breeding, 2011, 130, 394-397.	1.9	22
35	Genetic association with highâ€resolution climate data reveals selection footprints in the genomes of barley landraces across the Iberian Peninsula. Molecular Ecology, 2019, 28, 1994-2012.	3.9	22
36	Rapid On-Site Phenotyping via Field Fluorimeter Detects Differences in Photosynthetic Performance in a Hybrid—Parent Barley Germplasm Set. Sensors, 2020, 20, 1486.	3.8	21

#	Article	IF	CITATIONS
37	Genetic diversity of barley cultivars grown in Spain, estimated by RFLP, similarity and coancestry coefficients. Plant Breeding, 1998, 117, 429-435.	1.9	20
38	Identification of quantitative trait loci for resistance to powdery mildew in a Spanish barley landrace. Molecular Breeding, 2010, 25, 581-592.	2.1	20
39	Introgression of an intermediate VRNH1 allele in barley (Hordeum vulgare L.) leads to reduced vernalization requirement without affecting freezing tolerance. Molecular Breeding, 2011, 28, 475-484.	2.1	20
40	Resistance to powdery mildew in Spanish barley landraces is controlled by different sets of quantitative trait loci. Theoretical and Applied Genetics, 2011, 123, 1019-1028.	3.6	19
41	Effects of Low Water Availability on Root Placement and Shoot Development in Landraces and Modern Barley Cultivars. Agronomy, 2020, 10, 134.	3.0	19
42	Progress in the Spanish National Barley Breeding Program. Spanish Journal of Agricultural Research, 2012, 10, 741.	0.6	18
43	A model of the genetic differences in malting quality between European and North American barley cultivars based on a QTL study of the cross Triumph × Morex. Plant Breeding, 2010, 129, 280-290.	1.9	16
44	Whole-genome analysis with SNPs from BOPA1 shows clearly defined groupings of Western Mediterranean, Ethiopian, and Fertile Crescent barleys. Genetic Resources and Crop Evolution, 2013, 60, 251-264.	1.6	15
45	Analysis of powdery mildew resistance in the Spanish barley core collection. Plant Breeding, 2011, 130, 195-202.	1.9	14
46	Developmental patterns of a large set of barley (<i>Hordeum vulgare</i>) cultivars in response to ambient temperature. Annals of Applied Biology, 2013, 162, 309-323.	2.5	14
47	Fine-tuning of the flowering time control in winter barley: the importance of HvOS2 and HvVRN2 in non-inductive conditions. BMC Plant Biology, 2019, 19, 113.	3.6	14
48	Towards Positional Isolation of Three Quantitative Trait Loci Conferring Resistance to Powdery Mildew in Two Spanish Barley Landraces. PLoS ONE, 2013, 8, e67336.	2.5	14
49	A Cluster of Nucleotideâ€Binding Site–Leucineâ€Rich Repeat Genes Resides in a Barley Powdery Mildew Resistance Quantitative Trait Loci on 7HL. Plant Genome, 2016, 9, plantgenome2015.10.0101.	2.8	13
50	Resistance to powdery mildew in one Spanish barley landrace hardly resembles other previously identified wild barley resistances. European Journal of Plant Pathology, 2013, 136, 459-468.	1.7	12
51	Identification of quantitative trait loci for agronomic traits contributed by a barley (Hordeum) Tj ETQq1 1 0.784	1314 rgBT /	/Overlock 10
52	Distribution of MWG699 polymorphism in Spanish European barleys. Genome, 2005, 48, 41-45.	2.0	10
53	Resequencing theVrs1 gene in Spanish barley landraces revealed reversion of six-rowed to two-rowed spike. Molecular Breeding, 2018, 38, 1.	2.1	10
54	Genotype by Environment Interaction and Adaptation. , 2018, , 1-44.		10

4

#	Article	IF	CITATIONS
55	Responses of Barley to High Ambient Temperature Are Modulated by Vernalization. Frontiers in Plant Science, 2021, 12, 776982.	3.6	10
56	TB1: from domestication gene to tool for many trades. Journal of Experimental Botany, 2020, 71, 4621-4624.	4.8	9
57	Durum Wheat Seminal Root Traits within Modern and Landrace Germplasm in Algeria. Agronomy, 2020, 10, 713.	3.0	9
58	Selection footprints in barley breeding lines detected by combining genotyping-by-sequencing with reference genome information. Molecular Breeding, 2015, 35, 1.	2.1	7
59	Candidate genes underlying QTL for flowering time and their interactions in a wide spring barley (Hordeum vulgare L.) cross. Crop Journal, 2021, 9, 862-872.	5.2	6
60	Root Trait Diversity in Field Grown Durum Wheat and Comparison with Seedlings. Agronomy, 2021, 11, 2545.	3.0	6
61	Genotype by Environment Interaction and Adaptation. , 2019, , 29-71.		5
62	Genetic diversity in developmental responses to light spectral quality in barley (Hordeum vulgare L.). BMC Plant Biology, 2020, 20, 207.	3.6	5
63	Genomic Prediction of Grain Yield in a Barley MAGIC Population Modeling Genotype per Environment Interaction. Frontiers in Plant Science, 2021, 12, 664148.	3.6	5
64	Rachis brittleness in a hybrid–parent barley (Hordeum vulgare) breeding germplasm with different combinations at the nonâ€brittle rachis genes. Plant Breeding, 2020, 139, 317-327.	1.9	3
65	Hybrids Provide More Options for Fine-Tuning Flowering Time Responses of Winter Barley. Frontiers in Plant Science, 2022, 13, 827701.	3.6	1
66	Barley Adaptation: Teachings from Landraces Will Help to Respond to Climate Change. , 2013, , 327-337.		0

Barley Adaptation: Teachings from Landraces Will Help to Respond to Climate Change. , 2013, , 327-337. 66