## Xianglan Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/884873/publications.pdf Version: 2024-02-01



XIANCIAN RAL

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel, 2015, 156, 40-46.                                                                                                                                         | 6.4 | 245       |
| 2  | Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer. Fuel, 2016, 166, 227-236.                                                                                                                                | 6.4 | 230       |
| 3  | Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel, 2014, 128, 170-179.                                                                                                                                              | 6.4 | 199       |
| 4  | Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics.<br>Energy Conversion and Management, 2017, 142, 441-451.                                                                               | 9.2 | 158       |
| 5  | Pyrolytic Sugars from Cellulosic Biomass. ChemSusChem, 2012, 5, 2228-2236.                                                                                                                                                              | 6.8 | 155       |
| 6  | High-Solid Lignocellulose Processing Enabled by Natural Deep Eutectic Solvent for Lignin Extraction<br>and Industrially Relevant Production of Renewable Chemicals. ACS Sustainable Chemistry and<br>Engineering, 2018, 6, 12205-12216. | 6.7 | 137       |
| 7  | Lignin Valorization through Thermochemical Conversion: Comparison of Hardwood, Softwood and Herbaceous Lignin. ACS Sustainable Chemistry and Engineering, 2016, 4, 6608-6617.                                                           | 6.7 | 105       |
| 8  | The use of calcium hydroxide pretreatment to overcome agglomeration of technical lignin during fast pyrolysis. Green Chemistry, 2015, 17, 4748-4759.                                                                                    | 9.0 | 80        |
| 9  | Secondary reactions of levoglucosan and char in the fast pyrolysis of cellulose. Environmental<br>Progress and Sustainable Energy, 2012, 31, 256-260.                                                                                   | 2.3 | 79        |
| 10 | Role of levoglucosan physiochemistry in cellulose pyrolysis. Journal of Analytical and Applied<br>Pyrolysis, 2013, 99, 58-65.                                                                                                           | 5.5 | 73        |
| 11 | Repolymerization of pyrolytic lignin for producing carbon fiber with improved properties. Biomass and Bioenergy, 2016, 95, 19-26.                                                                                                       | 5.7 | 72        |
| 12 | Insights into Structural Changes of Lignin toward Tailored Properties during Deep Eutectic Solvent<br>Pretreatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 9783-9793.                                                      | 6.7 | 72        |
| 13 | Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach. Energies, 2016, 9, 808.                                                                                                                                | 3.1 | 69        |
| 14 | Hydrogen-Donor-Assisted Solvent Liquefaction of Lignin to Short-Chain Alkylphenols Using a Micro<br>Reactor/Gas Chromatography System. Energy & Fuels, 2014, 28, 6429-6437.                                                             | 5.1 | 67        |
| 15 | Synergistic enhancement of product quality through fast co-pyrolysis of acid pretreated biomass and waste plastic. Energy Conversion and Management, 2018, 164, 629-638.                                                                | 9.2 | 66        |
| 16 | Pyrolysis mechanisms of methoxy substituted α-O-4 lignin dimeric model compounds and detection of<br>free radicals using electron paramagnetic resonance analysis. Journal of Analytical and Applied<br>Pyrolysis, 2014, 110, 254-263.  | 5.5 | 61        |
| 17 | Role of Hydrogen Transfer during Catalytic Copyrolysis of Lignin and Tetralin over HZSM-5 and HY<br>Zeolite Catalysts. ACS Sustainable Chemistry and Engineering, 2016, 4, 4237-4250.                                                   | 6.7 | 61        |
| 18 | The effect of low-concentration oxygen in sweep gas during pyrolysis of red oak using a fluidized bed reactor. Fuel, 2014, 124, 49-56.                                                                                                  | 6.4 | 60        |

Xianglan Bai

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | An experimental study of the competing processes of evaporation and polymerization of levoglucosan in cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis, 2013, 99, 130-136.                                  | 5.5  | 56        |
| 20 | Quantitative Investigation of Free Radicals in Bioâ€Oil and their Potential Role in Condensedâ€Phase<br>Polymerization. ChemSusChem, 2015, 8, 894-900.                                                                      | 6.8  | 56        |
| 21 | Towards producing high-quality lignin-based carbon fibers: A review of crucial factors affecting<br>lignin properties and conversion techniques. International Journal of Biological Macromolecules,<br>2021, 189, 768-784. | 7.5  | 52        |
| 22 | Thermal conductivity and annealing effect on structure of lignin-based microscale carbon fibers.<br>Carbon, 2017, 121, 35-47.                                                                                               | 10.3 | 50        |
| 23 | Production of solubilized carbohydrate from cellulose using non-catalytic, supercritical depolymerization in polar aprotic solvents. Green Chemistry, 2016, 18, 1023-1031.                                                  | 9.0  | 45        |
| 24 | One-pot selective conversion of lignocellulosic biomass into furfural and co-products using<br>aqueous choline chloride/methyl isobutyl ketone biphasic solvent system. Bioresource Technology,<br>2019, 289, 121708.       | 9.6  | 45        |
| 25 | Potential of producing carbon fiber from biorefinery corn stover lignin with high ash content.<br>Journal of Applied Polymer Science, 2018, 135, 45736.                                                                     | 2.6  | 39        |
| 26 | Anisotropic thermal conductivities and structure in lignin-based microscale carbon fibers. Carbon, 2019, 147, 58-69.                                                                                                        | 10.3 | 37        |
| 27 | Modeling the physiochemistry of levoglucosan during cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis, 2014, 105, 363-368.                                                                                   | 5.5  | 35        |
| 28 | Partial oxidative pyrolysis of acid infused red oak using a fluidized bed reactor to produce sugar rich<br>bio-oil. Fuel, 2014, 130, 135-141.                                                                               | 6.4  | 33        |
| 29 | Agricultural residueâ€derived lignin as the filler of polylactic acid composites and the effect of lignin purity on the composite performance. Journal of Applied Polymer Science, 2019, 136, 47915.                        | 2.6  | 29        |
| 30 | The Influence of Alkali and Alkaline Earth Metals and the Role of Acid Pretreatments in Production of Sugars from Switchgrass Based on Solvent Liquefaction. Energy & Fuels, 2014, 28, 1111-1120.                           | 5.1  | 26        |
| 31 | Low-pressure two-stage catalytic hydropyrolysis of lignin and lignin-derived phenolic monomers<br>using zeolite-based bifunctional catalysts. Journal of Analytical and Applied Pyrolysis, 2020, 146,<br>104779.            | 5.5  | 26        |
| 32 | Understanding Low-Pressure Hydropyrolysis of Lignin Using Deuterated Sodium Formate. ACS<br>Sustainable Chemistry and Engineering, 2017, 5, 8939-8950.                                                                      | 6.7  | 25        |
| 33 | Producing high yield of levoglucosan by pyrolyzing nonthermal plasma-pretreated cellulose. Green<br>Chemistry, 2020, 22, 2036-2048.                                                                                         | 9.0  | 20        |
| 34 | Controlled Radical Polymerization of Crude Lignin Bio-oil Containing Multihydroxyl Molecules for<br>Methacrylate Polymers and the Potential Applications. ACS Sustainable Chemistry and Engineering,<br>2019, 7, 9050-9060. | 6.7  | 19        |
| 35 | Upcycling polyamide containing post-consumer Tetra Pak carton packaging to valuable chemicals and recyclable polymer. Waste Management, 2021, 131, 423-432.                                                                 | 7.4  | 18        |
| 36 | Enabling high-quality carbon fiber through transforming lignin into an orientable and melt-spinnable polymer. Journal of Cleaner Production, 2021, 307, 127252.                                                             | 9.3  | 18        |

Xianglan Bai

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | An experimental study on the detrimental effects of deicing fluids on the performance of icephobic coatings for aircraft icing mitigation. Aerospace Science and Technology, 2021, 119, 107090. | 4.8 | 18        |
| 38 | Production of biofuel precursor chemicals from the mixture of cellulose and polyvinylchloride in polar aprotic solvent. Waste Management, 2018, 78, 894-902.                                    | 7.4 | 17        |
| 39 | Solubilized Carbohydrate Production by Acidâ€Catalyzed Depolymerization of Cellulose in Polar<br>Aprotic Solvents. ChemistrySelect, 2018, 3, 4777-4785.                                         | 1.5 | 17        |
| 40 | Comparative study of the solvolytic deconstruction of corn stover lignin in batch and flow-through reactors. Green Chemistry, 2021, 23, 7731-7742.                                              | 9.0 | 17        |
| 41 | Biofuels and Chemicals from Lignin Based on Pyrolysis. Biofuels and Biorefineries, 2016, , 263-287.                                                                                             | 0.5 | 13        |
| 42 | Tunable Wettability of Biodegradable Multilayer Sandwich-Structured Electrospun Nanofibrous<br>Membranes. Polymers, 2020, 12, 2092.                                                             | 4.5 | 12        |
| 43 | Thermal treatment of pyrolytic lignin and polyethylene terephthalate toward carbon fiber production. Journal of Applied Polymer Science, 2020, 137, 48843.                                      | 2.6 | 11        |
| 44 | Plasma electrolysis of cellulose in polar aprotic solvents for production of levoglucosenone. Green<br>Chemistry, 2020, 22, 7871-7883.                                                          | 9.0 | 11        |
| 45 | Co-conversion of wood and polyvinyl chloride to valuable chemicals and high-quality solid fuel.<br>Waste Management, 2022, 144, 376-386.                                                        | 7.4 | 7         |
| 46 | One-pot production of oxygenated monomers and selectively oxidized lignin from biomass based on plasma electrolysis. Green Chemistry, 0, , .                                                    | 9.0 | 4         |