Christopher J Langmead

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8848290/publications.pdf

Version: 2024-02-01

86 papers

4,726 citations

33 h-index 64 g-index

91 all docs 91 docs citations

times ranked

91

5090 citing authors

#	Article	IF	CITATIONS
1	Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature, 2011, 474, 521-525.	27.8	793
2	Muscarinic acetylcholine receptors as CNS drug targets., 2008, 117, 232-243.		369
3	Discovery of 1,2,4-Triazine Derivatives as Adenosine A _{2A} Antagonists using Structure Based Drug Design. Journal of Medicinal Chemistry, 2012, 55, 1898-1903.	6.4	296
4	Progress in Structure Based Drug Design for G Protein-Coupled Receptors. Journal of Medicinal Chemistry, 2011, 54, 4283-4311.	6.4	203
5	International Union of Basic and Clinical Pharmacology. XC. Multisite Pharmacology: Recommendations for the Nomenclature of Receptor Allosterism and Allosteric Ligands. Pharmacological Reviews, 2014, 66, 918-947.	16.0	189
6	The properties of thermostabilised G protein-coupled receptors (StaRs) and their use in drug discovery. Neuropharmacology, 2011, 60, 36-44.	4.1	148
7	Identification of Novel Adenosine A _{2A} Receptor Antagonists by Virtual Screening. Journal of Medicinal Chemistry, 2012, 55, 1904-1909.	6.4	131
8	Characterisation of the binding of [3 H]-SB-674042, a novel nonpeptide antagonist, to the human orexin-1 receptor. British Journal of Pharmacology, 2004, 141, 340-346.	5.4	129
9	Characterization of a CNS penetrant, selective M ₁ muscarinic receptor agonist, 77‣Hâ€28â€1. British Journal of Pharmacology, 2008, 154, 1104-1115.	5.4	118
10	Allosteric agonists of 7TM receptors: expanding the pharmacological toolbox. Trends in Pharmacological Sciences, 2006, 27, 475-481.	8.7	112
11	Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists. Molecular Cell, 2020, 80, 485-500.e7.	9.7	111
12	Neurochemical evaluation of the novel 5-HT1A receptor partial agonist/serotonin reuptake inhibitor, vilazodone. European Journal of Pharmacology, 2005, 510, 49-57.	3. 5	106
13	Structure-Function Studies of Allosteric Agonism at M2Muscarinic Acetylcholine Receptors. Molecular Pharmacology, 2007, 72, 463-476.	2.3	105
14	Probing the Molecular Mechanism of Interaction between 4-n-Butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the Muscarinic M1 Receptor: Direct Pharmacological Evidence That AC-42 Is an Allosteric Agonist. Molecular Pharmacology, 2006, 69, 236-246.	2.3	101
15	G Protein–Coupled Receptors Targeting Insulin Resistance, Obesity, and Type 2 Diabetes Mellitus. Pharmacological Reviews, 2018, 70, 39-67.	16.0	88
16	New Advances in Targeting the Resolution of Inflammation: Implications for Specialized Pro-Resolving Mediator GPCR Drug Discovery. ACS Pharmacology and Translational Science, 2020, 3, 88-106.	4.9	80
17	Pharmacology and Structure of Isolated Conformations of the Adenosine A2A Receptor Define Ligand Efficacy. Molecular Pharmacology, 2013, 83, 949-958.	2.3	69
18	Orthosteric and Allosteric Modes of Interaction of Novel Selective Agonists of the M ₁ Muscarinic Acetylcholine Receptor. Molecular Pharmacology, 2010, 78, 94-104.	2.3	61

#	Article	IF	Citations
19	Neurochemical Changes in LPA1 Receptor Deficient Mice – A Putative Model of Schizophrenia. Neurochemical Research, 2005, 30, 371-377.	3.3	60
20	Binding kinetics differentiates functional antagonism of orexinâ€⊋ receptor ligands. British Journal of Pharmacology, 2014, 171, 351-363.	5.4	55
21	Regulation of calcitonin gene-related peptide release from rat trigeminal nucleus caudalis slices in vitro. Neuroscience Letters, 2004, 366, 241-244.	2.1	54
22	Quantitative Analysis Reveals Multiple Mechanisms of Allosteric Modulation of the mGlu5 Receptor in Rat Astroglia. Molecular Pharmacology, 2011, 79, 874-885.	2.3	54
23	Characterization of the binding of [125 I]-human prolactin releasing peptide (PrRP) to GPR10, a novel G protein coupled receptor. British Journal of Pharmacology, 2000, 131, 683-688.	5 . 4	52
24	G Protein Coupling and Signaling Pathway Activation by M1 Muscarinic Acetylcholine Receptor Orthosteric and Allosteric Agonists. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 365-374.	2. 5	52
25	Mutagenic Mapping Suggests a Novel Binding Mode for Selective Agonists of M ₁ Muscarinic Acetylcholine Receptors. Molecular Pharmacology, 2009, 75, 331-341.	2.3	50
26	Novel $\langle i \rangle N \langle i \rangle$ -Substituted Benzimidazolones as Potent, Selective, CNS-Penetrant, and Orally Active M $\langle sub \rangle 1 \langle sub \rangle$ mAChR Agonists. ACS Medicinal Chemistry Letters, 2010, 1, 244-248.	2.8	50
27	Crystal structure of the M ₅ muscarinic acetylcholine receptor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26001-26007.	7.1	48
28	From structure to clinic: Design of a muscarinic M1 receptor agonist with the potential to treat Alzheimer's disease. Cell, 2021, 184, 5886-5901.e22.	28.9	44
29	Evaluation of expression and function of the H+/myo-inositol transporter HMIT. BMC Cell Biology, 2009, 10, 54.	3.0	43
30	Murine GPRC6A Mediates Cellular Responses to L-Amino Acids, but Not Osteocalcin Variants. PLoS ONE, 2016, 11, e0146846.	2.5	42
31	Roof and Floor of the Muscarinic Binding Pocket: Variations in the Binding Modes of Orthosteric Ligands. Molecular Pharmacology, 2007, 72, 1484-1496.	2.3	40
32	The Use of GPCR Structures in Drug Design. Advances in Pharmacology, 2011, 62, 1-36.	2.0	38
33	The effect of SB-269970, a 5-HT7 receptor antagonist, on 5-HT release from serotonergic terminals and cell bodies. British Journal of Pharmacology, 2001, 132, 1574-1580.	5.4	37
34	Growth Hormone Secretagogues and Growth Hormone Releasing Peptides Act As Orthosteric Super-Agonists but Not Allosteric Regulators for Activation of the G Protein Gî± _{o1} by the Ghrelin Receptor. Molecular Pharmacology, 2009, 76, 802-811.	2.3	35
35	Contrasting Effects of Allosteric and Orthosteric Agonists on M ₁ Muscarinic Acetylcholine Receptor Internalization and Down-regulation. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 1086-1095.	2.5	33
36	Muscarinic M5 receptors modulate ethanol seeking in rats. Neuropsychopharmacology, 2018, 43, 1510-1517.	5.4	33

#	Article	lF	Citations
37	Structure-based development of a subtype-selective orexin 1 receptor antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18059-18067.	7.1	33
38	Functional and structural perspectives on allosteric modulation of GPCRs. Current Opinion in Cell Biology, 2014, 27, 94-101.	5 . 4	32
39	Monoclonal anti- \hat{l}^21 -adrenergic receptor antibodies activate G protein signaling in the absence of \hat{l}^2 -arrestin recruitment. MAbs, 2014, 6, 246-261.	5.2	31
40	Matching models to data: a receptor pharmacologist's guide. British Journal of Pharmacology, 2010, 161, 1276-1290.	5.4	30
41	Divergent effects of strontium and calciumâ€sensing receptor positive allosteric modulators (calcimimetics) on human osteoclast activity. British Journal of Pharmacology, 2018, 175, 4095-4108.	5.4	29
42	Comparative genotypic and phenotypic analysis of human peripheral blood monocytes and surrogate monocyte-like cell lines commonly used in metabolic disease research. PLoS ONE, 2018, 13, e0197177.	2.5	29
43	Beyond antipsychotics: a twenty-first century update for preclinical development of schizophrenia therapeutics. Translational Psychiatry, 2022, 12, 147.	4.8	29
44	Supraâ€physiological efficacy at <scp>GPCRs</scp> : superstition or super agonists?. British Journal of Pharmacology, 2013, 169, 353-356.	5 . 4	26
45	Bitopic Binding Mode of an M $<$ sub $>$ 1 $<$ /sub $>$ Muscarinic Acetylcholine Receptor Agonist Associated with Adverse Clinical Trial Outcomes. Molecular Pharmacology, 2018, 93, 645-656.	2.3	25
46	N-desmethylclozapine (NDMC) is an antagonist at the human native muscarinic M1 receptor. Neuropharmacology, 2010, 58, 1206-1214.	4.1	24
47	Molecular Mechanisms of Action of M ₅ Muscarinic Acetylcholine Receptor Allosteric Modulators. Molecular Pharmacology, 2016, 90, 427-436.	2.3	24
48	Acetylcholine Muscarinic M4 Receptors as a Therapeutic Target for Alcohol Use Disorder: Converging Evidence From Humans and Rodents. Biological Psychiatry, 2020, 88, 898-909.	1.3	24
49	Drug-receptor kinetics and sigma-1 receptor affinity differentiate clinically evaluated histamine H3 receptor antagonists. Neuropharmacology, 2019, 144, 244-255.	4.1	22
50	Positive Allosteric Modulation of the Muscarinic $M < sub > 1 < / sub > Receptor Improves Efficacy of Antipsychotics in Mouse Glutamatergic Deficit Models of Behavior. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 354-365.$	2.5	21
51	Isoform-Specific Biased Agonism of Histamine H ₃ Receptor Agonists. Molecular Pharmacology, 2017, 91, 87-99.	2.3	21
52	2′ Biaryl amides as novel and subtype selective M1 agonists. Part II: Further optimization and profiling. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3545-3549.	2.2	18
53	2′ Biaryl amides as novel and subtype selective M1 agonists. Part I: Identification, synthesis, and initial SAR. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3540-3544.	2.2	17
54	Label-Free Kinetics: Exploiting Functional Hemi-Equilibrium to Derive Rate Constants for Muscarinic Receptor Antagonists. Molecular Pharmacology, 2015, 88, 779-790.	2.3	17

#	Article	IF	Citations
55	Determining Allosteric Modulator Mechanism of Action: Integration of Radioligand Binding and Functional Assay Data. Methods in Molecular Biology, 2011, 746, 195-209.	0.9	17
56	SB-649915, a novel, potent 5-HT1A and 5-HT1B autoreceptor antagonist and 5-HT re-uptake inhibitor in native tissue. European Journal of Pharmacology, 2006, 536, 54-61.	3.5	15
57	Discovery of HTL6641, a dual orexin receptor antagonist with differentiated pharmacodynamic properties. MedChemComm, 2015, 6, 947-955.	3.4	15
58	Binding of SEP-363856 within TAAR1 and the 5HT1A receptor: implications for the design of novel antipsychotic drugs. Molecular Psychiatry, 2022, 27, 88-94.	7.9	15
59	Cryo-EM structure of the dual incretin receptor agonist, peptide-19, in complex with the glucagon-like peptide-1 receptor. Biochemical and Biophysical Research Communications, 2021, 578, 84-90.	2.1	14
60	Discovery and Optimization of Potent and CNS Penetrant M ₅ -Preferring Positive Allosteric Modulators Derived from a Novel, Chiral <i>N</i> -(Indanyl)piperidine Amide Scaffold. ACS Chemical Neuroscience, 2018, 9, 1572-1581.	3.5	13
61	The importance of sex differences in pharmacology research. British Journal of Pharmacology, 2019, 176, 4087-4089.	5.4	13
62	Negative allosteric modulators of the human calciumâ€sensing receptor bind to overlapping and distinct sites within the 7â€transmembrane domain. British Journal of Pharmacology, 2020, 177, 1917-1930.	5.4	12
63	The muscarinic M4 receptor is the functionally predominant subtype in rat and mouse striatum as demonstrated using [35S] GTPÎ ³ S binding. European Journal of Pharmacology, 2011, 652, 1-6.	3.5	10
64	Trace Amine-Associated Receptor 1 (TAAR1): Molecular and Clinical Insights for the Treatment of Schizophrenia and Related Comorbidities. ACS Pharmacology and Translational Science, 2022, 5, 183-188.	4.9	10
65	In vitro and in vivo comparison of two non-peptide tachykinin NK3 receptor antagonists: Improvements in efficacy achieved through enhanced brain penetration or altered pharmacological characteristics. European Journal of Pharmacology, 2010, 627, 106-114.	3.5	9
66	Muscarinic M ₄ and M ₅ receptors in the ventral subiculum differentially modulate alcohol seeking versus consumption in male alcoholâ€preferring rats. British Journal of Pharmacology, 2021, 178, 3730-3746.	5.4	9
67	Screening for Positive Allosteric Modulators: Assessment of Modulator Concentration-Response Curves as a Screening Paradigm. Journal of Biomolecular Screening, 2007, 12, 668-676.	2.6	7
68	High throughput, quantitative analysis of human osteoclast differentiation and activity. Analytical Biochemistry, 2017, 519, 51-56.	2.4	7
69	Structure–Activity Relationships of Pan-Gα _{q/11} Coupled Muscarinic Acetylcholine Receptor Positive Allosteric Modulators. ACS Chemical Neuroscience, 2018, 9, 1818-1828.	3.5	7
70	\hat{l}^2 -Arrestin-2-Dependent Mechanism of GPR52 Signaling in Frontal Cortical Neurons. ACS Chemical Neuroscience, 2020, 11, 2077-2084.	3.5	7
71	Multipathway In Vitro Pharmacological Characterization of Specialized Proresolving G Protein-Coupled Receptors. Molecular Pharmacology, 2022, 101, 246-256.	2.3	7
72	M < sub > 1 < / sub > muscarinic receptor activation decreases alcohol consumption via a reduction in consummatory behavior. Pharmacology Research and Perspectives, 2022, 10, e00907.	2.4	7

#	Article	IF	CITATIONS
73	SB-616234-A (1-[6-(cis-3,5-dimethylpiperazin-1-yl)-2,3-dihydro-5-methoxyindol-1-yl]-1-[2′methyl-4′-(5-methyl-1,2,3-oxadi	azol-3-yl)t	oiphenyl-4-yl]m
74	50, 984-990. Ligand properties and behaviours in an allosteric age. Trends in Pharmacological Sciences, 2012, 33, 621-622.	8.7	6
75	Translation-Focused Approaches to GPCR Drug Discovery for Cognitive Impairments Associated with Schizophrenia. ACS Pharmacology and Translational Science, 2020, 3, 1042-1062.	4.9	6
76	Identification of a Novel Allosteric Site at the M5 Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2021, 12, 3112-3123.	3 . 5	6
77	Deletion of GPR21 improves glucose homeostasis and inhibits the CCL2-CCR2 axis by divergent mechanisms. BMJ Open Diabetes Research and Care, 2021, 9, e002285.	2.8	6
78	Molecular pharmacology of GPCRs. British Journal of Pharmacology, 2018, 175, 4005-4008.	5 . 4	5
79	In the Loop: Extrastriatal Regulation of Spiny Projection Neurons by GPR52. ACS Chemical Neuroscience, 2020, 11, 2066-2076.	3.5	5
80	Pharmacological Insights Into Safety and Efficacy Determinants for the Development of Adenosine Receptor Biased Agonists in the Treatment of Heart Failure. Frontiers in Pharmacology, 2021, 12, 628060.	3 . 5	5
81	Performance of Mouse Neural Stem Cells as a Screening Reagent. Journal of Biomolecular Screening, 2010, 15, 159-168.	2.6	3
82	From orphans to orexins: an arousing fifteen years. British Journal of Pharmacology, 2014, 171, 281-282.	5 . 4	1
83	Preface. Advances in Pharmacology, 2020, 88, xiii-xvii.	2.0	O
84	GPR52 is a key regulator of corticostriatal signalling and function. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-1-100.	0.0	O
85	GPCR allostery and bias in modern pharmacology: Structural, pharmacological and clinical implications. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, CL-23.	0.0	O
86	From Structure to Clinic: Discovery of AÂM1 Muscarinic Acetylcholine Receptor Agonist for the Treatment of Memory Loss in Alzheimer's Disease. SSRN Electronic Journal, 0, , .	0.4	0