List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8847453/publications.pdf Version: 2024-02-01

ΔΠΛΜ ΔΜΛΠΛ

#	Article	IF	CITATIONS
1	Hydrogen Intensity and Real-Time Analysis Experiment: 256-element array status and overview. Journal of Astronomical Telescopes, Instruments, and Systems, 2022, 8, .	1.8	22
2	Likelihood-free Forward Modeling for Cluster Weak Lensing and Cosmology. Astrophysical Journal, 2022, 925, 145.	4.5	5
3	Cosmological constraints from DES Y1 cluster abundances and SPT multiwavelength data. Physical Review D, 2021, 103, .	4.7	34
4	Comparison of droplet spread in standard and laminar flow operating theatres: SPRAY study group. Journal of Hospital Infection, 2021, 110, 194-200.	2.9	18
5	Combining strong and weak lensing estimates in the Cosmos field. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 010.	5.4	5
6	lenstronomy II: A gravitational lensing software ecosystem. Journal of Open Source Software, 2021, 6, 3283.	4.6	67
7	The PAU survey: estimating galaxy photometry with deep learning. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4048-4069.	4.4	12
8	Predicting cosmological observables with PyCosmo. Astronomy and Computing, 2021, 36, 100484.	1.7	5
9	SkyPy: A package for modelling the Universe. Journal of Open Source Software, 2021, 6, 3056.	4.6	4
10	The PAU survey: measurement of narrow-band galaxy properties with approximate bayesian computation. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 013.	5.4	10
11	Modelling the Milky Way – I. Method and first results fitting the thick disc and halo with DES-Y3 data. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1547-1562.	4.4	15
12	Observation and confirmation of nine strong-lensing systems in Dark Energy Survey Year 1 data. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1308-1322.	4.4	6
13	Cross-correlating 21Âcm and galaxy surveys: implications for cosmology and astrophysics. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3935-3942.	4.4	9
14	Noise from undetected sources in Dark Energy Survey images. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2529-2539.	4.4	10
15	The BUFFALO HST Survey. Astrophysical Journal, Supplement Series, 2020, 247, 64.	7.7	57
16	MonteÂCarlo control loops for cosmic shear cosmology with DES Year 1 data. Physical Review D, 2020, 101, .	4.7	11
17	Measurement of the B-band galaxy Luminosity Function with Approximate Bayesian Computation. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 048-048.	5.4	11
18	Spectro-imaging forward model of red and blue galaxies. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 050-050.	5.4	7

#	Article	IF	CITATIONS
19	Consistency tests in cosmology using relative entropy. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 011-011.	5.4	27
20	Fast generation of covariance matrices for weak lensing. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 044-044.	5.4	18
21	Impact of astrophysics on cosmology forecasts for 21Âcm surveys. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4060-4070.	4.4	15
22	PynPoint: a modular pipeline architecture for processing and analysis of high-contrast imaging data. Astronomy and Astrophysics, 2019, 621, A59.	5.1	46
23	Accelerating Approximate Bayesian Computation with Quantile Regression: application to cosmological redshift distributions. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 042-042.	5.4	17
24	Cosmic Shear with Einstein Rings. Astrophysical Journal Letters, 2018, 852, L14.	8.3	11
25	PCA-based approach for subtracting thermal background emission in high-contrast imaging data. Astronomy and Astrophysics, 2018, 611, A23.	5.1	26
26	Forward modeling of spectroscopic galaxy surveys: application to SDSS. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 015-015.	5.4	7
27	lenstronomy: Multi-purpose gravitational lens modelling software package. Physics of the Dark Universe, 2018, 22, 189-201.	4.9	156
28	The PAU Survey: a forward modeling approach for narrow-band imaging. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 035-035.	5.4	9
29	Cosmological constraints from noisy convergence maps through deep learning. Physical Review D, 2018, 98, .	4.7	49
30	M-dwarf exoplanet surface density distribution. Astronomy and Astrophysics, 2018, 612, L3.	5.1	22
31	Fast point spread function modeling with deep learning. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 054-054.	5.4	33
32	Dark matter distribution induced by a cosmic string wake in the nonlinear regime. Physical Review D, 2018, 98, .	4.7	9
33	PyCosmo: An integrated cosmological Boltzmann solver. Astronomy and Computing, 2018, 25, 38-43.	1.7	14
34	DES meets Gaia: discovery of strongly lensed quasars from a multiplet search. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4345-4354.	4.4	39
35	Galaxy bias from galaxy–galaxy lensing in the DES science verification data. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1667-1684.	4.4	14
36	Gauge-invariant formalism of cosmological weak lensing. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 029-029.	5.4	19

#	Article	IF	CITATIONS
37	Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Physical Review D, 2018, 98, .	4.7	751
38	Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear. Physical Review D, 2018, 98, .	4.7	412
39	Cosmic shear calibration with forward modeling. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 007-007.	5.4	8
40	HIDE & SEEK: End-to-end packages to simulate and process radio survey data. Astronomy and Computing, 2017, 18, 8-17.	1.7	18
41	Line-of-sight effects in strong lensing: putting theory into practice. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 049-049.	5.4	37
42	Cosmic voids and void lensing in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 465, 746-759.	4.4	86
43	Lensing substructure quantification in RXJ1131-1231: a 2 keV lower bound on dark matter thermal relic mass. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 037-037.	5.4	83
44	Cosmology from large-scale galaxy clustering and galaxy–galaxy lensing with Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4045-4062.	4.4	48
45	Models of the strongly lensed quasar DES J0408â^'5354. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4038-4050.	4.4	18
46	Discovery of the Lensed Quasar System DES J0408-5354. Astrophysical Journal Letters, 2017, 838, L15.	8.3	32
47	The redshift distribution of cosmological samples: a forward modeling approach. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 035-035.	5.4	22
48	A halo model for cosmological neutral hydrogen : abundances and clustering. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2323-2334.	4.4	63
49	Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1. Astrophysical Journal, 2017, 843, 148.	4.5	20
50	Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1444-1461.	4.4	48
51	Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4899-4920.	4.4	87
52	An integrated system at the Bleien Observatory for mapping the Galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1727-1737.	4.4	4
53	Inference from the small scales of cosmic shear with current and future Dark Energy Survey data. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2567-2583.	4.4	21
54	Integrated cosmological probes: Extended analysis. Physical Review D, 2017, 95, .	4.7	17

#	Article	IF	CITATIONS
55	Integrated cosmological probes: concordance quantified. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 045-045.	5.4	8
56	Searching for cosmic strings in CMB anisotropy maps using wavelets and curvelets. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 004-004.	5.4	20
57	CALIBRATED ULTRA FAST IMAGE SIMULATIONS FOR THE DARK ENERGY SURVEY. Astrophysical Journal, 2016, 817, 25.	4.5	31
58	Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3653-3673.	4.4	119
59	Simulating the large-scale structure of HI intensity maps. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 001-001.	5.4	14
60	MAPPING AND SIMULATING SYSTEMATICS DUE TO SPATIALLY VARYING OBSERVING CONDITIONS IN DES SCIENCE VERIFICATION DATA. Astrophysical Journal, Supplement Series, 2016, 226, 24.	7.7	47
61	Cosmology from cosmic shear with Dark Energy Survey Science Verification data. Physical Review D, 2016, 94, .	4.7	125
62	Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing. Physical Review D, 2016, 94, .	4.7	105
63	Cosmic shear measurements with Dark Energy Survey Science Verification data. Physical Review D, 2016, 94, .	4.7	81
64	SPOKES: An end-to-end simulation facility for spectroscopic cosmological surveys. Astronomy and Computing, 2016, 15, 1-15.	1.7	4
65	Information gains from cosmological probes. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 034-034.	5.4	30
66	Cross-correlation of gravitational lensing from DES Science Verification data with SPT and <i>Planck</i> lensing. Monthly Notices of the Royal Astronomical Society, 2016, 459, 21-34.	4.4	46
67	Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey. Physical Review D, 2016, 94, .	4.7	16
68	The mass-sheet degeneracy and time-delay cosmography: analysis of the strong lens RXJ1131-1231. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 020-020.	5.4	87
69	Quantifying concordance in cosmology. Physical Review D, 2016, 93, .	4.7	31
70	The DES Science Verification weak lensing shear catalogues. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2245-2281.	4.4	137
71	Integrated approach to cosmology: Combining CMB, large-scale structure, and weak lensing. Physical Review D, 2016, 94, .	4.7	29
72	Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3203-3216.	4.4	23

ADAM AMARA

#	Article	IF	CITATIONS
73	GRAVITATIONAL LENS MODELING WITH BASIS SETS. Astrophysical Journal, 2015, 813, 102.	4.5	111
74	Beam Calibration of Radio Telescopes with Drones. Publications of the Astronomical Society of the Pacific, 2015, 127, 1131-1143.	3.1	39
75	HOPE: A Python just-in-time compiler for astrophysical computations. Astronomy and Computing, 2015, 10, 1-8.	1.7	22
76	PynPoint code for exoplanet imaging. Astronomy and Computing, 2015, 10, 107-115.	1.7	32
77	Wide-field lensing mass maps from Dark Energy Survey science verification data: Methodology and detailed analysis. Physical Review D, 2015, 92, .	4.7	47
78	Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data. Physical Review Letters, 2015, 115, 051301.	7.8	40
79	CONFIRMATION AND CHARACTERIZATION OF THE PROTOPLANET HD 100546 b—DIRECT EVIDENCE FOR GAS GIANT PLANET FORMATION AT 50 AU. Astrophysical Journal, 2015, 807, 64.	4.5	125
80	MODELING THE TRANSFER FUNCTION FOR THE DARK ENERGY SURVEY. Astrophysical Journal, 2015, 801, 73.	4.5	32
81	Approximate Bayesian computation for forward modeling in cosmology. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 043-043.	5.4	78
82	Photometric redshift analysis in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1482-1506.	4.4	146
83	Information gains from cosmic microwave background experiments. Physical Review D, 2014, 90, .	4.7	38
84	Model breaking measure for cosmological surveys. Physical Review D, 2014, 89, .	4.7	9
85	DISCOVERY OF A COMPANION CANDIDATE IN THE HD 169142 TRANSITION DISK AND THE POSSIBILITY OF MULTIPLE PLANET FORMATION. Astrophysical Journal Letters, 2014, 792, L23.	8.3	142
86	OPTIMIZED PRINCIPAL COMPONENT ANALYSIS ON CORONAGRAPHIC IMAGES OF THE FOMALHAUT SYSTEM. Astrophysical Journal, 2014, 780, 17.	4.5	56
87	A SIMPLE MODEL LINKING GALAXY AND DARK MATTER EVOLUTION. Astrophysical Journal, 2014, 793, 12.	4.5	40
88	A wayÂforward for Cosmic Shear: Monte-Carlo Control Loops. Physics of the Dark Universe, 2014, 3, 1-3.	4.9	21
89	Information Gains in Cosmological Parameter Estimation. Proceedings of the International Astronomical Union, 2014, 10, 206-209.	0.0	0
90	CosmoHammer: Cosmological parameter estimation with the MCMC Hammer. Astronomy and Computing, 2013, 2, 27-39.	1.7	66

#	Article	IF	CITATIONS
91	An Ultra Fast Image Generator (UFig) for wide-field astronomy. Astronomy and Computing, 2013, 1, 23-32.	1.7	31
92	A YOUNG PROTOPLANET CANDIDATE EMBEDDED IN THE CIRCUMSTELLAR DISK OF HD 100546. Astrophysical Journal Letters, 2013, 766, L1.	8.3	187
93	Testing Optimized Principal Component Analysis on Coronagraphic Images of the Fomalhaut System. Proceedings of the International Astronomical Union, 2013, 8, 56-57.	0.0	Ο
94	Noise bias in weak lensing shape measurements. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1951-1957.	4.4	133
95	Space-quality data from balloon-borne telescopes: The High Altitude Lensing Observatory (HALO). Astroparticle Physics, 2012, 38, 31-40.	4.3	13
96	Measurement and calibration of noise bias in weak lensing galaxy shape estimation. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2711-2722.	4.4	78
97	<scp>pynpoint</scp> : an image processing package for finding exoplanets. Monthly Notices of the Royal Astronomical Society, 2012, 427, 948-955.	4.4	255
98	On point spread function modelling: towards optimal interpolation. Monthly Notices of the Royal Astronomical Society, 2012, 419, 2356-2368.	4.4	24
99	Small-scale structures of dark matter and flux anomalies in quasar gravitational lenses. Monthly Notices of the Royal Astronomical Society, 2012, 419, 3414-3425.	4.4	41
100	The impact of galaxy colour gradients on cosmic shear measurement. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1385-1398.	4.4	38
101	Photo-zperformance for precision cosmology - II. Empirical verification1â~ Monthly Notices of the Royal Astronomical Society, 2012, 421, 1671-1677.	4.4	15
102	Constraining primordial non-Gaussianity with future galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2854-2877.	4.4	128
103	The COSMOS density field: a reconstruction using both weak lensing and galaxy distributions. Monthly Notices of the Royal Astronomical Society, 2012, 424, 553-563.	4.4	14
104	Image processing challenges in weak gravitational lensing. , 2011, , .		0
105	iCosmo: an interactive cosmology package. Astronomy and Astrophysics, 2011, 528, A33.	5.1	46
106	Figures of merit for testing standard models: application to dark energy experiments in cosmology. Monthly Notices of the Royal Astronomical Society, 2011, 413, 1505-1514.	4.4	10
107	Probe combination in large galaxy surveys: application of Fisher information and Shannon entropy to weak lensing. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1938-1951.	4.4	6
108	OPTIMAL CAPTURE OF NON-GAUSSIANITY IN WEAK-LENSING SURVEYS: POWER SPECTRUM, BISPECTRUM, AND HALO COUNTS. Astrophysical Journal, 2010, 712, 992-1002.	4.5	51

#	Article	IF	CITATIONS
109	Weak lensing forecasts for dark energy, neutrinos and initial conditions. Annalen Der Physik, 2010, 19, 324-327.	2.4	4
110	Weak lensing forecasts for dark energy, neutrinos and initial conditions. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	4
111	Cosmic shear requirements on the wavelength dependence of telescope point spread functions. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	11
112	Photo-z performance for precision cosmology. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	23
113	WEAK LENSING MASS RECONSTRUCTION: FLEXION VERSUS SHEAR. Astrophysical Journal, 2010, 723, 1507-1511.	4.5	8
114	Cosmological model discrimination from weak lensing data. , 2010, , .		3
115	NIP: the near infrared imaging photometer for Euclid. Proceedings of SPIE, 2010, , .	0.8	4
116	Optimal point spread function modeling for weak lensing: complexity and sparsity. Astronomy and Astrophysics, 2009, 500, 647-655.	5.1	31
117	FAst STatistics for weak Lensing (FASTLens): fast method for weak lensing statistics and map making. Monthly Notices of the Royal Astronomical Society, 2009, 395, 1265-1279.	4.4	51
118	Fisher matrix decomposition for dark energy prediction. Monthly Notices of the Royal Astronomical Society, 2009, 398, 2134-2142.	4.4	15
119	Cosmological systematics beyond nuisance parameters: form-filling functions. Monthly Notices of the Royal Astronomical Society, 2009, 399, 2107-2128.	4.4	35
120	Handbook for the GREAT08 Challenge: An image analysis competition for cosmological lensing. Annals of Applied Statistics, 2009, 3, .	1.1	93
121	Combined analysis of weak lensing and X-ray blind surveys. Monthly Notices of the Royal Astronomical Society, 2008, 385, 695-707.	4.4	39
122	Photometric redshifts for weak lensing tomography from space: the role of optical and near infrared photometry. Monthly Notices of the Royal Astronomical Society, 2008, 387, 969-986.	4.4	72
123	Systematic bias in cosmic shear: extending the Fisher matrix. Monthly Notices of the Royal Astronomical Society, 2008, 391, 228-236.	4.4	139
124	Point spread function calibration requirements for dark energy from cosmic shear. Astronomy and Astrophysics, 2008, 484, 67-77.	5.1	99
125	Simulations of strong gravitational lensing with substructure. Monthly Notices of the Royal Astronomical Society, 2006, 367, 1367-1378.	4.4	62
126	Power spectrum normalization and the non-Gaussian halo model. Monthly Notices of the Royal Astronomical Society, 2004, 351, 375-383.	4.4	20

#	Article	IF	CITATIONS
127	Optimal surveys for weak-lensing tomography. Monthly Notices of the Royal Astronomical Society, 0, 381, 1018-1026.	4.4	131
128	Cosmic shear systematics: software-hardware balance. Monthly Notices of the Royal Astronomical Society, 0, 404, 926-930.	4.4	9
129	Results of the GREAT08 Challengeâ~: an image analysis competition for cosmological lensing. Monthly Notices of the Royal Astronomical Society, 0, , no-no.	4.4	47
130	Detection of dental fomites using topical fluorescein. British Dental Journal, 0, , .	0.6	1