
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8847144/publications.pdf Version: 2024-02-01

FDIC RDEWE

#	Article	IF	CITATIONS
1	Characterizing active learning environments in physics using latent profile analysis. Physical Review Physics Education Research, 2022, 18, .	2.9	2
2	Institutionalizing evidence-based STEM reform through faculty professional development and support structures. International Journal of STEM Education, 2022, 9, 36.	5.0	7
3	A Network Analysis of Domestic Violence Beliefs Among Young Adults in India. Journal of Interpersonal Violence, 2021, 36, NP12041-NP12066.	2.0	6
4	Transitioning to online instruction: Strong ties and anxiety. Physical Review Physics Education Research, 2021, 17, .	2.9	10
5	Characterizing active learning environments in physics using network analysis and classroom observations. Physical Review Physics Education Research, 2021, 17, .	2.9	12
6	The context dependence of physics identity: Examining the role of performance/competence, recognition, interest, and sense of belonging for lower and upper female physics undergraduates. Journal of Research in Science Teaching, 2020, 57, 1583-1607.	3.3	63
7	Network positions in active learning environments in physics. Physical Review Physics Education Research, 2020, 16, .	2.9	14
8	Productive faculty resources activated by curricular materials: An example of epistemological beliefs in University Modeling Instruction. Physical Review Physics Education Research, 2020, 16, .	2.9	4
9	Sex differences in brain correlates of STEM anxiety. Npj Science of Learning, 2019, 4, 18.	2.8	4
10	Brain activity links performance in science reasoning with conceptual approach. Npj Science of Learning, 2019, 4, 20.	2.8	8
11	Sexual harassment reported by undergraduate female physicists. Physical Review Physics Education Research, 2019, 15, .	2.9	75
12	Linking engagement and performance: The social network analysis perspective. Physical Review Physics Education Research, 2019, 15, .	2.9	25
13	Modelling instruction for university physics: examining the theory in practice. European Journal of Physics, 2018, 39, 054001.	0.6	23
14	Meta-analytic evidence for a core problem solving network across multiple representational domains. Neuroscience and Biobehavioral Reviews, 2018, 92, 318-337.	6.1	32
15	Toward a Neurobiological Basis for Understanding Learning in University Modeling Instruction Physics Courses. Frontiers in ICT, 2018, 5, .	3.6	9
16	Power Boxes: New Representation for Analyzing DC Circuits. Physics Teacher, 2018, 56, 362-366.	0.3	4
17	Understanding the development of interest and self-efficacy in active-learning undergraduate physics courses. International Journal of Science Education, 2018, 40, 1587-1605.	1.9	21
18	Costs of success: Financial implications of implementation of active learning in introductory physics courses for students and administrators. Physical Review Physics Education Research, 2018, 14, .	2.9	7

#	Article	IF	CITATIONS
19	Educational commitment and social networking: The power of informal networks. Physical Review Physics Education Research, 2018, 14, .	2.9	19
20	The Importance of High School Physics Teachers for Female Students' Physics Identity and Persistence. Physics Teacher, 2017, 55, 96-99.	0.3	51
21	Students' network integration as a predictor of persistence in introductory physics courses. Physical Review Physics Education Research, 2017, 13, .	2.9	41
22	Impact of the second semester University Modeling Instruction course on students' representation choices. Physical Review Physics Education Research, 2017, 13, .	2.9	32
23	Editorial: Focused Collection: Gender in Physics. Physical Review Physics Education Research, 2016, 12,	2.9	5
24	Beyond performance metrics: Examining a decrease in students' physics self-efficacy through a social networks lens. Physical Review Physics Education Research, 2016, 12, .	2.9	51
25	Using module analysis for multiple choice responses: A new method applied to Force Concept Inventory data. Physical Review Physics Education Research, 2016, 12, .	2.9	35
26	Developing a physics expert identity in a biophysics research group. Physical Review Physics Education Research, 2015, 11, .	1.7	10
27	Equity investigation of attitudinal shifts in introductory physics. Physical Review Physics Education Research, 2015, 11, .	1.7	22
28	Expanded Markers of Success in Introductory University Physics. International Journal of Science Education, 2013, 35, 262-288.	1.9	18
29	Instructional changes based on cogenerative physics reform. , 2013, , .		0
30	Regression analysis exploring teacher impact on student FCI post scores. , 2013, , .		1
31	Cookies as agents for community membership. , 2013, , .		1
32	From Vision to Change: Educational Initiatives and Research at the Intersection of Physics and Biology. CBE Life Sciences Education, 2013, 12, 117-119.	2.3	15
33	Toward University Modeling Instruction—Biology: Adapting Curricular Frameworks from Physics to Biology. CBE Life Sciences Education, 2013, 12, 206-214.	2.3	11
34	Extending positive CLASS results across multiple instructors and multiple classes of Modeling Instruction. Physical Review Physics Education Research, 2013, 9, .	1.7	38
35	Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores. Physical Review Physics Education Research, 2013, 9, .	1.7	52

36 Successes and constraints in the enactment of a reform. , 2012, , .

0

#	Article	IF	CITATIONS
37	"Implicit action": Understanding discourse management in modeling instruction. , 2012, , .		2
38	Communicating scientific ideas: One element of physics expertise. , 2012, , .		1
39	Creating opportunities to influence self-efficacy through modeling instruction. , 2012, , .		3
40	Investigating student communities with network analysis of interactions in a physics learning center. Physical Review Physics Education Research, 2012, 8, .	1.7	44
41	Identifying events that impact self-efficacy in physics learning. Physical Review Physics Education Research, 2012, 8, .	1.7	26
42	Impact of equity models and statistical measures on interpretations of educational reform. Physical Review Physics Education Research, 2012, 8, .	1.7	48
43	Exploring the relationship between selfâ€efficacy and retention in introductory physics. Journal of Research in Science Teaching, 2012, 49, 1096-1121.	3.3	135
44	Energy as a substancelike quantity that flows: Theoretical considerations and pedagogical consequences. Physical Review Physics Education Research, 2011, 7, .	1.7	56
45	Moving toward change: Institutionalizing reform through implementation of the Learning Assistant model and Open Source Tutorials. Physical Review Physics Education Research, 2011, 7, .	1.7	47
46	Constructing a Model of Physics Expertise. , 2010, , .		0
47	Positive Impacts of Modeling Instruction on Self-Efficacy. , 2010, , .		17
48	Changing Participation Through Formation of Student Learning Communities. AIP Conference Proceedings, 2010, , .	0.4	26
49	Toward equity through participation in Modeling Instruction in introductory university physics. Physical Review Physics Education Research, 2010, 6, .	1.7	109
50	Validation study of the Colorado Learning Attitudes about Science Survey at a Hispanic-serving institution. Physical Review Physics Education Research, 2009, 5, .	1.7	11
51	Modeling instruction: Positive attitudinal shifts in introductory physics measured with CLASS. Physical Review Physics Education Research, 2009, 5, .	1.7	114
52	Investigating Student Communities with Network Analysis of Interactions in a Physics Learning Center. , 2009, , .		3
53	An Exploratory Qualitative Study of the Proximal Goal Setting of Two Introductory Modeling Instruction Physics Students. , 2009, , .		1
54	CLASS Shifts in Modeling Instruction. , 2008, , .		1

#	Article	IF	CITATIONS
55	Impact of the FIU PhysTEC Reform of Introductory Physics Labs. , 2008, , .		0
56	Modeling Success: Building Community for Reform. , 2007, , .		2
57	Resource Letter RPS-1: Research in problem solving. American Journal of Physics, 2004, 72, 1147-1156.	0.7	106
58	Understanding Centrality: Investigating Student Outcomes within a Classroom Social Network. , 0, , .		2
59	Characterizing active learning environments in physics: network analysis of Peer Instruction classroom using ERGMs. , 0, , .		3
60	Cogenerative Physics Reform Through CMPLE. , 0, , .		0
61	A Study of Informal Learning Communities: a Tale of Two Physics Courses. , 0, , .		0
62	Network centrality and student self-efficacy in an interactive introductory physics environment. , 0, , .		0
63	The Impacts of Modeling Physics in Upper-Level Courses: The Persistence of Males and Females. , 0, , .		0
64	The Impacts of Instructor and Student Gender on Student Performance in Introductory Modeling Instruction Courses. , 0, , .		0
65	Multiple Representations and Epistemic Games in Introductory Physics Exam Solutions. , 0, , .		1
66	The impact of social integration on student persistence in introductory Modeling Instruction courses. , 0, , .		1
67	Network Analysis of Students' Representation Use in Problem Solving. , 0, , .		1
68	Evaluation of a Summer Bridge Program Using Multivariate Matching. , 0, , .		0