
Lucia Garcia-Ortega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8846421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ribotoxin α-sarcin can cleave the sarcin/ricin loop on late 60S pre-ribosomes. Nucleic Acids Research, 2020, 48, 6210-6222.	14.5	6
2	Binding and enzymatic properties of Ageritin, a fungal ribotoxin with novel zinc-dependent function. International Journal of Biological Macromolecules, 2019, 136, 625-631.	7.5	8
3	Structural and enzymatic properties of Ageritin, a novel metal-dependent ribotoxin-like protein with antitumor activity. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2888-2894.	2.4	18
4	Minimized natural versions of fungal ribotoxins show improved active site plasticity. Archives of Biochemistry and Biophysics, 2017, 619, 45-53.	3.0	4
5	Characterization of a new toxin from the entomopathogenic fungus Metarhizium anisopliae: the ribotoxin anisoplin. Biological Chemistry, 2017, 398, 135-142.	2.5	24
6	Fungal Ribotoxins: A Review of Potential Biotechnological Applications. Toxins, 2017, 9, 71.	3.4	57
7	Involvement of loop 5 lysine residues and the N-terminal Î ² -hairpin of the ribotoxin hirsutellin A on its insecticidal activity. Biological Chemistry, 2016, 397, 135-145.	2.5	5
8	Involvement of loops 2 and 3 of α-sarcin on its ribotoxic activity. Toxicon, 2015, 96, 1-9.	1.6	9
9	Fungal ribotoxins: Natural protein-based weapons against insects. Toxicon, 2014, 83, 69-74.	1.6	34
10	The Acidic Ribosomal Stalk Proteins Are Not Required for the Highly Specific Inactivation Exerted by α-Sarcin of the Eukaryotic Ribosome. Biochemistry, 2014, 53, 1545-1547.	2.5	10
11	Fungal extracellular ribotoxins as insecticidal agents. Insect Biochemistry and Molecular Biology, 2013, 43, 39-46.	2.7	19
12	Hirsutellin A: A Paradigmatic Example of the Insecticidal Function of Fungal Ribotoxins. Insects, 2013, 4, 339-356.	2.2	22
13	A non-cytotoxic but ribonucleolytically specific ribotoxin variant: implication of tryptophan residues in the cytotoxicity of hirsutellin A. Biological Chemistry, 2012, 393, 449-456.	2.5	10
14	Production and characterization of a colon cancer-specific immunotoxin based on the fungal ribotoxin Â-sarcin. Protein Engineering, Design and Selection, 2012, 25, 425-435.	2.1	30
15	Implication of an Asp residue in the ribonucleolytic activity of hirsutellin A reveals new electrostatic interactions at the active site of ribotoxins. Biochimie, 2012, 94, 427-433.	2.6	11
16	Production and characterization of scFvA33T1, an immunoRNase targeting colon cancer cells. FEBS Journal, 2012, 279, 3022-3032.	4.7	18
17	The behavior of sea anemone actinoporins at the water–membrane interface. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2275-2288.	2.6	76
18	The ribonucleolytic activity of the ribotoxin α-sarcin is not essential for in vitro protein biosynthesis inhibition. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1377-1382.	2.3	5

LUCIA GARCIA-ORTEGA

#	Article	IF	CITATIONS
19	Cleavage of the sarcin-ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding. Nucleic Acids Research, 2010, 38, 4108-4119.	14.5	45
20	Influence of key residues on the heterologous extracellular production of fungal ribonuclease U2 in the yeast Pichia pastoris. Protein Expression and Purification, 2009, 65, 223-229.	1.3	7
21	Precise Alignment of Peptidyl tRNA by the Decoding Center Is Essential for EF-G-Dependent Translocation. Molecular Cell, 2008, 32, 292-299.	9.7	17
22	Fungal ribotoxins: molecular dissection of a family of natural killers. FEMS Microbiology Reviews, 2007, 31, 212-237.	8.6	126
23	Tyr-48, a conserved residue in ribotoxins, is involved in the RNA-degrading activity of α-sarcin. Biological Chemistry, 2006, 387, 535-41.	2.5	16
24	Production and characterization of a noncytotoxic deletion variant of the Aspergillus fumigatus allergen Aspf1 displaying reduced IgE binding. FEBS Journal, 2005, 272, 2536-2544.	4.7	23
25	Anomalous electrophoretic behavior of a very acidic protein: Ribonuclease U2. Electrophoresis, 2005, 26, 3407-3413.	2.4	38
26	Modeling the highly specific ribotoxin recognition of ribosomes. FEBS Letters, 2005, 579, 6859-6864.	2.8	26
27	Conserved asparagine residue 54 of α-sarcin plays a role in protein stability and enzyme activity. Biological Chemistry, 2004, 385, 1165-1170.	2.5	8
28	NMR structure of the noncytotoxic Â-sarcin mutant Â(7-22): The importance of the native conformation of peripheral loops for activity. Protein Science, 2004, 13, 1000-1011.	7.6	16
29	Leucine 145 of the ribotoxin Â-sarcin plays a key role for determining the specificity of the ribosome-inactivating activity of the protein. Protein Science, 2003, 12, 161-169.	7.6	16
30	Deletion of the NH2-terminal β-Hairpin of the Ribotoxin α-Sarcin Produces a Nontoxic but Active Ribonuclease. Journal of Biological Chemistry, 2002, 277, 18632-18639.	3.4	48
31	RNase U2 and α-Sarcin: A Study of Relationships. Methods in Enzymology, 2001, 341, 335-351.	1.0	44
32	Involvement of the amino-terminal β-hairpin of theAspergillusribotoxins on the interaction with membrances and nonspecific ribonuclease activity. Protein Science, 2001, 10, 1658-1668.	7.6	30
33	The solubility of the ribotoxin alpha-sarcin, produced as a recombinant protein in Escherichia coli, is increased in the presence of thioredoxin. Letters in Applied Microbiology, 2000, 30, 298-302.	2.2	18
34	Ribonuclease U2: cloning, production inPichia pastorisand affinity chromatography purification of the active recombinant protein. FEMS Microbiology Letters, 2000, 189, 165-169.	1.8	8