Jiamin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8846364/publications.pdf

Version: 2024-02-01

57	2,003 citations	19 h-index	265206 42 g-index
papers	citations	II-IIIdex	g-maex
67 all docs	67 docs citations	67 times ranked	1512 citing authors

#	Article	IF	CITATIONS
1	Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nature Photonics, 2021, 15, 367-373.	31.4	266
2	Spatial-spectral encoded compressive hyperspectral imaging. ACM Transactions on Graphics, 2014, 33, 1-11.	7.2	200
3	Fourier-space Diffractive Deep Neural Network. Physical Review Letters, 2019, 123, 023901.	7.8	182
4	Bayesian retinex underwater image enhancement. Engineering Applications of Artificial Intelligence, 2021, 101, 104171.	8.1	144
5	Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nature Photonics, 2019, 13, 809-816.	31.4	134
6	Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell, 2021, 184, 3318-3332.e17.	28.9	115
7	Wavelength-encoded laser particles for massively multiplexed cell tagging. Nature Photonics, 2019, 13, 720-727.	31.4	113
8	Camera array based light field microscopy. Biomedical Optics Express, 2015, 6, 3179.	2.9	98
9	In situ optical backpropagation training of diffractive optical neural networks. Photonics Research, 2020, 8, 940.	7.0	95
10	Reinforcing neuron extraction and spike inference in calcium imaging using deep self-supervised denoising. Nature Methods, 2021, 18, 1395-1400.	19.0	70
11	From Brain Science to Artificial Intelligence. Engineering, 2020, 6, 248-252.	6.7	58
12	Unsupervised content-preserving transformation for optical microscopy. Light: Science and Applications, 2021, 10, 44.	16.6	50
13	Phase-space deconvolution for light field microscopy. Optics Express, 2019, 27, 18131.	3.4	44
14	Snapshot Hyperspectral Volumetric Microscopy. Scientific Reports, 2016, 6, 24624.	3.3	43
15	Computational optical sectioning with an incoherent multiscale scattering model for light-field microscopy. Nature Communications, 2021, 12, 6391.	12.8	39
16	Analog Optical Computing for Artificial Intelligence. Engineering, 2022, 10, 133-145.	6.7	32
17	Dynamic non-line-of-sight imaging system based on the optimization of point spread functions. Optics Express, 2021, 29, 32349.	3.4	25
18	Fourier ptychographic microscopy using wavelength multiplexing. Journal of Biomedical Optics, 2017, 22, 066006.	2.6	23

#	Article	IF	CITATIONS
19	Single-shot lensless imaging via simultaneous multi-angle LED illumination. Optics Express, 2018, 26, 21418.	3.4	22
20	Coded aperture pair for quantitative phase imaging. Optics Letters, 2014, 39, 5776.	3.3	20
21	A modular hierarchical array camera. Light: Science and Applications, 2021, 10, 37.	16.6	19
22	Intra-Inter View Interaction Network for Light Field Image Super-Resolution. IEEE Transactions on Multimedia, 2023, 25, 256-266.	7.2	19
23	DiLFM: an artifact-suppressed and noise-robust light-field microscopy through dictionary learning. Light: Science and Applications, 2021, 10, 152.	16.6	18
24	Frequency-domain diagonal extension imaging. Advanced Photonics, 2020, 2, 1.	11.8	14
25	Single-shot compressed ultrafast photography based on U-net network. Optics Express, 2020, 28, 39299.	3.4	14
26	Augmenting vascular disease diagnosis by vasculature-aware unsupervised learning. Nature Machine Intelligence, 2020, 2, 337-346.	16.0	13
27	GPU-based deep convolutional neural network for tomographic phase microscopy with â, "1 fitting and regularization. Journal of Biomedical Optics, 2018, 23, 1.	2.6	13
28	Improving axial resolution of Bessel beam light-sheet fluorescence microscopy by photobleaching imprinting. Optics Express, 2020, 28, 9464.	3.4	13
29	DeepLFM: Deep Learning-based 3D Reconstruction for Light Field Microscopy. , 2019, , .		12
30	Mirror-enhanced scanning light-field microscopy for long-term high-speed 3D imaging with isotropic resolution. Light: Science and Applications, 2021, 10, 227.	16.6	12
31	Confocal terahertz SAR imaging of hidden objects through rough-surface scattering. Optics Express, 2020, 28, 12405.	3.4	9
32	Emerging theories and technologies on computational imaging. Frontiers of Information Technology and Electronic Engineering, 2017, 18, 1207-1221.	2.6	7
33	Spatial-temporal low-rank prior for low-light volumetric fluorescence imaging. Optics Express, 2021, 29, 40721.	3.4	7
34	Laser particle activated cell sorting in microfluidics. Lab on A Chip, 2022, 22, 2343-2351.	6.0	7
35	Dynamic-quenching of a single-photon avalanche photodetector using an adaptive resistive switch. Nature Communications, 2022, 13, 1517.	12.8	5
36	Recent Advances in Computational Photography. Chinese Journal of Electronics, 2019, 28, 1-5.	1.5	4

#	Article	IF	CITATIONS
37	Snapshot quantitative phase microscopy with a printed film. Optics Express, 2018, 26, 24763.	3.4	4
38	Ultrahigh resolution spectral-domain optical coherence tomography using the 1000–1600 nm spectral band. Biomedical Optics Express, 2022, 13, 1939.	2.9	4
39	A practical guide to scanning light-field microscopy with digital adaptive optics. Nature Protocols, 2022, 17, 1953-1979.	12.0	4
40	Snapshot Partially Coherent Diffraction Tomography. Physical Review Applied, 2021, 15, .	3.8	3
41	Improving collection efficiency in two-photon endoscopy with reflective waveguiding. Optics Express, 2018, 26, 32365.	3.4	3
42	Computational adaptive optics for high-resolution non-line-of-sight imaging. Optics Express, 2022, 30, 4583.	3.4	3
43	Camera array based light field microscopy. , 2015, , .		2
44	Wavelength Multiplexed Fourier Ptychograhic Microscopy., 2016,,.		2
45	In situ optical backpropagation training of diffractive optical neural networks: publisher's note. Photonics Research, 2020, 8, 1323.	7.0	2
46	Review on data analysis methods for mesoscale neural imaging in vivo. Neurophotonics, 2022, 9, 041407.	3.3	2
47	Advanced Illumination Pattern in Fourier Ptychographic Microscopy. , 2016, , .		1
48	Dense-Wavelength-Division Laser Micro-Particles: Fabrication and Imaging in Tissues. , 2018, , .		1
49	Artifact-free 3D deconvolution for light field microscopy. , 2019, , .		1
50	Solving computer vision tasks with diffractive neural networks., 2019,,.		1
51	High-speed 3D observation with multi-color light field microscopy. , 2020, , .		1
52	Optical backpropagation training method and its applications. , 2020, , .		1
53	All-in-depth via Cross-baseline Light Field Camera. , 2020, , .		1
54	Compressive hyperspectral imaging mask optimization. , 2018, , .		0

#	Article	IF	CITATIONS
55	Deep learning based tomographic phase microscopy with blind structured illumination. , 2019, , .		O
56	Wavefront shaping for achieving high NA GRIN-lens-based endoscopic imaging. , 2019, , .		0
57	Saliency Segmentation with Fourier-space Diffractive Deep Neural Networks. , 2020, , .		O