
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8844673/publications.pdf Version: 2024-02-01

ISTVAN NACY

#	Article	IF	CITATIONS
1	DNA Methylation and Non-Coding RNAs during Tissue-Injury Associated Pain. International Journal of Molecular Sciences, 2022, 23, 752.	4.1	6
2	Rare co-occurrence of multiple sclerosis and Wilson's disease – case report. BMC Neurology, 2022, 22, 178.	1.8	0
3	Imidazoline ligand BU224 reverses cognitive deficits, reduces microgliosis and enhances synaptic connectivity in a mouse model of Alzheimer's disease. British Journal of Pharmacology, 2021, 178, 654-671.	5.4	11
4	TRPV1 feed-forward sensitisation depends on COX2 upregulation in primary sensory neurons. Scientific Reports, 2021, 11, 3514.	3.3	8
5	Spinal Excitatory Dynorphinergic Interneurons Contribute to Burn Injury-Induced Nociception Mediated by Phosphorylated Histone 3 at Serine 10 in Rodents. International Journal of Molecular Sciences, 2021, 22, 2297.	4.1	6
6	(-)-Englerin-A Has Analgesic and Anti-Inflammatory Effects Independent of TRPC4 and 5. International Journal of Molecular Sciences, 2021, 22, 6380.	4.1	2
7	Histone post-translational modifications as potential therapeutic targets for pain management. Trends in Pharmacological Sciences, 2021, 42, 897-911.	8.7	21
8	Lactate dehydrogenase activity staining demonstrates time-dependent immune cell infiltration in human ex-vivo burn-injured skin. Scientific Reports, 2021, 11, 21249.	3.3	6
9	Fatty acid amide hydrolase inhibition normalises bladder function and reduces pain through normalising the anandamide/palmitoylethanolamine ratio in the inflamed bladder of rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 263-272.	3.0	12
10	CB ₁ receptorâ€dependent desensitisation of TRPV1 channels contributes to the analgesic effect of dipyrone in sensitised primary sensory neurons. British Journal of Pharmacology, 2020, 177, 4615-4626.	5.4	8
11	Cyclin-dependent–like kinase 5 is required for pain signaling in human sensory neurons and mouse models. Science Translational Medicine, 2020, 12, .	12.4	13
12	Leptin and fractalkine: Novel subcutaneous cytokines in burn injury. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	5
13	TRPV1 Antagonists as Novel Anti-Diabetic Agents: Regulation of Oral Glucose Tolerance and Insulin Secretion Through Reduction of Low-Grade Inflammation?. Medical Sciences (Basel, Switzerland), 2019, 7, 82.	2.9	11
14	Microdialysis Workflow for Metabotyping Superficial Pathologies: Application to Burn Injury. Analytical Chemistry, 2019, 91, 6541-6548.	6.5	9
15	Peripheral inflammation affects modulation of nociceptive synaptic transmission in the spinal cord induced by Nâ€arachidonoylphosphatidylethanolamine. British Journal of Pharmacology, 2018, 175, 2322-2336.	5.4	9
16	The Insulin Receptor Is Colocalized With the TRPV1 Nociceptive Ion Channel and Neuropeptides in Pancreatic Spinal and Vagal Primary Sensory Neurons. Pancreas, 2018, 47, 110-115.	1.1	14
17	The NAv1.7 blocker protoxin II reduces burn injury-induced spinal nociceptive processing. Journal of Molecular Medicine, 2018, 96, 75-84.	3.9	11
18	Insulin Confers Differing Effects on Neurite Outgrowth in Separate Populations of Cultured Dorsal Root Ganglion Neurons: The Role of the Insulin Receptor. Frontiers in Neuroscience, 2018, 12, 732.	2.8	12

#	Article	IF	CITATIONS
19	The insulin receptor is differentially expressed in somatic and visceral primary sensory neurons. Cell and Tissue Research, 2018, 374, 243-249.	2.9	3
20	Phosphorylated Histone 3 at Serine 10 Identifies Activated Spinal Neurons and Contributes to the Development of Tissue Injury-Associated Pain. Scientific Reports, 2017, 7, 41221.	3.3	11
21	Inflammation of peripheral tissues and injury to peripheral nerves induce differing effects in the expression of the calciumâ€sensitive Nâ€arachydonoylethanolamineâ€synthesizing enzyme and related molecules in rat primary sensory neurons. Journal of Comparative Neurology, 2017, 525, 1778-1796.	1.6	14
22	REPLY TO THORNELOE ET AL Physiological Reviews, 2017, 97, 1233-1234.	28.8	0
23	Spatial Distribution of the Cannabinoid Type 1 and Capsaicin Receptors May Contribute to the Complexity of Their Crosstalk. Scientific Reports, 2016, 6, 33307.	3.3	19
24	TRPV4: Molecular Conductor of a Diverse Orchestra. Physiological Reviews, 2016, 96, 911-973.	28.8	295
25	Anandamide in primary sensory neurons: too much of a good thing?. European Journal of Neuroscience, 2014, 39, 409-418.	2.6	17
26	Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics. British Journal of Pharmacology, 2014, 171, 2508-2527.	5.4	76
27	Prolonged exposure to bradykinin and prostaglandin E2 increases TRPV1 mRNA but does not alter TRPV1 and TRPV1b protein expression in cultured rat primary sensory neurons. Neuroscience Letters, 2014, 564, 89-93.	2.1	14
28	Anandamide produced by Ca2+-insensitive enzymes induces excitation in primary sensory neurons. Pflugers Archiv European Journal of Physiology, 2014, 466, 1421-1435.	2.8	15
29	Pharmacology of the Capsaicin Receptor, Transient Receptor Potential Vanilloid Type-1 Ion Channel. , 2014, 68, 39-76.		44
30	Characterisation of cannabinoid 1 receptor expression in the perikarya, and peripheral and spinal processes of primary sensory neurons. Brain Structure and Function, 2013, 218, 733-750.	2.3	48
31	Peripheral mechanisms of burn injury-associated pain. European Journal of Pharmacology, 2013, 716, 169-178.	3.5	28
32	Rapid genotyping of genetically modified laboratory animals from whole blood samples without DNA preparation. Acta Biologica Hungarica, 2013, 64, 262-265.	0.7	1
33	lsoflurane causes neocortical but not hippocampalâ€dependent memory impairment in mice. Acta Anaesthesiologica Scandinavica, 2012, 56, 1052-1057.	1.6	15
34	Severe burn injury induces a characteristic activation of extracellular signalâ€regulated kinase 1/2 in spinal dorsal horn neurons. European Journal of Pain, 2011, 15, 683-690.	2.8	8
35	Systemic inflammation enhances surgery-induced cognitive dysfunction in mice. Neuroscience Letters, 2011, 498, 63-66.	2.1	112
36	Xenon fails to inhibit capsaicin-evoked CGRP release by nociceptors in culture. Neuroscience Letters, 2011, 499, 124-126.	2.1	5

#	Article	IF	CITATIONS
37	Xenon reduces activation of transient receptor potential vanilloid type 1 (TRPV1) in rat dorsal root ganglion cells and in human TRPV1-expressing HEK293 cells. Life Sciences, 2011, 88, 141-149.	4.3	4
38	Peripheral orthopaedic surgery down-regulates hippocampal brain-derived neurotrophic factor and impairs remote memory in mouse. Neuroscience, 2011, 190, 194-199.	2.3	32
39	Molecular Structure of Transient Receptor Potential Vanilloid Type 1 Ion Channel (TRPV1). Current Pharmaceutical Biotechnology, 2011, 12, 115-121.	1.6	7
40	TRPV1 Function in Health and Disease. Current Pharmaceutical Biotechnology, 2011, 12, 130-144.	1.6	55
41	Extracellular signal-regulated kinases in pain of peripheral origin. European Journal of Pharmacology, 2011, 650, 8-17.	3.5	17
42	The endogenous cannabinoid anandamide inhibits transient receptor potential vanilloid type 1 receptor-mediated currents in rat cultured primary sensory neurons. Acta Physiologica Hungarica, 2010, 97, 149-158.	0.9	24
43	2010 International consensus algorithm for the diagnosis, therapy and management of hereditary angioedema. Allergy, Asthma and Clinical Immunology, 2010, 6, 24.	2.0	443
44	Effects of cannabinoids on capsaicin receptor activity following exposure of primary sensory neurons to inflammatory mediators. Life Sciences, 2010, 87, 162-168.	4.3	11
45	Sensitization of the transient receptor potential vanilloid type 1 ion channel by isoflurane or sevoflurane does not result in extracellular signal-regulated kinase 1/2 activation in rat spinal dorsal horn neurons. Neuroscience, 2010, 166, 633-638.	2.3	1
46	Role of Transient Receptor Potential and Acid-sensing Ion Channels in Peripheral Inflammatory Pain. Anesthesiology, 2010, 112, 729-741.	2.5	32
47	Localization of the Endocannabinoid-Degrading Enzyme Fatty Acid Amide Hydrolase in Rat Dorsal Root Ganglion Cells and Its Regulation after Peripheral Nerve Injury. Journal of Neuroscience, 2009, 29, 3766-3780.	3.6	53
48	Capsaicin-sensitive primary sensory neurons in the mouse express N-Acyl phosphatidylethanolamine phospholipase D. Neuroscience, 2009, 161, 572-577.	2.3	14
49	Cannabinoid 1 receptor activation inhibits transient receptor potential vanilloid type 1 receptor-mediated cationic influx into rat cultured primary sensory neurons. Neuroscience, 2009, 162, 1202-1211.	2.3	44
50	Functional Transient Receptor Potential Vanilloid 1 is Expressed in Human Urothelial Cells. Journal of Urology, 2009, 182, 2944-2950.	0.4	61
51	Molecular Mechanisms of TRPV1-Mediated Pain. NeuroImmune Biology, 2009, 8, 75-99.	0.2	8
52	An Historical Introduction to the Endocannabinoid and Endovanilloid Systems. , 2008, , 3-13.		1
53	Hereditary angiodema: a current state-of-the-art review, VII: Canadian Hungarian 2007 International Consensus Algorithm for the Diagnosis, Therapy, and Management of Hereditary Angioedema. Annals of Allergy, Asthma and Immunology, 2008, 100, S30-S40.	1.0	181
54	Cystitis is associated with TRPV1b-downregulation in rat dorsal root ganglia. NeuroReport, 2008, 19, 1469-1472.	1.2	18

#	Article	IF	CITATIONS
55	Functional Molecular Biology of the TRPV1 Ion Channel. , 2008, , 101-130.		2
56	Neurochemical characterization of insulin receptor-expressing primary sensory neurons in wild-type and vanilloid type 1 transient receptor potential receptor knockout mice. Journal of Comparative Neurology, 2007, 503, 334-347.	1.6	40
57	Taking the sting out of pain. British Journal of Pharmacology, 2007, 151, 721-722.	5.4	5
58	Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. European Journal of Neuroscience, 2007, 25, 213-223.	2.6	144
59	Mechanisms underlying joint pain. Drug Discovery Today Disease Mechanisms, 2006, 3, 357-363.	0.8	1
60	The Distribution of Sensory Fibers Immunoreactive for the TRPV1 (Capsaicin) Receptor in the Human Prostate. European Urology, 2005, 48, 162-167.	1.9	50
61	Inflammatory mediators convert anandamide into a potent activator of the vanilloid type 1 transient receptor potential receptor in nociceptive primary sensory neurons. Neuroscience, 2005, 136, 539-548.	2.3	80
62	Anandamide-Evoked Activation of Vanilloid Receptor 1 Contributes to the Development of Bladder Hyperreflexia and Nociceptive Transmission to Spinal Dorsal Horn Neurons in Cystitis. Journal of Neuroscience, 2004, 24, 11253-11263.	3.6	182
63	The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. European Journal of Pharmacology, 2004, 500, 351-369.	3.5	233
64	Canadian 2003 International Consensus Algorithm for the Diagnosis, Therapy, and Management of Hereditary Angioedema. Journal of Allergy and Clinical Immunology, 2004, 114, 629-637.	2.9	177
65	THIS ARTICLE HAS BEEN RETRACTED Activation of capsaicinâ€sensitive primary sensory neurones induces anandamide production and release. Journal of Neurochemistry, 2003, 84, 585-591.	3.9	80
66	Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1in vitro. European Journal of Neuroscience, 2003, 17, 2611-2618.	2.6	168
67	Insulin induces cobalt uptake in a subpopulation of rat cultured primary sensory neurons. European Journal of Neuroscience, 2003, 18, 2477-2486.	2.6	49
68	Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience, 2002, 109, 787-798.	2.3	220
69	Cannabinoid 1 receptors are expressed by nerve growth factor- and glial cell-derived neurotrophic factor-responsive primary sensory neurones. Neuroscience, 2002, 110, 747-753.	2.3	68
70	The putative role of vanilloid receptor-like protein-1 in mediating high threshold noxious heat-sensitivity in rat cultured primary sensory neurons. European Journal of Neuroscience, 2002, 16, 1483-1489.	2.6	58
71	Spinal Neurokinin NK1 Receptor Down-Regulation and Antinociception: Effects of Spinal NK1 Receptor Antisense Oligonucleotides and NK1 Receptor Occupancy. Journal of Neurochemistry, 2002, 70, 688-698.	3.9	38
72	Chronic neuropathic pain: Pathomechanism and pharmacology. Drug Development Research, 2001, 54, 159-166.	2.9	4

#	Article	IF	CITATIONS
73	Possible mechanisms of cannabinoid-induced antinociception in the spinal cord. European Journal of Pharmacology, 2001, 429, 93-100.	3.5	74
74	Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience, 2000, 100, 685-688.	2.3	283
75	Comparison of currents activated by noxious heat in rat and chicken primary sensory neurons. Regulatory Peptides, 2000, 96, 3-6.	1.9	13
76	Similarities and Differences between the Responses of Rat Sensory Neurons to Noxious Heat and Capsaicin. Journal of Neuroscience, 1999, 19, 10647-10655.	3.6	128
77	Immunohistochemical localization of neurokinin-1 receptor in the lumbar spinal cord of young rats: morphology and distribution. Somatosensory & Motor Research, 1999, 16, 361-368.	0.9	4
78	Noxious heat activates all capsaicin-sensitive and also a sub-population of capsaicin-insensitive dorsal root ganglion neurons. Neuroscience, 1999, 88, 995-997.	2.3	131
79	Alterations of substance P immunoreactivity in lumbar and thoracic segments of rat spinal cord in ultraviolet irradiation induced hyperalgesia of the hindpaw. Brain Research, 1998, 786, 248-251.	2.2	12
80	Is there a nociceptive carousel?. Trends in Pharmacological Sciences, 1997, 18, 223-224.	8.7	7
81	Lignocaine selectively reduces C fibre-evoked neuronal activity in rat spinal cord in vitro by decreasing N -methyl-D-aspartate and neurokinin receptor-mediated post-synaptic depolarizations; implications for the development of novel centrally acting analgesics. Pain, 1996, 64, 59-70.	4.2	120
82	Possible branching of myelinated primary afferent fibres in the dorsal root of the rat. Brain Research, 1995, 703, 223-226.	2.2	5
83	Combination of cobalt labelling with immunocytochemical reactions for electron microscopic investigations on frog spinal cord. Microscopy Research and Technique, 1994, 28, 60-66.	2.2	5
84	Cobalt accumulation in neurons expressing ionotropic excitatory amino acid receptors in young rat spinal cord: Morphology and distribution. Journal of Comparative Neurology, 1994, 344, 321-335.	1.6	41
85	NK1 and NK2 receptors contribute to C-fibre evoked slow potentials in the spinal cord. NeuroReport, 1994, 5, 2105-2108.	1.2	38
86	Hyperexcitabilty in the Spinal Dorsal Horn: Cooperation of Neuropeptides and Excitatory Amino Acids. , 1994, , 379-399.		0
87	Morphological and membrane properties of young rat lumbar and thoracic dorsal root ganglion cells with unmyelinated axons. Brain Research, 1993, 609, 193-200.	2.2	14
88	The role of neurokinin and N-methyl-d-aspartate receptors in synaptic transmission from capsaicin-sensitive primary afferents in the rat spinal cord in vitro. Neuroscience, 1993, 52, 1029-1037.	2.3	102
89	Cobalt uptake enables identification of capsaicin- and bradykinin-sensitive subpopulations of rat dorsal root ganglion cellsin vitro. Neuroscience, 1993, 56, 241-246.	2.3	37
90	The effects of NK-1 and NK-2 receptor antagonists on the capsaicin evoked synaptic response in the rat spinal cord in vitro. Regulatory Peptides, 1993, 46, 413-414.	1.9	7

#	Article	IF	CITATIONS
91	Spatial distribution of pre- and postsynaptic sites of axon terminals in the dorsal horn of the frog spinal cord. Neuroscience, 1989, 29, 175-188.	2.3	28