Dietmar Kracht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8843646/publications.pdf Version: 2024-02-01

		126907	168389
236	3,448	33	53
papers	citations	h-index	g-index
237	237	237	2201
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Single-Frequency 336 W Spliceless All-Fiber Amplifier Based on a Chirally-Coupled-Core Fiber for the Next Generation of Gravitational Wave Detectors. Journal of Lightwave Technology, 2022, 40, 2136-2143.	4.6	14
2	100W optical amplifier for 10 channel laser communication system with enhanced wall-plug efficiency in the 1Aµm wavelength range. , 2022, , .		1
3	Development of efficient CCC-fiber-based components for fiber lasers and amplifiers. , 2022, , .		1
4	CO ₂ -laser-ablation-assisted fabrication of signal-pump combiners with chirally coupled core fibers for co- and counter-pumped all-fiber amplifiers. Optics Express, 2022, 30, 25946.	3.4	1
5	Dispersion-managed thulium-doped fiber Mamyshev oscillator. , 2021, , .		2
6	Pump combiner with chirally coupled core fibers for side pumped single frequency all fiber amplifiers. , 2021, , .		1
7	Coherent beam combining of two single-frequency 200W fiber amplifiers for gravitational wave detectors. , 2021, , .		1
8	GALACTIC: high performance alexandrite crystals and coatings for high power space applications. , 2021, , .		0
9	Low noise 400 W coherently combined single frequency laser beam for next generation gravitational wave detectors. Optics Express, 2021, 29, 10140.	3.4	22
10	Quasi-monolithic laser system based on 3D-printed optomechanics. , 2021, , .		3
11	CO2-laser based micro-machining for fiber component manufacturing. , 2021, , .		1
12	Two-stage fully monolithic single-frequency Er:Yb fiber amplifiers at 1556 nm for next-generation of gravitational wave detectors. , 2021, , .		0
13	Low noise spliceless single-frequency chirally-coupled-core all-fiber amplifier. , 2021, , .		1
14	Yb-doped fiber Mamyshev oscillator with a few-mode gain fiber. , 2021, , .		2
15	Hybrid Mode-locking in a Thulium-doped Fiber Mamyshev Osillator. , 2021, , .		0
16	Optimizing the laser diode ray tracing model for LERP system simulation based on likelihood image sampling. , 2021, , .		0
17	3D fabrication and characterization of polymer-imprinted optics for function-integrated, lightweight optomechanical systems. Journal of Laser Applications, 2021, 33, 042010.	1.7	2
18	Highly-Integrated Signal and Pump Combiner in Chirally-Coupled-Core Fibers. Journal of Lightwave Technology, 2021, 39, 7246-7250.	4.6	5

#	Article	IF	CITATIONS
19	Upconversion Nanocrystal Doped Polymer Fiber Thermometer. Sensors, 2020, 20, 6048.	3.8	7
20	Towards Highly Efficient Polymer Fiber Laser Sources for Integrated Photonic Sensors. Sensors, 2020, 20, 4086.	3.8	5
21	3D-printed, low-cost, lightweight optomechanics for a compact, low-power solid-state amplifier system. , 2020, , .		7
22	Generation of functional curved waveguides by CO2-laser based deposition of coreless fused silica fibers. , 2020, , .		10
23	Performance study of a high-power single-frequency fiber amplifier architecture for gravitational wave detectors. Applied Optics, 2020, 59, 7945.	1.8	10
24	Mode-locked pulses from a Thulium-doped fiber Mamyshev oscillator. Optics Express, 2020, 28, 13837.	3.4	23
25	Single-frequency chirally coupled-core all-fiber amplifier with 100  W in a linearly polarized TEM00 mode. Optics Letters, 2020, 45, 939.	3.3	9
26	Single-frequency chirally-coupled-core all-fiber amplifier with 100W in a linearly-polarized TEM00-mode. , 2020, , .		0
27	Amplification of ultrafast pulses in an extended Mamyshev regenerator. , 2020, , .		1
28	Opto-thermal simulation framework for the investigation of phosphor materials in laser-based lighting systems. , 2020, , .		2
29	Laser-induced degradation and damage morphology in polymer optical fibers. , 2020, , .		0
30	Integrated signal and pump combiner in chirally-coupled-core fibers for all-fiber lasers and amplifiers. , 2020, , .		0
31	Low-noise, single-frequency 200 W fiber amplifier. , 2020, , .		1
32	High power single frequency 2090-nm Ho3+ doped MOPA (Conference Presentation). , 2020, , .		0
33	Investigation of gamma radiation influence on active Er3+-doped optical fiber amplifiers (Conference) Tj ETQq1	1 0.78431	4 rgBT /Overle
34	Integrated fiber components based on chirally-coupled-core fibers for all-fiber amplifier. , 2020, , .		0
35	High-repetition rate, mid-infrared, picosecond pulse generation with µJ-energies based on OPG/OPA schemes in 2-µm-pumped ZnGeP2. Optics Express, 2020, 28, 21499.	3.4	5
36	Broadband excess intensity noise due to an asymmetric Brillouin gain spectrum in optical fibers. OSA Continuum, 2020, 3, 2902.	1.8	0

#	Article	IF	CITATIONS
37	Alexandrite laser crystal treatment and coatings for high LIDT space applications. , 2020, , .		Ο
38	Design and Optimization of Laseractive Nanoparticles for Fiber Lasers. , 2019, , .		0
39	Single-Frequency Er3+ Doped Phosphate Fiber MOPA. , 2019, , .		0
40	High-Energy Ultrafast Yb-Fiber Laser System Based on a Mamyshev Regenerator. , 2019, , .		0
41	Monolithic Amplifier Based on a Chirally-Coupled-Core Fiber. , 2019, , .		2
42	Structured Auxiliary Mesh (SAM) Algorithm for Opto-Thermal Simulation of Laser-Based Lighting Systems. , 2019, , .		0
43	High Repetition Rate, Wavelength-Tunable Mid-IR Source Driven by ps-Pulses from a Ho:YLF Amplifier at 2 1¼m. , 2019, , .		0
44	Fluorescence Dynamics of Laseractive Nanocrystals Emitting in the Visible. , 2019, , .		1
45	Laser-Induced Damage in Passive and Active Polymer Optical Fibers. , 2019, , .		1
46	Opto-mechanical design and verification of the MOMA UV laser source for the ExoMars 2020 mission. , 2019, , .		2
47	High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors. Optics Express, 2019, 27, 28523.	3.4	52
48	Characterization and Long-Term Operation of a 200 W Single-Frequency Fiber Amplifier for Gravitational Wave Detectors. , 2019, , .		0
49	Characterization of the monolithic fiber amplifier engineering prototype for the next generation of gravitational wave detectors. , 2019, , .		1
50	Broadband excess intensity noise due to an asymmetric Brillouin gain spectrum in optical fibers (Conference Presentation). , 2019, , .		0
51	CPA-free amplification of sub-10 ps pulses in Ho:YLF to the mJ-level at 2 ŵm wavelength. , 2019, , .		0
52	Polarized monolithic fiber oscillator for pico- and nanosecond operation at 2088 nm (Conference) Tj ETQq0 0 0	rgBT /Over	lock 10 Tf 50
53	Sub-50  fs, µJ-level pulses from a Mamyshev oscillator–amplifier system. Optics Letters, 2019, 44, 5	97 3. 3	23

54Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors. IEEE Journal of
Selected Topics in Quantum Electronics, 2018, 24, 1-13.2.940

#	Article	IF	CITATIONS
55	Pump wavelength dependence of ASE and SBS in single-frequency EYDFAs. Optics Letters, 2018, 43, 4647.	3.3	10
56	High repetition rate, µJ-level, CPA-free ultrashort pulse multipass amplifier based on Ho:YLF. Optics Express, 2018, 26, 18125.	3.4	5
57	Microstructured fiber cladding light stripper for kilowatt-class laser systems. Applied Optics, 2018, 57, 6640.	1.8	19
58	All-fiber, single-frequency, and single-mode Er ³⁺ :Yb ³⁺ fiber amplifier at 1556 core-pumped at 1018  nm. Optics Letters, 2018, 43, 2632.	nm 3.3	15
59	High energy, femtosecond fiber laser source at 1750 nm for 3-photon microscopy (Conference) Tj ETQq1 1 0.784	314 rgBT	/Qverlock 10
60	Determination of the laser-induced damage threshold of polymer optical fibers. , 2018, , .		1
61	Fabrication of versatile cladding light strippers and fiber end-caps with CO2 laser radiation. , 2018, , .		0
62	Recent progress on monolithic fiber amplifiers for next generation of gravitational wave detectors. , 2018, , .		1
63	Ultrashort pulse CPA-free Ho:YLF linear amplifier. , 2018, , .		0
64	Single-frequency and single-mode fiber amplifier at 1.5-μm core-pumped at 1018 nm (Conference) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
65	Complete characterization of ultrafast pulses of an Yb-doped fiber amplifier via dispersion scans after compression in a grism compressor (Conference Presentation). , 2018, , .		1
66	Versatile monolithic 2-micron laser systems. , 2018, , .		0
67	Development of a comprehensive 3D model for transversal mode instability investigations. , 2018, , .		0
68	Opto-thermal simulation model for optimizing laser-excited remote phosphor systems. , 2018, , .		2
69	Monolithic fiber amplifiers for the next generation of gravitational wave detectors. , 2018, , .		0
70	Manufacturing and characterization of asymmetric evanescent field polished fiber couplers for fiber grating assisted mode selective coupling. , 2018, , .		0
71	Development of a reliable fabrication process of evanescent field coupled fused fiber couplers (Conference Presentation). , 2018, , .		0
72	Millijoule-level, kilohertz-rate, CPA-free linear amplifier for 2  μm ultrashort laser pulses. Optics Letters, 2018, 43, 5857.	3.3	5

#	Article	IF	CITATIONS
73	Single-frequency fiber amplifier at 15 µm with 100 W in the linearly-polarized TEM_00 mode for next-generation gravitational wave detectors. Optics Express, 2017, 25, 24880.	3.4	59
74	Mode-locked Ho-doped laser with subsequent diode-pumped amplifier in an all-fiber design operating at 2052 nm. Optics Express, 2017, 25, 20522.	3.4	30
75	Development of a pulsed UV laser system for laser-desorption mass spectrometry on Mars. , 2017, , .		3
76	Energy scaling of passively Q-switched lasers In the Mj-range. , 2017, , .		0
77	Modeling of photoluminescence in laser-based lighting systems. , 2017, , .		3
78	Influence of the third energy level on the gain dynamics of EDFAs: analytical model and experimental validation. Optics Express, 2016, 24, 24883.	3.4	6
79	All-fiber Combining Concepts in the Wavelength Range Around 2 µm. , 2016, , .		0
80	Comparison between Tm:YAP and Ho:YAG ultrashort pulse regenerative amplification. Optics Express, 2016, 24, 8632.	3.4	9
81	Single-mode spectral beam combining of high power Tm-doped fiber lasers with WDM cascades. , 2016, ,		0
82	Core-pumped single-frequency fiber amplifier with an output power of 158  W. Optics Letters, 2016, 41,	93.3	30
83	High Energy/High Repetition Rate Laser Pulses from Yb Based Solid State Oscillators with Cavity-Dumping and Regenerative Amplifiers. Springer Series in Optical Sciences, 2016, , 3-22.	0.7	0
84	Intracavity Dissipative Four-Wave Mixing at Different Dispersion Regimes of an Ultrafast Fiber Laser. , 2016, , .		0
85	Single-mode monolithic fiber laser with 200  W output power at a wavelength of 1018  nm. Op Letters, 2015, 40, 4851.	tics 3.3	32
86	Sub-700fs pulses at 152 W average power from a Tm-doped fiber CPA system. Proceedings of SPIE, 2015, , .	0.8	1
87	TEM_00 mode content measurements on a passive leakage channel fiber. Optics Letters, 2015, 40, 383.	3.3	2
88	Analysis of the modal evolution in fused-type mode-selective fiber couplers. Optics Express, 2015, 23, 22977.	3.4	18
89	700 MW peak power of a 380 fs regenerative amplifier with Tm:YAP. Optics Express, 2015, 23, 16884.	3.4	24
90	Comparison Between Tm:YAP and Ho:YAG Ultrashort Pulse Regenerative Amplification. , 2015, , .		0

#	Article	IF	CITATIONS
91	Laser processing of continuous carbon fibre reinforced polyphenylene sulphide organic sheets—Correlation of process parameters and reduction in static tensile strength properties. Journal of Thermoplastic Composite Materials, 2014, 27, 324-337.	4.2	30
92	Tm-doped mode-locked fiber lasers. Optical Fiber Technology, 2014, 20, 650-656.	2.7	11
93	152  W average power Tm-doped fiber CPA system. Optics Letters, 2014, 39, 4671.	3.3	85
94	Analysis of the Coupling Mechanism in Asymmetric Fused Fiber Couplers. Journal of Lightwave Technology, 2014, 32, 2382-2391.	4.6	11
95	SBS Mitigation via Phase Modulation and Demodulation. , 2014, , .		0
96	Gain dynamics in Er:Yb co-doped fiber amplifiers. , 2014, , .		0
97	Modal Analysis in Fused-Type Mode-Selective Fiber Couplers. , 2014, , .		0
98	New pump and signal combiners. , 2014, , .		0
99	Tm-Doped Fiber CPA System with 152 W Average Power and Sub-700fs Pulse Duration. , 2014, , .		0
100	Fiber components, fiber amplifiers and phase control for coherent combination. , 2014, , .		0
101	Modal Decomposition in Asymmetric Wavelength-Selective Fused Fiber Couplers. , 2014, , .		0
102	Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1Âμm. Applied Physics B: Lasers and Optics, 2013, 110, 299-302.	2.2	10
103	Laser-based modification of wettablility for carbon fiber reinforced plastics. Applied Physics A: Materials Science and Processing, 2013, 112, 179-183.	2.3	16
104	Development of a cascaded Raman fiber laser with 6.5W output power at 1480nm supported by detailed numerical simulations. , 2013, , .		0
105	Investigations on positively chirped pulses in a thulium-doped fiber laser. , 2013, , .		0
106	Experimental and numerical investigations on asymmetric fused fibre couplers consisting of different single-mode fibres. , 2013, , .		0
107	Power noise sources of single frequency fibre amplifiers. , 2013, , .		0
108	Adhesion, Vitality and Osteogenic Differentiation Capacity of Adipose Derived Stem Cells Seeded on Nitinol Nanoparticle Coatings. PLoS ONE, 2013, 8, e53309.	2.5	22

#	Article	IF	CITATIONS
109	The Optical Phase and Single Frequency Fiber Amplifiers: Coupling Mechanisms and their Application. , 2013, , .		0
110	$1.0 \hat{A} \mu m$ co-seeded Er:Yb fiber amplifier with 50W output power at $1.5 \hat{A} \mu m$. , 2013, , .		0
111	On the Effective Ion Lifetime in Fiber Amplifiers. , 2013, , .		0
112	Fiber based dispersion management in an ultrafast thulium-doped fiber laser and external compression with a normal dispersive fiber. , 2012, , .		0
113	All-fiber coherent beam combining with phase stabilization via differential pump power control. Optics Letters, 2012, 37, 1202.	3.3	15
114	Heat generation in Nd:YAG at different doping levels. Applied Optics, 2012, 51, 7586.	1.8	3
115	Generation of an astronomical optical frequency comb in three fibre-based nonlinear stages. Proceedings of SPIE, 2012, , .	0.8	3
116	TEM_00 mode content of a two stage single-frequency Yb-doped PCF MOPA with 246 W of output power. Optics Express, 2012, 20, 5319.	3.4	19
117	Impact of amplified spontaneous emission on Brillouin scattering of a single-frequency signal. Optics Express, 2012, 20, 10572.	3.4	10
118	Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach. Optics Express, 2012, 20, 13539.	3.4	59
119	Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers. Optics Express, 2012, 20, 28125.	3.4	103
120	Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power. Optics Letters, 2012, 37, 4242.	3.3	40
121	High power single frequency solid state master oscillator power amplifier for gravitational wave detection. Optics Letters, 2012, 37, 2862.	3.3	16
122	Frequency resolved analysis of thermally induced refractive index changes in fiber amplifiers. Optics Letters, 2012, 37, 3597.	3.3	6
123	Pulse duration and energy scaling of femtosecond all-normal dispersion fiber oscillators. Optics Express, 2012, 20, 3844.	3.4	19
124	Matching of the propagation constants in an asymmetric single-mode fused fiber coupler for core pumping thulium-doped fiber at 795Ânm. Optics Letters, 2012, 37, 1844.	3.3	8
125	Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser. Optics Letters, 2012, 37, 1014.	3.3	57
126	Er-doped single-frequency photonic crystal fiber amplifier with 70 W of output power for gravitational wave detection. Proceedings of SPIE, 2012, , .	0.8	5

#	Article	IF	CITATIONS
127	Stretched-pulse operation of a thulium-doped fiber laser with a fiber-based dispersion management. , 2012, , .		Ο
128	Frequency domain analysis of dynamic refractive index changes in fiber amplifiers. Proceedings of SPIE, 2012, , .	0.8	0
129	All-Fiber Counter-Propagation Pumped Single Frequency Amplifier Stage With 300-W Output Power. IEEE Photonics Technology Letters, 2012, 24, 1864-1867.	2.5	79
130	Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management. Optics Letters, 2012, 37, 2466.	3.3	86
131	Sub-200fs microjoule pulses from a monolithic linear fiber CPA system. Optics Communications, 2012, 285, 706-709.	2.1	11
132	Induction of Osteogenic Differentiation of Adipose Derived Stem Cells by Microstructured Nitinol Actuator-Mediated Mechanical Stress. PLoS ONE, 2012, 7, e51264.	2.5	23
133	Investigations on the Impact of Amplified Spontaneous Emission on Brillouin Scattering of a Single-Frequency Signal. , 2012, , .		1
134	Pulse duration and energy scaling of femtosecond all-normal dispersion fiber oscillators. , 2012, , .		1
135	All-fiber Coherent Beam Combining of Two Ytterbium Doped Single Frequency Fiber Amplifiers. , 2012, , .		0
136	Positively Chirped Pulses in a Mode-Locked Thulium Fiber Laser - Simulation and Experiment. , 2012, , .		0
137	Positively chirped pulse evolution in a passively mode-locked thulium-doped fiber laser. , 2012, , .		1
138	Development of a solid state laser amplifier source for the third generation of gravitational wave detectors. , 2011, , .		1
139	67 W of Output Power From an Yb-Free Er-Doped Fiber Amplifier Cladding Pumped at 976 nm. IEEE Photonics Technology Letters, 2011, 23, 432-434.	2.5	24
140	Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 Âμm. Optics Express, 2011, 19, 546.	3.4	67
141	All-fiber based amplification of 40 ps pulses from a gain-switched laser diode. Optics Express, 2011, 19, 1854.	3.4	33
142	05 ÂμJ pulses from a giant-chirp ytterbium fiber oscillator. Optics Express, 2011, 19, 3647.	3.4	17
143	Linearly polarized single-mode Nd:YAG oscillators using [100]- and [110]-cut crystals. Optics Express, 2011, 19, 12992.	3.4	11
144	Beam quality and noise properties of coherently combined ytterbium doped single frequency fiber amplifiers. Optics Express, 2011, 19, 19600.	3.4	27

#	Article	IF	CITATIONS
145	Picosecond all-fiber cascaded Raman shifter pumped by an amplified gain switched laser diode. Optics Express, 2011, 19, 25918.	3.4	10
146	All-fiber phase actuator based on an erbium-doped fiber amplifier for coherent beam combining at 1064 nm. Optics Letters, 2011, 36, 448.	3.3	16
147	Er-doped photonic crystal fiber amplifier with 70ÂW of output power. Optics Letters, 2011, 36, 3030.	3.3	32
148	Collinear Coherent Beam Combining of Two Ytterbium Doped Single Frequency Fiber Amplifiers. , 2011, ,		0
149	LiM 2011 Laser-based approach for bonded repair of carbon fiber reinforced plastics. Physics Procedia, 2011, 12, 537-542.	1.2	31
150	Coherent Beam Combining at 1064 nm Employing an Erbium Doped Fiber Amplifier for Phase Control. , 2011, , .		0
151	0.5 µJ femtosecond pulses from a giant-chirp ytterbium fiber oscillator. , 2011, , .		Ο
152	Sub-200-fs microjoule pulses from an all-fiber CPA system. , 2011, , .		0
153	Single frequency solid state laser amplifier system: Towards 3 rd generation of gravitational wave detectors. , 2011, , .		Ο
154	Yb-free Er-doped 980 nm pumped single-frequency fiber amplifier with output power of 54W and near-diffraction limited beam quality. , 2011, , .		2
155	Hybrid mode-locked thulium soliton fiber laser. , 2011, , .		2
156	High power fused single mode optical fiber coupler. , 2011, , .		1
157	Yb-free Er-doped 976 nm Pumped Large Mode Area Fiber Amplifier with 67 W of Output Power. , 2011, , .		1
158	High power monolithic all-fiber counter-propagating pumped single-frequency amplifier. , 2011, , .		0
159	Gain switched laser diode based all-fiber laser source emitting simultaneously at 8 different wavelengths in the NIR region. , 2011, , .		1
160	Generation of sub-200-fs microjoule pulses from an all-fiber CPA system. , 2011, , .		0
161	New ALPS results on hidden-sector lightweights. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 689, 149-155.	4.1	278
162	Laser processing of carbon fiber reinforced plastic (CFRP). , 2010, , .		0

#	Article	IF	CITATIONS
163	Dispersion Variation of a Thulium-doped Stretched-pulse Fiber Laser with Spectral Filtering. , 2010, , .		Ο
164	Compact diode stack end pumped Nd:YAG amplifier using core doped ceramics. Applied Optics, 2010, 49, 811.	2.1	13
165	Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser â€ ⁻ by Sm:YAG cladding. Optics Express, 2010, 18, 13094.	3.4	27
166	Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion. Optics Express, 2010, 18, 18981.	3.4	52
167	Intrinsic reduction of the depolarization in Nd:YAG crystals. Optics Express, 2010, 18, 20461.	3.4	29
168	High-power dissipative solitons from an all-normal dispersion erbium fiber oscillator. Optics Letters, 2010, 35, 2807.	3.3	52
169	Pulse energy of 151 nJ from ultrafast thulium-doped chirped-pulse fiber amplifier. Optics Letters, 2010, 35, 2991.	3.3	59
170	50 fs pulses from an all-normal dispersion erbium fiber oscillator. Optics Letters, 2010, 35, 3081.	3.3	24
171	Dependence of Er:Yb-codoped 15ĥ¼m amplifier on wavelength-tuned auxiliary seed signal at 1ĥ¼m wavelength. Optics Letters, 2010, 35, 4105.	3.3	43
172	Experimental Comparison of Fundamental Mode Content in Er:Yb-Codoped LMA Fibers With Multifilament- and Pedestal-Design Cores. Journal of Lightwave Technology, 2010, , .	4.6	4
173	Suppression of Parasitic Laser Processes in Cladding Pumped Er:Yb-Codoped Fiber Amplifier via Auxiliary Signal at 1.0 μm. , 2010, , .		0
174	Dissipative solitons in an all-normal erbium fiber laser. , 2010, , .		0
175	Intrinsic Reduction of the Depolarization in Nd:YAG Crystals. , 2010, , .		1
176	Ultrafast double-slab regenerative amplifier with combined gain spectra. , 2009, , .		0
177	High Power, Multi-Segmented Nd:YAG Laser, Longitudinally Pumped at 885 nm. , 2009, , .		5
178	Normal Dispersive Ultrafast Fiber Oscillators. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 170-181.	2.9	19
179	Resonant laser power build-up in ALPS—A "light shining through a wall―experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 612, 83-96.	1.6	69
180	Regenerative thin disk amplifier with combined gain spectra producing 500 µJ sub 200 fs pulses. Optics Express, 2009, 17, 8046.	3.4	49

#	Article	IF	CITATIONS
181	Design and comparison of composite rod crystals for power scaling of diode end-pumped Nd:YAG lasers. Optics Express, 2009, 17, 8229.	3.4	16
182	Stabilization and power scaling of cladding pumped Er:Yb-codoped fiber amplifier via auxiliary signal at 1064 nm. Optics Express, 2009, 17, 18304.	3.4	54
183	Spatially dispersive regenerative amplification of ultrashort laser pulses. Optics Express, 2009, 17, 24075.	3.4	11
184	Diode-pumped spatially dispersive Yb:KYW regenerative amplifier. , 2009, , .		0
185	Regenerative Yb:KLuW thin disk amplifier. , 2009, , .		0
186	Nd:YLF Laser Pumped at 880 nm. , 2009, , .		2
187	Integrated optical micro structures for signal processing in the position metrology. Microsystem Technologies, 2008, 14, 1955-1960.	2.0	1
188	Ultrafast thulium-doped fiber-oscillator with pulse energy of 43 nJ. Optics Letters, 2008, 33, 690.	3.3	98
189	Wavelength resolved intracavity measurement of the cross sections of a Tm-doped fiber. Optics Express, 2008, 16, 1610.	3.4	12
190	Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ. Optics Express, 2008, 16, 3130.	3.4	45
191	On wave-breaking free fiber lasers mode-locked with two saturable absorber mechanisms. Optics Express, 2008, 16, 8181.	3.4	28
192	Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers. Optics Express, 2008, 16, 15970.	3.4	75
193	All-fiber ytterbium femtosecond laser without dispersion compensation. Optics Express, 2008, 16, 19562.	3.4	56
194	End-pumped Nd:YAG laser with a longitudinal hyperbolic dopant concentration profile. Optics Express, 2008, 16, 20106.	3.4	20
195	Stretched-pulse operation of a thulium-doped fiber laser. Optics Express, 2008, 16, 20471.	3.4	100
196	Power Scaling of End-Pumped Solid-State Rod Lasers by Longitudinal Dopant Concentration Gradients. IEEE Journal of Quantum Electronics, 2008, 44, 232-244.	1.9	27
197	Ultrafast Yb:KYW Regenerative Amplifier with Combined Gain Spectra of the Optical Axes Nm and Np. , 2008, , .		0
198	Ultrafast Yb:KYW regenerative amplifier with combined gain spectra of the optical axes Nm and Np. , 2008, , .		3

#	Article	IF	CITATIONS
199	10 nJ-normal dispersion erbium-doped fiber laser exhibiting spectral filtering. , 2008, , .		1
200	320-fs thulium-doped fiber-ring-laser with a pulse energy of 3.5-nJ. , 2008, , .		1
201	Passively Mode-Locked Thulium-Doped Fiber Oscillator with a Pulse Energy of 4 nJ. , 2008, , .		0
202	Hybrid mode-locking scheme for similariton fiber lasers. , 2007, , .		0
203	Core-doped Ceramic Nd:YAG Laser with Sm:YAG Cladding. , 2007, , .		0
204	Microsecond-pulsed ytterbium fiber laser system with a broad tuning range and a small spectral linewidth. , 2007, , .		1
205	Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation. Optics Letters, 2007, 32, 2372.	3.3	36
206	Fundamental mode, single-frequency laser amplifier for gravitational wave detectors. Optics Express, 2007, 15, 459.	3.4	56
207	Single-Frequency ytterbium-doped fiber laser with 26 nm tuning range. Optics Express, 2007, 15, 4617.	3.4	15
208	All-fiber similariton laser at $1 \hat{l}$ 4m without dispersion compensation. Optics Express, 2007, 15, 6889.	3.4	45
209	Passively Q-Switched Core-doped Ceramic Nd:YAG Laser with Sm:YAG Cladding. , 2007, , .		0
210	Single frequency ytterbium-doped fiber laser with 26 nm tuning range. , 2007, , .		0
211	Power Scaling of End-Pumped Nd:YAG Rod Lasers into the Kilowatt Region. , 2007, , .		0
212	High-power, direct upper laser level compared to traditionally Nd:YAG pumping. , 2007, , .		0
213	250 W end-pumped Nd:YAG laser with direct pumping into the upper laser level. Optics Letters, 2006, 31, 3618.	3.3	62
214	Core-doped Ceramic Nd:YAG Laser. Optics Express, 2006, 14, 2690.	3.4	43
215	Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power. Optics Express, 2006, 14, 11071.	3.4	36
216	Compact high-power end-pumped Nd:YAG laser. Optics and Laser Technology, 2006, 38, 183-185.	4.6	5

#	Article	IF	CITATIONS
217	High efficiency passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry. , 2006, 6100, 548.		1
218	Power scaling of diode end-pumped Nd:YAG lasers by hyperbolic dopant concentration profiles. , 2006, , .		0
219	Optimized multi-segmented crystal geometries for power scaling of end-pumped rod lasers. , 2006, , .		1
220	Compact, highly efficient, passively Q-switched Nd:YAG MOPA for spaceborne bepi colombo laser-altimeter. , 2006, , .		0
221	End-pumped Nd:YAG Laser Applying a Novel Laser Crystal with Longitudinal Hyperbolic Dopant Distribution. , 2006, , .		1
222	Compact, High Efficiency, Passively Q-Switched Nd:YAG MOPA for Spaceborne Laser-Altimetry. , 2006, , .		0
223	High Power End-Pumped Nd:YVO4 Amplifier. , 2006, , .		Ο
224	High Power Single-Frequency Laser for Gravitational Wave Detection. , 2006, , .		1
225	High-Power Multi-segmented End-pumped Nd:YAG Laser. , 2006, , .		1
226	Diode End-pumped Core-doped Ceramic Nd:YAG Laser. , 2005, , MA5.		2
227	Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping. Optics Express, 2005, 13, 6212.	3.4	59
228	0.7 W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses. Optics Express, 2005, 13, 6305.	3.4	31
229	Nd:YAG ring laser with 213 W linearly polarized fundamental mode output power. Optics Express, 2005, 13, 7516.	3.4	30
230	407 W End-pumped Multi-segmented Nd:YAG Laser. Optics Express, 2005, 13, 10140.	3.4	62
231	High-Power Fundamental Mode Single-Frequency Laser. , 2005, , .		Ο
232	Thermal Design of Segmented Rod Laser Crystals. , 2005, , .		0
233	Green Q-switched microsecond laser pulses by overcoupled intracavity second harmonic generation. Optics Communications, 2004, 231, 319-324.	2.1	31
234	Stable sub-85 fs passively mode-locked Erbium-fiber oscillator with tunable repetition rate. Optics Express, 2004, 12, 3178.	3.4	29

#	Article	IF	CITATIONS
235	Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm. Optics Express, 2003, 11, 3196.	3.4	61
236	Laser Bead-on-Plate Welding and Overlap Seams for Increasing the Strength and Rigidity of High Strength Steel. Advanced Materials Research, 0, 137, 161-190.	0.3	2