Richard J. Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8842428/publications.pdf

Version: 2024-02-01

11651 21540 114 17,869 329 70 citations h-index g-index papers 335 335 335 9116 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inhibition of N-type calcium ion channels by tricyclic antidepressants – experimental and theoretical justification for their use for neuropathic pain. RSC Medicinal Chemistry, 2022, 13, 183-195.	3.9	3
2	Venomics Reveals a Non-Compartmentalised Venom Gland in the Early Diverged Vermivorous Conus distans. Toxins, 2022, 14, 226.	3.4	2
3	Cysteine-Rich \hat{l} ±-Conotoxin SII Displays Novel Interactions at the Muscle Nicotinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2022, 13, 1245-1250.	3.5	1
4	Comparative Venomics of C. flavidus and C. frigidus and Closely Related Vermivorous Cone Snails. Marine Drugs, 2022, 20, 209.	4.6	1
5	PAR2, Keratinocytes, and Cathepsin S Mediate the Sensory Effects of Ciguatoxins Responsible for Ciguatera Poisoning. Journal of Investigative Dermatology, 2021, 141, 648-658.e3.	0.7	8
6	Chemical Synthesis and NMR Solution Structure of Conotoxin GXIA from Conus geographus. Marine Drugs, 2021, 19, 60.	4.6	3
7	Posttranslational modifications of α-conotoxins: sulfotyrosine and C-terminal amidation stabilise structures and increase acetylcholine receptor binding. RSC Medicinal Chemistry, 2021, 12, 1574-1584.	3.9	2
8	Subcutaneous ω-Conotoxins Alleviate Mechanical Pain in Rodent Models of Acute Peripheral Neuropathy. Marine Drugs, 2021, 19, 106.	4.6	13
9	Transfection methods for high-throughput cellular assays of voltage-gated calcium and sodium channels involved in pain. PLoS ONE, 2021, 16, e0243645.	2.5	11
10	Venom duct origins of prey capture and defensive conotoxins in piscivorous Conus striatus. Scientific Reports, 2021, 11, 13282.	3.3	7
11	Critical Review and Conceptual and Quantitative Models for the Transfer and Depuration of Ciguatoxins in Fishes. Toxins, 2021, 13, 515.	3.4	17
12	Pacific-Ciguatoxin-2 and Brevetoxin-1 Induce the Sensitization of Sensory Receptors Mediating Pain and Pruritus in Sensory Neurons. Marine Drugs, 2021, 19, 387.	4.6	2
13	Engineering of a Spider Peptide via Conserved Structure-Function Traits Optimizes Sodium Channel Inhibition In Vitro and Anti-Nociception In Vivo. Frontiers in Molecular Biosciences, 2021, 8, 742457.	3.5	5
14	A spider-venom peptide with multitarget activity on sodium and calcium channels alleviates chronic visceral pain in a model of irritable bowel syndrome. Pain, 2021, 162, 569-581.	4.2	28
15	Functional modulation of the human voltage-gated sodium channel Na _V 1.8 by auxiliary \hat{l}^2 subunits. Channels, 2021, 15, 79-93.	2.8	4
16	Rigidity of loop 1 contributes to equipotency of globular and ribbon isomers of α-conotoxin AuslA. Scientific Reports, 2021, 11, 21928.	3.3	3
17	Voltage-Gated Sodium Channel Modulation by a New Spider Toxin Ssp1a Isolated From an Australian Theraphosid. Frontiers in Pharmacology, 2021, 12, 795455.	3 . 5	2
18	Unique Pharmacological Properties of α-Conotoxin OmIA at α7 nAChRs. Frontiers in Pharmacology, 2021, 12, 803397.	3.5	5

#	Article	IF	CITATIONS
19	Discovery, Pharmacological Characterisation and NMR Structure of the Novel Âμ-Conotoxin SxIIIC, a Potent and Irreversible NaV Channel Inhibitor. Biomedicines, 2020, 8, 391.	3.2	12
20	Characterisation of \hat{l} -Conotoxin TxVIA as a Mammalian T-Type Calcium Channel Modulator. Marine Drugs, 2020, 18, 343.	4.6	2
21	The neuronal calcium ion channel activity of constrained analogues of MONIRO-1. Bioorganic and Medicinal Chemistry, 2020, 28, 115655.	3.0	3
22	Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Frontiers in Neuroscience, 2020, 14, 609005.	2.8	39
23	Australian funnel-web spiders evolved human-lethal î-hexatoxins for defense against vertebrate predators. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24920-24928.	7.1	32
24	Mutational analysis of ProTx-I and the novel venom peptide Pe1b provide insight into residues responsible for selective inhibition of the analgesic drug target NaV1.7. Biochemical Pharmacology, 2020, 181, 114080.	4.4	7
25	Structure-Function of the High Affinity Substrate Binding Site (S1) of Human Norepinephrine Transporter. Frontiers in Pharmacology, 2020, 11, 217.	3.5	7
26	Synthesis, Pharmacological and Structural Characterization of Novel Conopressins from Conus miliaris. Marine Drugs, 2020, 18, 150.	4.6	10
27	The Toxicological Intersection between Allergen and Toxin: A Structural Comparison of the Cat Dander Allergenic Protein Fel d1 and the Slow Loris Brachial Gland Secretion Protein. Toxins, 2020, 12, 86.	3.4	9
28	Structure and allosteric activity of a single-disulfide conopeptide from Conus zonatus at human $\hat{l}\pm3\hat{l}^24$ and $\hat{l}\pm7$ nicotinic acetylcholine receptors. Journal of Biological Chemistry, 2020, 295, 7096-7112.	3.4	4
29	On-Resin Strategy to Label α-Conotoxins: Cy5-RgIA, a Potent α9α10 Nicotinic Acetylcholine Receptor Imaging Probe. Australian Journal of Chemistry, 2020, 73, 327.	0.9	2
30	Venomic Interrogation Reveals the Complexity of Conus striolatus Venom. Australian Journal of Chemistry, 2020, 73, 357.	0.9	5
31	Ciguatera poisoning: the role of high-voltage-activated and store-operated calcium channels in ciguatoxin-induced sensory effects. Itch (Philadelphia, Pa), 2020, 5, e43-e43.	0.2	1
32	T-type Calcium Channels in Health and Disease. Current Medicinal Chemistry, 2020, 27, 3098-3122.	2.4	8
33	Spider Knottin Pharmacology at Voltage-Gated Sodium Channels and Their Potential to Modulate Pain Pathways. Toxins, 2019, 11, 626.	3.4	29
34	Conotoxins: Chemistry and Biology. Chemical Reviews, 2019, 119, 11510-11549.	47.7	174
35	Venomics Reveals Venom Complexity of the Piscivorous Cone Snail, Conus tulipa. Marine Drugs, 2019, 17, 71.	4.6	20
36	Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	134

#	Article	IF	Citations
37	â€~Messy' Processing of χ-conotoxin MrIA Generates Homologues with Reduced hNET Potency. Marine Drugs, 2019, 17, 165.	4.6	6
38	Novel conorfamides from Conus austini venom modulate both nicotinic acetylcholine receptors and acid-sensing ion channels. Biochemical Pharmacology, 2019, 164, 342-348.	4.4	12
39	Transcriptomic-Proteomic Correlation in the Predation-Evoked Venom of the Cone Snail, Conus imperialis. Marine Drugs, 2019, 17, 177.	4.6	19
40	Mutations in the NPxxY motif stabilize pharmacologically distinct conformational states of the $\hat{l}\pm$ ₁₈ - and \hat{l}^2 ₂ -adrenoceptors. Science Signaling, 2019, 12, .	3.6	14
41	Structure–Function and Therapeutic Potential of Spider Venom-Derived Cysteine Knot Peptides Targeting Sodium Channels. Frontiers in Pharmacology, 2019, 10, 366.	3.5	43
42	The $\hat{l}\pm 1$ -adrenoceptor inhibitor \ddot{i} -TIA facilitates net hunting in piscivorous Conus tulipa. Scientific Reports, 2019, 9, 17841.	3.3	4
43	Toxicological characterization of <i>Fukuyoa paulensis</i> (Dinophyceae) from temperate Australia. Phycological Research, 2019, 67, 65-71.	1.6	13
44	Design, synthesis and biological profile of mixed opioid agonist/N-VGCC blocker peptides. New Journal of Chemistry, 2018, 42, 5656-5659.	2.8	7
45	Toxins in pain. Current Opinion in Supportive and Palliative Care, 2018, 12, 132-141.	1.3	8
46	Accelerated proteomic visualization of individual predatory venoms of Conus purpurascens reveals separately evolved predation-evoked venom cabals. Scientific Reports, 2018, 8, 330.	3.3	13
47	Synthesis and evaluation of aminobenzothiazoles as blockers of N- and T-type calcium channels. Bioorganic and Medicinal Chemistry, 2018, 26, 3046-3059.	3.0	11
48	Inhibition of human N―and Tâ€type calcium channels by an <i>ortho</i> à€phenoxyanilide derivative, MONIROâ€1. British Journal of Pharmacology, 2018, 175, 2284-2295.	5.4	13
49	Sodium channels and pain: from toxins to therapies. British Journal of Pharmacology, 2018, 175, 2138-2157.	5.4	72
50	Transcriptomics in pain research: insights from new and old technologies. Molecular Omics, 2018, 14, 389-404.	2.8	22
51	Synthesis of Pseudellone Analogs and Characterization as Novel T-type Calcium Channel Blockers. Marine Drugs, 2018, 16, 475.	4.6	6
52	Novel analgesic ω-conotoxins from the vermivorous cone snail Conus moncuri provide new insights into the evolution of conopeptides. Scientific Reports, 2018, 8, 13397.	3.3	22
53	Neurotoxicity fingerprinting of venoms using on-line microfluidic AChBP profiling. Toxicon, 2018, 148, 213-222.	1.6	23
54	Venomics-Accelerated Cone Snail Venom Peptide Discovery. International Journal of Molecular Sciences, 2018, 19, 788.	4.1	30

#	Article	IF	CITATIONS
55	Toxicology of Gambierdiscus spp. (Dinophyceae) from Tropical and Temperate Australian Waters. Marine Drugs, 2018, 16, 7.	4.6	44
56	Neuronal Nicotinic Acetylcholine Receptor Modulators from Cone Snails. Marine Drugs, 2018, 16, 208.	4.6	45
57	Inhibition of somatosensory mechanotransduction by annexin A6. Science Signaling, 2018, 11, .	3.6	10
58	Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a. Scientific Reports, 2017, 7, 40883.	3.3	120
59	Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1. Scientific Reports, 2017, 7, 42810.	3.3	67
60	Synthesis of Multivalent [Lys8]-Oxytocin Dendrimers that Inhibit Visceral Nociceptive Responses. Australian Journal of Chemistry, 2017, 70, 162.	0.9	9
61	The tarantula toxin \hat{l}^2/\hat{l}^2 -TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity. Scientific Reports, 2017, 7, 974.	3.3	16
62	Modulatory features of the novel spider toxin μâ€TRTXâ€Ðf1a isolated from the venom of the spider <i>Davus fasciatus</i> . British Journal of Pharmacology, 2017, 174, 2528-2544.	5.4	46
63	Structural mechanisms for \hat{l} ±-conotoxin activity at the human \hat{l} ±3 \hat{l} 24 nicotinic acetylcholine receptor. Scientific Reports, 2017, 7, 45466.	3.3	29
64	Lethal effects of an insecticidal spider venom peptide involve positive allosteric modulation of insect nicotinic acetylcholine receptors. Neuropharmacology, 2017, 127, 224-242.	4.1	16
65	Brain mechanisms of abnormal temperature perception in cold allodynia induced by ciguatoxin. Annals of Neurology, 2017, 81, 104-116.	5.3	8
66	Pharmacology of predatory and defensive venom peptides in cone snails. Molecular BioSystems, 2017, 13, 2453-2465.	2.9	27
67	Conotoxin Φâ€MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Antiâ€Apoptotic Activity. Angewandte Chemie, 2017, 129, 15169-15172.	2.0	3
68	Subtle modifications to oxytocin produce ligands that retain potency and improved selectivity across species. Science Signaling, 2017, 10, .	3.6	34
69	Neuropharmacology of venom peptides. Neuropharmacology, 2017, 127, 1-3.	4.1	7
70	Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes NaV1.9, NaV1.7 and NaV1.1. Marine Drugs, 2017, 15, 269.	4.6	16
71	Discovery and mode of action of a novel analgesic \hat{l}^2 -toxin from the African spider Ceratogyrus darlingi. PLoS ONE, 2017, 12, e0182848.	2.5	22
72	Conotoxin Φâ€MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Antiâ€Apoptotic Activity. Angewandte Chemie - International Edition, 2017, 56, 14973-14976.	13.8	25

#	Article	IF	CITATIONS
73	Revising the Role of Defense and Predation in Cone Snail Venom Evolution. Toxinology, 2017, , 105-123.	0.2	2
74	The structure, dynamics and selectivity profile of a NaV1.7 potency-optimised huwentoxin-IV variant. PLoS ONE, 2017, 12, e0173551.	2.5	33
75	Analgesic Effects of GpTx-1, PF-04856264 and CNV1014802 in a Mouse Model of NaV1.7-Mediated Pain. Toxins, 2016, 8, 78.	3.4	94
76	Inhibition of the norepinephrine transporter by χâ€conotoxin dendrimers. Journal of Peptide Science, 2016, 22, 280-289.	1.4	8
77	Transcriptomic and behavioural characterisation of a mouse model of burn pain identify the cholecystokinin 2 receptor as an analgesic target. Molecular Pain, 2016, 12, 174480691666536.	2.1	58
78	Crotalphine desensitizes TRPA1 ion channels to alleviate inflammatory hyperalgesia. Pain, 2016, 157, 2504-2516.	4.2	31
79	Development of a $1\frac{1}{4}$ O-Conotoxin Analogue with Improved Lipid Membrane Interactions and Potency for the Analgesic Sodium Channel NaV1.8. Journal of Biological Chemistry, 2016, 291, 11829-11842.	3.4	37
80	Ciguatoxin and Ciguatera., 2016,, 71-92.		4
81	The role of defensive ecological interactions in theÂevolution of conotoxins. Molecular Ecology, 2016, 25, 598-615.	3.9	52
82	Conopeptide-Derived \hat{l}^{o} -Opioid Agonists (Conorphins): Potent, Selective, and Metabolic Stable Dynorphin A Mimetics with Antinociceptive Properties. Journal of Medicinal Chemistry, 2016, 59, 2381-2395.	6.4	28
83	Release of neuropeptides from a neuro-cutaneous co-culture model: A novel inÂvitro model for studying sensory effects of ciguatoxins. Toxicon, 2016, 116, 4-10.	1.6	17
84	Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs). PLoS ONE, 2016, 11, e0157363.	2.5	10
85	Rapid Extraction and Identification of Maitotoxin and Ciguatoxin-Like Toxins from Caribbean and Pacific Gambierdiscus Using a New Functional Bioassay. PLoS ONE, 2016, 11, e0160006.	2.5	59
86	Revising the Role of Defense and Predation in Cone Snail Venom Evolution. , 2016, , 1-18.		0
87	Phyla Molluska: The Venom Apparatus of Cone Snails. , 2016, , 327-340.		4
88	Ionic mechanisms of spinal neuronal cold hypersensitivity in ciguatera. European Journal of Neuroscience, 2015, 42, 3004-3011.	2.6	13
89	Transcriptome and proteome of <i>Conus planorbis</i> identify the nicotinic receptors as primary target for the defensive venom. Proteomics, 2015, 15, 4030-4040.	2.2	26
90	Inhibition of N-Type Calcium Channels by Fluorophenoxyanilide Derivatives. Marine Drugs, 2015, 13, 2030-2045.	4.6	11

#	Article	IF	CITATIONS
91	Identification and Characterization of ProTx-III [$\langle i \rangle \hat{l} \frac{1}{4} \langle i \rangle$ -TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula $\langle i \rangle$ -Thrixopelma pruriens $\langle i \rangle$. Molecular Pharmacology, 2015, 88, 291-303.	2.3	72
92	Intraspecific variations in Conus purpurascens injected venom using LC/MALDI-TOF-MS and LC-ESI-TripleTOF-MS. Analytical and Bioanalytical Chemistry, 2015, 407, 6105-6116.	3.7	24
93	Therapeutic opportunities for targeting cold pain pathways. Biochemical Pharmacology, 2015, 93, 125-140.	4.4	33
94	CHAPTER 3. Venoms-Based Drug Discovery: Proteomic and Transcriptomic Approaches. RSC Drug Discovery Series, 2015, , 80-96.	0.3	7
95	CHAPTER 9. Case Study 1: Development of the Analgesic Drugs Prialt® and Xen2174 from Cone Snail Venoms. RSC Drug Discovery Series, 2015, , 245-254.	0.3	5
96	Seven novel modulators of the analgesic target <scp>Na_V</scp> 1.7 uncovered using a highâ€throughput venomâ€based discovery approach. British Journal of Pharmacology, 2015, 172, 2445-2458.	5.4	74
97	Extracellular Surface Residues of the <i>α</i> 1B-Adrenoceptor Critical for G Protein–Coupled Receptor Function. Molecular Pharmacology, 2015, 87, 121-129.	2.3	9
98	α-Conotoxin Dendrimers Have Enhanced Potency and Selectivity for Homomeric Nicotinic Acetylcholine Receptors. Journal of the American Chemical Society, 2015, 137, 3209-3212.	13.7	32
99	Î-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150817.	2.6	29
100	\hat{l}_{\pm} -conotoxin MrIC is a biased agonist at \hat{l}_{\pm} 7 nicotinic acetylcholine receptors. Biochemical Pharmacology, 2015, 94, 155-163.	4.4	16
101	High-voltage-activated calcium current subtypes in mouse DRG neurons adapt in a subpopulation-specific manner after nerve injury. Journal of Neurophysiology, 2015, 113, 1511-1519.	1.8	25
102	Activation of \hat{I}^2 Opioid Receptors in Cutaneous Nerve Endings by Conorphin-1, a Novel Subtype-Selective Conopeptide, Does Not Mediate Peripheral Analgesia. ACS Chemical Neuroscience, 2015, 6, 1751-1758.	3.5	17
103	An efficient transcriptome analysis pipeline to accelerate venom peptide discovery and characterisation. Toxicon, 2015, 107, 282-289.	1.6	17
104	Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail <i>Conus catus </i> . Journal of Proteome Research, 2015, 14, 4372-4381.	3.7	62
105	Stabilization of the Cysteineâ€Rich Conotoxin MrIA by Using a 1,2,3â€Triazole as a Disulfide Bond Mimetic. Angewandte Chemie - International Edition, 2015, 54, 1361-1364.	13.8	45
106	Design, Synthesis and Biological Evaluation of Two Opioid Agonist and Ca _v 2.2 Blocker Multitarget Ligands. Chemical Biology and Drug Design, 2015, 86, 156-162.	3.2	31
107	Ciguatoxin and Ciguatera. , 2015, , 1-19.		0
108	Phyla Molluska: The Venom Apparatus of Cone Snails. , 2015, , 1-10.		1

#	Article	IF	Citations
109	Miniaturized Bioaffinity Assessment Coupled to Mass Spectrometry for Guided Purification of Bioactives from Toad and Cone Snail. Biology, 2014, 3, 139-156.	2.8	16
110	Cone snail venomics: from novel biology to novel therapeutics. Future Medicinal Chemistry, 2014, 6, 1659-1675.	2.3	72
111	Flow Cytometric-Membrane Potential Detection of Sodium Channel Active Marine Toxins: Application to Ciguatoxins in Fish Muscle and Feasibility of Automating Saxitoxin Detection. Journal of AOAC INTERNATIONAL, 2014, 97, 299-306.	1.5	15
112	Intraspecific variations in Conus geographus defence-evoked venom and estimation of the human lethal dose. Toxicon, 2014, 91, 135-144.	1.6	39
113	Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nature Communications, 2014, 5, 3165.	12.8	122
114	Discovery, Synthesis, and Structure–Activity Relationships of Conotoxins. Chemical Reviews, 2014, 114, 5815-5847.	47.7	258
115	Analgesic effects of clinically used compounds in novel mouse models of polyneuropathy induced by oxaliplatin and cisplatin. Neuro-Oncology, 2014, 16, 1324-1332.	1.2	44
116	2â€Nitroveratryl as a Photocleavable Thiolâ€Protecting Group for Directed Disulfide Bond Formation in the Chemical Synthesis of Insulin. Chemistry - A European Journal, 2014, 20, 9549-9552.	3.3	48
117	Reâ€engineering the μâ€conotoxin SIIIA scaffold. Biopolymers, 2014, 101, 347-354.	2.4	3
118	Isolation and Structural and Pharmacological Characterization of \hat{l}_{\pm} -Elapitoxin-Dpp2d, an Amidated Three Finger Toxin from Black Mamba Venom. Biochemistry, 2014, 53, 3758-3766.	2.5	23
119	Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nature Communications, 2014, 5, 3521.	12.8	275
120	Does Nature do Ion Channel Drug Discovery Better than Us?. RSC Drug Discovery Series, 2014, , 297-319.	0.3	2
121	Hydrophobic residues at position 10 of \hat{l} ±-conotoxin PnIA influence subtype selectivity between \hat{l} ±7 and \hat{l} ±3 \hat{l} 22 neuronal nicotinic acetylcholine receptors. Biochemical Pharmacology, 2014, 91, 534-542.	4.4	20
122	MrIC, a Novel $\hat{l}\pm$ -Conotoxin Agonist in the Presence of PNU at Endogenous $\hat{l}\pm7$ Nicotinic Acetylcholine Receptors. Biochemistry, 2014, 53, 1-3.	2.5	31
123	Novel ï‰-Conotoxins from <i>C. Catus</i> Reverse Signs of Mouse Inflammatory Pain after Systemic Administration. Molecular Pain, 2013, 9, 1744-8069-9-51.	2.1	9
124	Systematic interrogation of the Conus marmoreus venom duct transcriptome with ConoSorter reveals 158 novel conotoxins and 13 new gene superfamilies. BMC Genomics, 2013, 14, 708.	2.8	59
125	Analgesic treatment of ciguatoxin-induced cold allodynia. Pain, 2013, 154, 1999-2006.	4.2	51
126	Vicinal Disulfide Constrained Cyclic Peptidomimetics: a Turn Mimetic Scaffold Targeting the Norepinephrine Transporter. Angewandte Chemie - International Edition, 2013, 52, 12020-12023.	13.8	32

#	Article	IF	Citations
127	Conopeptide ϕTIA Defines a New Allosteric Site on the Extracellular Surface of the α1B-Adrenoceptor. Journal of Biological Chemistry, 2013, 288, 1814-1827.	3.4	23
128	An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain, 2013, 154, 1749-1757.	4.2	144
129	Isolation and characterization of $\hat{l}\pm$ -conotoxin LsIA with potent activity at nicotinic acetylcholine receptors. Biochemical Pharmacology, 2013, 86, 791-799.	4.4	51
130	Ecology of the ciguatera causing dinoflagellates from the Northern Great Barrier Reef: Changes in community distribution and coastal eutrophication. Marine Pollution Bulletin, 2013, 77, 210-219.	5.0	32
131	Efficient chemical synthesis of human complement protein C3a. Chemical Communications, 2013, 49, 2356.	4.1	14
132	Transcriptomic Messiness in the Venom Duct of Conus miles Contributes to Conotoxin Diversity. Molecular and Cellular Proteomics, 2013, 12, 3824-3833.	3.8	70
133	Chemical Engineering and Structural and Pharmacological Characterization of the α-Scorpion Toxin OD1. ACS Chemical Biology, 2013, 8, 1215-1222.	3.4	50
134	Emerging opportunities for allosteric modulation of G-protein coupled receptors. Biochemical Pharmacology, 2013, 85, 153-162.	4.4	45
135	Differential Evolution and Neofunctionalization of Snake Venom Metalloprotease Domains. Molecular and Cellular Proteomics, 2013, 12, 651-663.	3.8	83
136	Venom Peptides as a Rich Source of Cav2.2 Channel Blockers. Toxins, 2013, 5, 286-314.	3.4	35
137	Deep Venomics Reveals the Mechanism for Expanded Peptide Diversity in Cone Snail Venom. Molecular and Cellular Proteomics, 2013, 12, 312-329.	3.8	180
138	Differential Evolution and Neofunctionalization of Snake Venom Metalloprotease Domains. Molecular and Cellular Proteomics, 2013, 12, 1488.	3.8	1
139	Amplified Cold Transduction in Native Nociceptors by M-Channel Inhibition. Journal of Neuroscience, 2013, 33, 16627-16641.	3.6	37
140	Multiple actions of φ-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8906-8911.	7.1	35
141	Spinal actions of ωâ€conotoxins, <scp>CVID</scp> , <scp>MVIIA</scp> and related peptides in a rat neuropathic pain model. British Journal of Pharmacology, 2013, 170, 245-254.	5.4	25
142	Vicinal Disulfide Constrained Cyclic Peptidomimetics: a Turn Mimetic Scaffold Targeting the Norepinephrine Transporter. Angewandte Chemie, 2013, 125, 12242-12245.	2.0	9
143	Expression and Pharmacology of Endogenous Cav Channels in SH-SY5Y Human Neuroblastoma Cells. PLoS ONE, 2013, 8, e59293.	2.5	50
144	A Second Extracellular Site Is Required for Norepinephrine Transport by the Human Norepinephrine Transporter. Molecular Pharmacology, 2012, 82, 898-909.	2.3	18

#	Article	IF	Citations
145	Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO Journal, 2012, 31, 3795-3808.	7.8	103
146	Therapeutic Potential of Cone Snail Venom Peptides (Conopeptides). Current Topics in Medicinal Chemistry, 2012, 12, 1546-1552.	2.1	96
147	Conotoxin engineering: dual pharmacophoric noradrenaline transport inhibitor/integrin binding peptide with improved stability. Organic and Biomolecular Chemistry, 2012, 10, 5791.	2.8	13
148	Biophysical properties of Na _v 1.8/Na _v 1.2 chimeras and inhibition by ÂμOâ€conotoxin MrVIB. British Journal of Pharmacology, 2012, 166, 2148-2160.	5.4	15
149	Pharmacological characterization of \hat{l} ±-elapitoxin-Al2a from the venom of the Australian pygmy copperhead (Austrelaps labialis): An atypical long-chain \hat{l} ±-neurotoxin with only weak affinity for \hat{l} ±7 nicotinic receptors. Biochemical Pharmacology, 2012, 84, 851-863.	4.4	13
150	ω-Conotoxin GVIA Mimetics that Bind and Inhibit Neuronal Cav2.2 Ion Channels. Marine Drugs, 2012, 10, 2349-2368.	4.6	20
151	Conus Venom Peptide Pharmacology. Pharmacological Reviews, 2012, 64, 259-298.	16.0	372
152	Effects of Lys2 to Ala2 substitutions on the structure and potency of ωâ€conotoxins MVIIA and CVID. Biopolymers, 2012, 98, 345-356.	2.4	7
153	N―and câ€terminal extensions of μâ€conotoxins increase potency and selectivity for neuronal sodium channels. Biopolymers, 2012, 98, 161-165.	2.4	12
154	Characterisation of Nav types endogenously expressed in human SH-SY5Y neuroblastoma cells. Biochemical Pharmacology, 2012, 83, 1562-1571.	4.4	64
155	Isolation, characterization and total regioselective synthesis of the novel νO-conotoxin MfVIA from Conus magnificus that targets voltage-gated sodium channels. Biochemical Pharmacology, 2012, 84, 540-548.	4.4	54
156	Discovery and development of the χ-conopeptide class of analgesic peptides. Toxicon, 2012, 59, 524-528.	1.6	36
157	Towards an integrated venomics approach for accelerated conopeptide discovery. Toxicon, 2012, 60, 470-477.	1.6	47
158	α-Conotoxin ImI Incorporating Stable Cystathionine Bridges Maintains Full Potency and Identical Three-Dimensional Structure. Journal of the American Chemical Society, 2011, 133, 15866-15869.	13.7	81
159	Natural Product Ligands of TRP Channels. Advances in Experimental Medicine and Biology, 2011, 704, 41-85.	1.6	31
160	Venomics: a new paradigm for natural products-based drug discovery. Amino Acids, 2011, 40, 15-28.	2.7	172
161	Venom Peptide Modulators of the Immune System. Inflammation and Allergy: Drug Targets, 2011, 10, 399-410.	1.8	7
162	Ciguatera Fish Poisoning in the Pacific Islands (1998 to 2008). PLoS Neglected Tropical Diseases, 2011, 5, e1416.	3.0	132

#	Article	lF	CITATIONS
163	Characterization of endogenous calcium responses in neuronal cell lines. Biochemical Pharmacology, 2010, 79, 908-920.	4.4	90
164	Emerging structure–function relationships defining monoamine NSS transporter substrate and ligand affinity. Biochemical Pharmacology, 2010, 79, 1083-1091.	4.4	29
165	Chemical Synthesis and Structure of the Prokineticin Bv8. ChemBioChem, 2010, 11, 1882-1888.	2.6	22
166	Atypical α-Conotoxin LtIA from Conus litteratus Targets a Novel Microsite of the $\hat{l}\pm3\hat{l}^22$ Nicotinic Receptor. Journal of Biological Chemistry, 2010, 285, 12355-12366.	3.4	49
167	Analgesic ω-Conotoxins CVIE and CVIF Selectively and Voltage-Dependently Block Recombinant and Native N-Type Calcium Channels. Molecular Pharmacology, 2010, 77, 139-148.	2.3	57
168	\hat{l}_{\pm} -Conotoxin AulB Isomers Exhibit Distinct Inhibitory Mechanisms and Differential Sensitivity to Stoichiometry of $\hat{l}_{\pm}3\hat{l}^24$ Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2010, 285, 22254-22263.	3.4	69
169	Emerging tropical diseases in Australia. Part 2. Ciguatera fish poisoning. Annals of Tropical Medicine and Parasitology, 2010, 104, 557-571.	1.6	23
170	Modulating Oxytocin Activity and Plasma Stability by Disulfide Bond Engineering. Journal of Medicinal Chemistry, 2010, 53, 8585-8596.	6.4	112
171	Solving the α-Conotoxin Folding Problem: Efficient Selenium-Directed On-Resin Generation of More Potent and Stable Nicotinic Acetylcholine Receptor Antagonists. Journal of the American Chemical Society, 2010, 132, 3514-3522.	13.7	124
172	Human fatality associated with Pacific ciguatoxin contaminated fish. Toxicon, 2010, 56, 668-673.	1.6	71
173	Analysis of Caribbean ciguatoxin-1 effects on frog myelinated axons and the neuromuscular junction. Toxicon, 2010, 56, 759-767.	1.6	15
174	Ciguatoxin-induced catecholamine secretion in bovine chromaffin cells: Mechanism of action and reversible inhibition by brevenal. Toxicon, 2010, 56, 792-796.	1.6	22
175	Editorial: Toxins in seafood. Toxicon, 2010, 56, 107.	1.6	7
176	Use of Venom Peptides to Probe Ion Channel Structure and Function. Journal of Biological Chemistry, 2010, 285, 13315-13320.	3.4	144
177	Inhibition of Neuronal Nicotinic Acetylcholine Receptor Subtypes by α-Conotoxin GID and Analogues*. Journal of Biological Chemistry, 2009, 284, 4944-4951.	3.4	38
178	Rapid Access to ω-Conotoxin Chimeras using Native Chemical Ligation. Australian Journal of Chemistry, 2009, 62, 1333.	0.9	6
179	Role of voltage-gated calcium channels in ascending pain pathways. Brain Research Reviews, 2009, 60, 84-89.	9.0	215
180	ï‰-Conotoxin GVIA mimetics based on an anthranilamide core: Effect of variation in ammonium side chain lengths and incorporation of fluorine. Bioorganic and Medicinal Chemistry, 2009, 17, 6659-6670.	3.0	17

#	Article	IF	CITATIONS
181	The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA. EMBO Reports, 2009, 10, 997-1002.	4.5	55
182	Low molecular weight non-peptide mimics of ω-conotoxin GVIA. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2763-2765.	2.2	22
183	The Toxicogenomic Multiverse: Convergent Recruitment of Proteins Into Animal Venoms. Annual Review of Genomics and Human Genetics, 2009, 10, 483-511.	6.2	683
184	Novel αD-Conopeptides and Their Precursors Identified by cDNA Cloning Define the D-Conotoxin Superfamily. Biochemistry, 2009, 48, 3717-3729.	2.5	34
185	Isolation and Characterization of Peptides from <i>Momordica cochinchinensis</i> Natural Products, 2009, 72, 1453-1458.	3.0	42
186	Rapid extraction combined with LC-tandem mass spectrometry (CREM-LC/MS/MS) for the determination of ciguatoxins in ciguateric fish flesh. Toxicon, 2009, 54, 62-66.	1.6	75
187	Erratum to   Rapid extraction combined with LC-tandem mass spectrometry (CREM-LC/MS/MS) for the determination of ciguatoxins in ciguateric fish flesh'' [Toxicon 54 (2009) 62–66]. Toxicon, 2009, 54, 897.	1.6	2
188	Remarkable inter- and intra-species complexity of conotoxins revealed by LC/MS. Peptides, 2009, 30, 1222-1227.	2.4	152
189	Conotoxin Venom Peptide Therapeutics. Advances in Experimental Medicine and Biology, 2009, 655, 44-48.	1.6	30
190	χ-Conopeptide Pharmacophore Development: Toward a Novel Class of Norepinephrine Transporter Inhibitor (Xen2174) for Pain. Journal of Medicinal Chemistry, 2009, 52, 6991-7002.	6.4	70
191	Conotoxins: Molecular and Therapeutic Targets. Progress in Molecular and Subcellular Biology, 2009, 46, 45-65.	1.6	40
192	Phorbasins G–K: new cytotoxic diterpenes from a southern Australian marine sponge, Phorbas sp Organic and Biomolecular Chemistry, 2008, 6, 3811.	2.8	22
193	Molecular Engineering of Conotoxins: The Importance of Loop Size to α-Conotoxin Structure and Function. Journal of Medicinal Chemistry, 2008, 51, 5575-5584.	6.4	30
194	Conopressin-T from Conus tulipa Reveals an Antagonist Switch in Vasopressin-like Peptides. Journal of Biological Chemistry, 2008, 283, 7100-7108.	3.4	76
195	Neuronally Selective ν-Conotoxins from Conus striatus Utilize an α-Helical Motif to Target Mammalian Sodium Channels. Journal of Biological Chemistry, 2008, 283, 21621-21628.	3.4	43
196	Synthesis and Cav2.2 Binding Data for Non-Peptide Mimetics of i‰-Conotoxin GVIA based on a 5-Amino-Anthranilamide Core. Australian Journal of Chemistry, 2008, 61, 11.	0.9	6
197	Brevenal Inhibits Pacific Ciguatoxin-1B-Induced Neurosecretion from Bovine Chromaffin Cells. PLoS ONE, 2008, 3, e3448.	2.5	39
198	Isolation and Structure-Activity of $\hat{l}^{1}\!\!/_{4}$ -Conotoxin TIIIA, A Potent Inhibitor of Tetrodotoxin-Sensitive Voltage-Gated Sodium Channels. Molecular Pharmacology, 2007, 71, 676-685.	2.3	63

#	Article	IF	CITATIONS
199	χ-Conotoxin and Tricyclic Antidepressant Interactions at the Norepinephrine Transporter Define a New Transporter Model. Journal of Biological Chemistry, 2007, 282, 17837-17844.	3.4	51
200	Oral absorption and in vivo biodistribution of \hat{l}_{\pm} -conotoxin MII and a lipidic analogue. Biochemical and Biophysical Research Communications, 2007, 361, 97-102.	2.1	28
201	High-Threshold Mechanosensitive Ion Channels Blocked by a Novel Conopeptide Mediate Pressure-Evoked Pain. PLoS ONE, 2007, 2, e515.	2.5	66
202	AChBP-targeted α-conotoxin correlates distinct binding orientations with nAChR subtype selectivity. EMBO Journal, 2007, 26, 3858-3867.	7.8	159
203	?-Conotoxin CVIB differentially inhibits native and recombinant N- and P/Q-type calcium channels. European Journal of Neuroscience, 2007, 25, 435-444.	2.6	27
204	Synthesis and InÂvitro Biological Activity of Cyclic Lipophilic χ-Conotoxin MrIA Analogues. International Journal of Peptide Research and Therapeutics, 2007, 13, 307-312.	1.9	8
205	Isolation and characterisation of conomap-Vt, ad-amino acid containing excitatory peptide from the venom of a vermivorous cone snail. FEBS Letters, 2006, 580, 3860-3866.	2.8	39
206	Mechanisms involved in the swelling of erythrocytes caused by Pacific and Caribbean ciguatoxins. Blood Cells, Molecules, and Diseases, 2006, 36, 1-9.	1.4	22
207	Cloning and characterisation of natriuretic peptides from the venom glands of Australian elapids. Biochimie, 2006, 88, 1923-1931.	2.6	38
208	Ciguatera: Australian perspectives on a global problem. Toxicon, 2006, 48, 799-809.	1.6	134
209	Ciguatoxins: Cyclic Polyether Modulators of Voltage-gated lion Channel Function. Marine Drugs, 2006, 4, 82-118.	4.6	115
210	ï‰-Conotoxins GVIA, MVIIA and CVID: SAR and Clinical Potential. Marine Drugs, 2006, 4, 193-214.	4.6	27
211	N-type Calcium Channel Blockers: Novel Therapeutics for the Treatment of Pain. Medicinal Chemistry, 2006, 2, 535-543.	1.5	58
212	NMDA receptor subunit-dependent modulation by conantokin-G and Ala(7)-conantokin-G. Journal of Neurochemistry, 2006, 96, 283-291.	3.9	17
213	Synthesis and biological evaluation of anthranilamide-based non-peptide mimetics of ω-conotoxin GVIA. Tetrahedron, 2006, 62, 7284-7292.	1.9	28
214	Toxin insights into nicotinic acetylcholine receptors. Biochemical Pharmacology, 2006, 72, 661-670.	4.4	61
215	ÂO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17030-17035.	7.1	184
216	Identification of a Novel Class of Nicotinic Receptor Antagonists. Journal of Biological Chemistry, 2006, 281, 24745-24755.	3.4	70

#	Article	IF	Citations
217	Differential antagonism by conotoxin ϕTIA of contractions mediated by distinct α1-adrenoceptor subtypes in rat vas deferens, spleen and aorta. European Journal of Pharmacology, 2005, 508, 183-192.	3.5	19
218	Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons. Toxicology and Applied Pharmacology, 2005, 204, 175-186.	2.8	75
219	Solution structure of χ-conopeptide MrIA, a modulator of the human norepinephrine transporter. Biopolymers, 2005, 80, 815-823.	2.4	39
220	The role of group I metabotropic glutamate receptors in neuronal excitotoxicity in alzheimer's disease. Neurotoxicity Research, 2005, 7, 125-141.	2.7	34
221	\hat{l}^2 2 Subunit Contribution to 4/7 \hat{l} ±-Conotoxin Binding to the Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2005, 280, 30460-30468.	3.4	67
222	Anti-allodynic efficacy of the χ-conopeptide, Xen2174, in rats with neuropathic pain. Pain, 2005, 118, 112-124.	4.2	78
223	Ability of some plant extracts, traditionally used to treat ciguatera fish poisoning, to prevent the in vitro neurotoxicity produced by sodium channel activators. Toxicon, 2005, 46, 625-634.	1.6	43
224	Neuroprotectant effects of iso-osmolar d-mannitol to prevent Pacific ciguatoxin-1 induced alterations in neuronal excitability: A comparison with other osmotic agents and free radical scavengers. Neuropharmacology, 2005, 49, 669-686.	4.1	33
225	The effects of alanine-substituted conantokin-G and ifenprodil on the human spermine-activated N-methyl-d-aspartate receptor. Neuroscience, 2005, 130, 457-464.	2.3	4
226	Block of Voltage-Gated Calcium Channels by Peptide Toxins. , 2005, , 294-308.		2
227	Structures of $\hat{l}^{1}\!\!/\!\!4$ O-conotoxins from Conus marmoreus. Journal of Biological Chemistry, 2004, 279, 25774-25782.	3.4	80
228	Subtype-selective Noncompetitive or Competitive Inhibition of Human α1-Adrenergic Receptors by ϕTIA. Journal of Biological Chemistry, 2004, 279, 35326-35333.	3.4	31
229	Overexpressed Cavβ3 Inhibits N-type (Cav2.2) Calcium Channel Currents through a Hyperpolarizing Shift of â∈œUltra-slow―and "Closed-state―Inactivation. Journal of General Physiology, 2004, 123, 401-416.	1.9	35
230	Adenosine Triphosphate Acts as Both a Competitive Antagonist and a Positive Allosteric Modulator at Recombinant N-Methyl-D-aspartate Receptors. Molecular Pharmacology, 2004, 65, 1386-1396.	2.3	28
231	The α2δ Auxiliary Subunit Reduces Affinity of ω-Conotoxins for Recombinant N-type (Cav2.2) Calcium Channels. Journal of Biological Chemistry, 2004, 279, 34705-34714.	3.4	74
232	Computational approaches to understand alpha-conotoxin interactions at neuronal nicotinic receptors. FEBS Journal, 2004, 271, 2327-2334.	0.2	47
233	Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells. European Journal of Neuroscience, 2004, 20, 1-13.	2.6	117
234	Differential involvement of N-type calcium channels in transmitter release from vasoconstrictor and vasodilator neurons. British Journal of Pharmacology, 2004, 141, 961-970.	5.4	7

#	Article	IF	Citations
235	Conotoxins as selective inhibitors of neuronal ion channels, receptors and transporters. IUBMB Life, 2004, 56, 89-93.	3.4	46
236	Development of small molecules that mimic the binding of i‰-conotoxins at the N-type voltage-gated calcium channel. Molecular Diversity, 2004, 8, 127-134.	3.9	34
237	Determination of \hat{l} ±-conotoxin binding modes on neuronal nicotinic acetylcholine receptors. Journal of Molecular Recognition, 2004, 17, 339-347.	2.1	40
238	Synthesis and biological evaluation of nonpeptide mimetics of I‰-conotoxin GVIA. Bioorganic and Medicinal Chemistry, 2004, 12, 4025-4037.	3.0	61
239	Chemical and Functional Identification and Characterization of Novel Sulfated α-Conotoxins from the Cone SnailConusanemone. Journal of Medicinal Chemistry, 2004, 47, 1234-1241.	6.4	80
240	Differential expression of calcium channels in sympathetic and parasympathetic preganglionic inputs to neurons in paracervical ganglia of guinea-pigs. Neuroscience, 2004, 127, 455-466.	2.3	18
241	Corrigendum to: α-Conotoxins Epl and AulB switch subtype selectivity and activity in native versus recombinant nicotinic acetylcholine receptors (FEBS 27779). FEBS Letters, 2004, 557, 294-294.	2.8	0
242	alpha-Conotoxins as tools for the elucidation of structure and function of neuronal nicotinic acetylcholine receptor subtypes. FEBS Journal, 2004, 271, 2305-2319.	0.2	100
243	Synthesis, Structure Elucidation, in Vitro Biological Activity, Toxicity, and Caco-2 Cell Permeability of Lipophilic Analogues of α-Conotoxin MII. Journal of Medicinal Chemistry, 2003, 46, 1266-1272.	6.4	69
244	Therapeutic potential of venom peptides. Nature Reviews Drug Discovery, 2003, 2, 790-802.	46.4	678
245	Identification of slow and fast-acting toxins in a highly ciguatoxic barracuda (Sphyraena barracuda) by HPLC/MS and radiolabelled ligand binding. Toxicon, 2003, 42, 663-672.	1.6	58
246	Ichthyotoxicity of Chattonella marina (Raphidophyceae) to damselfish (Acanthochromis polycanthus): the synergistic role of reactive oxygen species and free fatty acids. Harmful Algae, 2003, 2, 273-281.	4.8	156
247	α-Conotoxins Epl and AulB switch subtype selectivity and activity in native versus recombinant nicotinic acetylcholine receptors. FEBS Letters, 2003, 554, 219-223.	2.8	45
248	Isolation and Characterization of a Cone Snail Protease with Homology to CRISP Proteins of the Pathogenesis-related Protein Superfamily. Journal of Biological Chemistry, 2003, 278, 31105-31110.	3.4	202
249	Isolation, Structure, and Activity of GID, a Novel $\hat{l}\pm4/7$ -Conotoxin with an Extended N-terminal Sequence. Journal of Biological Chemistry, 2003, 278, 3137-3144.	3.4	129
250	ω-Conotoxin CVID Inhibits a Pharmacologically Distinct Voltage-sensitive Calcium Channel Associated with Transmitter Release from Preganglionic Nerve Terminals. Journal of Biological Chemistry, 2003, 278, 4057-4062.	3.4	85
251	Inhibition of the Norepinephrine Transporter by the Venom Peptide χ-MrIA. Journal of Biological Chemistry, 2003, 278, 40317-40323.	3.4	60
252	Allosteric α1-Adrenoreceptor Antagonism by the Conopeptide ϕTIA. Journal of Biological Chemistry, 2003, 278, 34451-34457.	3.4	54

#	Article	IF	Citations
253	χ-Conopeptide MrIA Partially Overlaps Desipramine and Cocaine Binding Sites on the Human Norepinephrine Transporter. Journal of Biological Chemistry, 2003, 278, 40324-40329.	3.4	20
254	Solution Structure of \hat{l} /4-Conotoxin PIIIA, a Preferential Inhibitor of Persistent Tetrodotoxin-sensitive Sodium Channels. Journal of Biological Chemistry, 2002, 277, 27247-27255.	3.4	72
255	Analysis of toxin profiles in three different fish species causing ciguatera fish poisoning in Guadeloupe, French West Indies. Food Additives and Contaminants, 2002, 19, 1034-1042.	2.0	45
256	Isolation and characterisation of Indian Ocean ciguatoxin. Toxicon, 2002, 40, 685-693.	1.6	121
257	Characterisation of multiple Caribbean ciguatoxins and congeners in individual specimens of horse-eye jack (Caranx latus) by high-performance liquid chromatography/mass spectrometry. Toxicon, 2002, 40, 929-939.	1.6	85
258	Multiple ciguatoxins present in Indian Ocean reef fish. Toxicon, 2002, 40, 1347-1353.	1.6	97
259	The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain, 2002, 96, 119-127.	4.2	155
260	Spermine modulation of the glutamatenmda receptor is differentially responsive to conantokins in normal and Alzheimer's disease human cerebral cortex. Journal of Neurochemistry, 2002, 81, 765-779.	3.9	26
261	Ciguatoxin-induced oscillations in membrane potential and action potential firing in rat parasympathetic neurons. European Journal of Neuroscience, 2002, 16, 242-248.	2.6	36
262	The changing face of ciguatera. Toxicon, 2001, 39, 97-106.	1.6	291
263	The synthesis and structure of an n-terminal dodecanoic acid conjugate of α-conotoxin MII. International Journal of Peptide Research and Therapeutics, 2001, 8, 235-239.	0.1	1
264	Two new classes of conopeptides inhibit the $\hat{l}\pm 1$ -adrenoceptor and noradrenaline transporter. Nature Neuroscience, 2001, 4, 902-907.	14.8	233
265	Ciguatera Fish Poisoning in the Caribbean Islands and Western Atlantic. Reviews of Environmental Contamination and Toxicology, 2001, 168, 99-141.	1.3	40
266	Ciguatera Toxins. Food Additives, 2000, , .	0.1	1
267	Structure-activity relationships of ?-conotoxins at N-type voltage-sensitive calcium channels. , 2000, 13, 55-70.		95
268	Conotoxin TVIIA, a novel peptide from the venom of Conus tulipa. FEBS Journal, 2000, 267, 4642-4648.	0.2	11
269	Ciguatera: recent advances but the risk remains. International Journal of Food Microbiology, 2000, 61, 91-125.	4.7	381
270	Novel ω-Conotoxins from Conus catus Discriminate among Neuronal Calcium Channel Subtypes. Journal of Biological Chemistry, 2000, 275, 35335-35344.	3.4	199

#	Article	IF	Citations
271	Ion Channel Toxins and Therapeutics: From Cone Snail Venoms to Ciguatera. Therapeutic Drug Monitoring, 2000, 22, 61-64.	2.0	24
272	Single Amino Acid Substitutions in α-Conotoxin PnIA Shift Selectivity for Subtypes of the Mammalian Neuronal Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 1999, 274, 36559-36564.	3.4	71
273	Conotoxins and their potential pharmaceutical applications. Drug Development Research, 1999, 46, 219-234.	2.9	97
274	Effects of Chirality at Tyr13 on the Structureâ [^] Activity Relationships of ω-Conotoxins from Conus magus. Biochemistry, 1999, 38, 6741-6751.	2.5	47
275	A Short Synthesis of the A/B Ring Systems of the Pacific Ciguatoxins P-CTX-3C and Dihydroxy-P-CTX-3C. Journal of Organic Chemistry, 1999, 64, 8396-8398.	3.2	36
276	Structureâ^'Activity Studies of Conantokins as Human N-Methyl-d-aspartate Receptor Modulators,. Journal of Medicinal Chemistry, 1999, 42, 415-426.	6.4	35
277	Structure-activity relationships of ï‰-conotoxins MVIIA, MVIIC and 14 loop splice hybrids at N and P/Q-type calcium channels 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 289, 1405-1421.	4.2	80
278	HPLC/Tandem Electrospray Mass Spectrometry for the Determination of Sub-ppb Levels of Pacific and Caribbean Ciguatoxins in Crude Extracts of Fish. Analytical Chemistry, 1999, 71, 247-250.	6.5	106
279	Differential actions of pacific ciguatoxin-1 on sodium channel subtypes in mammalian sensory neurons. Journal of Pharmacology and Experimental Therapeutics, 1999, 288, 379-88.	2.5	67
280	Ciguatoxin (CTX-1) modulates single tetrodotoxin-sensitive sodium channels in rat parasympathetic neurones. Neuroscience Letters, 1998, 252, 103-106.	2.1	45
281	The 1.1 à Resolution Crystal Structure of [Tyr15]Epl, a Novel α-Conotoxin fromConus episcopatus, Solved by Direct Methodsâ€. Biochemistry, 1998, 37, 11425-11433.	2.5	56
282	Structure of Caribbean Ciguatoxin Isolated from Caranx latus. Journal of the American Chemical Society, 1998, 120, 5914-5920.	13.7	179
283	α-Conotoxin Epl, a Novel Sulfated Peptide from Conus episcopatusThat Selectively Targets Neuronal Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 1998, 273, 15667-15674.	3.4	103
284	Environmental Poisoning: Presentation and Management. Therapeutic Drug Monitoring, 1998, 20, 502-509.	2.0	0
285	Determination of the Solution Structures of Conantokin-G and Conantokin-T by CD and NMR Spectroscopy. Journal of Biological Chemistry, 1997, 272, 2291-2299.	3.4	70
286	Characterization of ciguatoxins and ciguatoxin congeners present in ciguateric fish by gradient reverse-phase high-performance liquid chromatography/mass spectrometry. Toxicon, 1997, 35, 159-168.	1.6	69
287	Identification of Caribbean ciguatoxins as the cause of an outbreak of fish poisoning among U.S. soldiers in Haiti. Toxicon, 1997, 35, 733-741.	1.6	84
288	Isolation and characterisation of Caribbean ciguatoxins from the horse-eye jack (Caranx latus). Toxicon, 1997, 35, 889-900.	1.6	151

#	Article	IF	CITATIONS
289	A Queensland family with ciguatera after eating coral trout. Medical Journal of Australia, 1997, 166, 473-475.	1.7	24
290	Solution structure and proposed binding mechanism of a novel potassium channel toxin \hat{l}^2 -conotoxin PVIIA. Structure, 1997, 5, 1585-1597.	3.3	88
291	Pacific Ciguatoxinâ€1 associated with a large commonâ€source outbreak of Ciguatera in East Arnhem Land, Australia. Natural Toxins, 1997, 5, 136-140.	1.0	21
292	Pacific ciguatoxin-1 associated with a large common-source outbreak of ciguatera in east Arnhem Land, Australia. Natural Toxins, 1997, 5, 136-40.	1.0	3
293	A Consensus Structure for ω-Conotoxins with Different Selectivities for Voltage-sensitive Calcium Channel Subtypes: Comparison of MVIIA, SVIB and SNX-202. Journal of Molecular Biology, 1996, 263, 297-310.	4.2	97
294	Isolation and Characterization of Conopeptides by High-performance Liquid Chromatography Combined with Mass Spectrometry and Tandem Mass Spectrometry. , 1996, 10, 138-143.		37
295	Cooliatoxin, the first toxin fromCoolia monotis (dinophyceae). Natural Toxins, 1995, 3, 355-362.	1.0	84
296	Sub-nanomolar concentrations of ciguatoxin-1 excite preganglionic terminals in guinea pig sympathetic ganglia. Naunyn-Schmiedeberg's Archives of Pharmacology, 1995, 352, 236-46.	3.0	20
297	Detection of Sodium Channel Toxins: Directed Cytotoxicity Assays of Purified Ciguatoxins, Brevetoxins, Saxitoxins, and Seafood Extracts. Journal of AOAC INTERNATIONAL, 1995, 78, 521-527.	1.5	219
298	Lophozozymus pictor toxin: A fluorescent structural isomer of palytoxin. Toxicon, 1995, 33, 1373-1377.	1.6	26
299	Electrical activity in rat tail artery during asynchronous activation of postganglionic nerve terminals by ciguatoxinâ€1. British Journal of Pharmacology, 1995, 116, 2213-2220.	5.4	23
300	Lonspray mass spectrometry of ciguatoxin-1, maitotoxin-2 and -3, and related marine polyether toxins. Natural Toxins, 1994, 2, 56-63.	1.0	63
301	Purification and characterisation of large and small maitotoxins from cultured gambierdiscus toxicus. Natural Toxins, 1994, 2, 64-72.	1.0	88
302	Ciguatoxin-2 is a diastereomer of ciguatoxin-3. Toxicon, 1993, 31, 637-643.	1.6	45
303	Comparative action of three major ciguatoxins on guinea-pig atria and ilea. Toxicon, 1993, 31, 437-446.	1.6	18
304	Ciguatera and mannitol: In Vivo and In Vitro assessment in mice. Toxicon, 1993, 31, 1039-1050.	1.6	52
305	Recovery of ciguatoxin from fish flesh. Toxicon, 1993, 31, 1333-1336.	1.6	43
306	Origin and transfer of toxins involved in ciguatera. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1993, 106, 615-628.	0.5	120

#	Article	IF	CITATIONS
307	Ciguatera: Ecological, clinical, and socioeconomic perspectives. Critical Reviews in Environmental Science and Technology, 1993, 23, 137-156.	12.8	29
308	Action of ciguatoxin on human atrial trabeculae. Toxicon, 1992, 30, 907-914.	1.6	28
309	Multiple ciguatoxins in the flesh of fish. Toxicon, 1992, 30, 915-919.	1.6	82
310	Ciguatoxins are potent ichthyotoxins. Toxicon, 1992, 30, 207-211.	1.6	78
311	Patients with ciguatera: request for convalescent sera. Medical Journal of Australia, 1992, 157, 140-141.	1.7	1
312	Socioeconomic impacts and management ciguatera in the Pacific. Bulletin De La Societe De Pathologie Exotique, 1992, 85, 427-34.	0.3	20
313	Strain dependent production of ciguatoxin precursors (gambiertoxins) by Gambierdiscus toxicus (Dinophyceae) in culture. Toxicon, 1991, 29, 761-775.	1.6	143
314	Purification and characterization of ciguatoxins from moray eel (Lycodontis javanicus, Muraenidae). Toxicon, 1991, 29, 1115-1127.	1.6	293
315	Toxicity of Australian and French Polynesian strains of Gambierdiscus Toxicus (Dinophyceae) grown in culture: Characterization of a new type of maitotoxin. Toxicon, 1990, 28, 1159-1172.	1.6	84
316	Ciguatera and mannitol: experience with a new treatment regimen. Medical Journal of Australia, 1989, 151, 77-80.	1.7	105
317	Structure-activity studies on the inhibition of photosystem II electron transport by phenylbiurets. Journal of Agricultural and Food Chemistry, 1989, 37, 1509-1513.	5.2	7
318	Negative inotropic and arrhythmic effects of high doses of ciguatoxin on guinea-pig atria and papillary muscles. Toxicon, 1988, 26, 639-649.	1.6	28
319	Ciguatera in Australia: Occurrence, clinical features, pathophysiology and management. Medical Journal of Australia, 1986, 145, 584-590.	1.7	204
320	Direct and indirect effects of ciguatoxin on guinea-pig atria and papillary muscles. Naunyn-Schmiedeberg's Archives of Pharmacology, 1986, 334, 313-322.	3.0	44
321	Ciguatera in Australia. Occurrence, clinical features, pathophysiology and management. Medical Journal of Australia, 1986, 145, 584-90.	1.7	28
322	Ciguatoxin from the flesh and viscera of the barracuda, Sphyraena jello. Toxicon, 1984, 22, 805-810.	1.6	51
323	Mode of action of ciguatoxin from the Spanish Mackerel, Scomberomorus commersoni, on the guinea-pig ileum and vas deferens. Journal of Pharmacology and Experimental Therapeutics, 1984, 228, 756-60.	2.5	21
324	Occurrence of a ciguatoxin-like substance in the Spanish mackerel (Scomberomorus commersoni). Toxicon, 1983, 21, 19-24.	1.6	30

#	Article	IF	CITATIONS
325	The effects of two stonefish skin toxins on guinea-pig atria. Toxicon, 1983, 21, 53-56.	1.6	1
326	Toxic material from the crab Atergatis floridus. Toxicon, 1983, 21, 111-113.	1.6	11
327	Purification of ciguatoxin-like material from Scomberomorus commersoni and its effect on the rat phrenic nerve-diaphragm. Toxicon, 1983, 21, 249-252.	1.6	15
328	The antispasmogenic action on guinea-pig ileum of a fraction obtained from the toxic skin secretion of the stonefish, Synanceia trachynis. Toxicon, 1982, 20, 991-1000.	1.6	4
329	A crinotoxin from the skin tubercle glands of a stonefish (Synanceia trachynis). Toxicon, 1981, 19, 159-170.	1.6	14