Rikke K Olsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8842252/publications.pdf Version: 2024-02-01

RIKKE K OLSEN

#	Article	IF	CITATIONS
1	ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain, 2007, 130, 2045-2054.	7.6	292
2	Clear relationship betweenETF/ETFDH genotype and phenotype in patients with multiple acyl-CoA dehydrogenation deficiency. Human Mutation, 2003, 22, 12-23.	2.5	196
3	Mitochondrial fatty acid oxidation defects—remaining challenges. Journal of Inherited Metabolic Disease, 2008, 31, 643-657.	3.6	123
4	Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency. American Journal of Human Genetics, 2016, 98, 1130-1145.	6.2	118
5	Maternal riboflavin deficiency, resulting in transient neonatal-onset glutaric aciduria Type 2, is caused by a microdeletion in the riboflavin transporter gene GPR172B. Human Mutation, 2011, 32, E1976-E1984.	2.5	96
6	Riboflavin Deficiency—Implications for General Human Health and Inborn Errors of Metabolism. International Journal of Molecular Sciences, 2020, 21, 3847.	4.1	92
7	Molecular mechanisms of riboflavin responsiveness in patients with ETF-QO variations and multiple acyl-CoA dehydrogenation deficiency. Human Molecular Genetics, 2012, 21, 3435-3448.	2.9	80
8	Role of Flavinylation in a Mild Variant of Multiple Acyl-CoA Dehydrogenation Deficiency. Journal of Biological Chemistry, 2009, 284, 4222-4229.	3.4	67
9	Secondary coenzyme Q10 deficiency and oxidative stress in cultured fibroblasts from patients with riboflavin responsive multiple Acyl-CoA dehydrogenation deficiency. Human Molecular Genetics, 2013, 22, 3819-3827.	2.9	59
10	Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism. Journal of Inherited Metabolic Disease, 2015, 38, 703-719.	3.6	59
11	Genetic and cellular modifiers of oxidative stress: What can we learn from fatty acid oxidation defects?. Molecular Genetics and Metabolism, 2013, 110, S31-S39.	1.1	47
12	Electron transfer flavoprotein and its role in mitochondrial energy metabolism in health and disease. Gene, 2021, 776, 145407.	2.2	42
13	Shortâ€chain acylâ€CoA dehydrogenase deficiency: from gene to cell pathology and possible disease mechanisms. Journal of Inherited Metabolic Disease, 2017, 40, 641-655.	3.6	41
14	An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Molecular Genetics and Metabolism, 2017, 122, 182-188.	1.1	41
15	The <i>ETFDH</i> c.158A>G Variation Disrupts the Balanced Interplay of ESE- and ESS-Binding Proteins thereby Causing Missplicing and Multiple Acyl-CoA Dehydrogenation Deficiency. Human Mutation, 2014, 35, 86-95.	2.5	32
16	Cellular consequences of oxidative stress in riboflavin responsive multiple acyl-CoA dehydrogenation deficiency patient fibroblasts. Human Molecular Genetics, 2014, 23, 4285-4301.	2.9	30
17	Proteomic investigation of cultivated fibroblasts from patients with mitochondrial short-chain acyl-CoA dehydrogenase deficiency. Molecular Genetics and Metabolism, 2014, 111, 360-368.	1.1	24
18	Mitochondrial Spare Respiratory Capacity Is Negatively Correlated with Nuclear Reprogramming Efficiency. Stem Cells and Development, 2017, 26, 166-176.	2.1	21

RIKKE K OLSEN

#	Article	IF	CITATIONS
19	<i>FLAD1</i> â€associated multiple acyl oA dehydrogenase deficiency identified by newborn screening. Molecular Genetics & Genomic Medicine, 2019, 7, e915.	1.2	18
20	Post-mortem detection of FLAD1 mutations in 2 Turkish siblings with hypotonia in early infancy. Neuromuscular Disorders, 2018, 28, 787-790.	0.6	14
21	Bioenergetic and Proteomic Profiling of Immune Cells in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients: An Exploratory Study. Biomolecules, 2021, 11, 961.	4.0	13
22	Use of Molecular Genetic Analyses in Danish Routine Newborn Screening. International Journal of Neonatal Screening, 2021, 7, 50.	3.2	12
23	DNA-based prenatal diagnosis for severe and variant forms of multiple acyl-CoA dehydrogenation deficiency. Prenatal Diagnosis, 2005, 25, 60-64.	2.3	10
24	Highâ€resolution melting analysis, a simple and effective method for reliable mutation scanning and frequency studies in the <i>ACADVL</i> gene. Journal of Inherited Metabolic Disease, 2010, 33, 247-260.	3.6	10
25	Clinical, pathological and genetic features and follow-up of 110 patients with late-onset MADD: a single-center retrospective study. Human Molecular Genetics, 2022, 31, 1115-1129.	2.9	10
26	<i>FLAD1</i> , encoding FAD synthase, is mutated in a patient with myopathy, scoliosis and cataracts. Clinical Genetics, 2018, 94, 592-593.	2.0	9
27	Bezafibrate activation of PPAR drives disturbances in mitochondrial redox bioenergetics and decreases the viability of cells from patients with VLCAD deficiency. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166100.	3.8	5
28	Increased antioxidant response in medium-chain acyl-CoA dehydrogenase deficiency: does lipoic acid have a protective role?. Pediatric Research, 2020, 88, 556-564.	2.3	4
29	Variants in the <scp>ethylmalonyl oA</scp> decarboxylase (<scp><i>ECHDC1</i></scp>) gene: a novel player in ethylmalonic aciduria?. Journal of Inherited Metabolic Disease, 2021, 44, 1215-1225.	3.6	4