
John Francis Xavier Diffley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/88421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cdc6 is sequentially regulated by PP2A-Cdc55, Cdc14, and Sic1 for origin licensing in S. cerevisiae. ELife, 2022, 11, .	6.0	6
2	The Initiation of Eukaryotic DNA Replication. Annual Review of Biochemistry, 2022, 91, 107-131.	11.1	68
3	Structural mechanism for the selective phosphorylation of DNA-loaded MCM double hexamers by the Dbf4-dependent kinase. Nature Structural and Molecular Biology, 2022, 29, 10-20.	8.2	21
4	Mechanism of replication origin melting nucleated by CMG helicase assembly. Nature, 2022, 606, 1007-1014.	27.8	34
5	An improved method for the incorporation of fluoromethyl ketones into solid phase peptide synthesis techniques. RSC Advances, 2021, 11, 20457-20464.	3.6	2
6	DNA replication origins retain mobile licensing proteins. Nature Communications, 2021, 12, 1908.	12.8	24
7	Budding yeast Rap1, but not telomeric DNA, is inhibitory for multiple stages of DNA replication in vitro. Nucleic Acids Research, 2021, 49, 5671-5683.	14.5	12
8	Unchecked nick ligation can promote localized genome re-replication. Current Biology, 2021, 31, R710-R711.	3.9	3
9	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp14/nsp10 exoribonuclease. Biochemical Journal, 2021, 478, 2445-2464.	3.7	32
10	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp5 main protease. Biochemical Journal, 2021, 478, 2499-2515.	3.7	46
11	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp12/7/8 RNA-dependent RNA polymerase. Biochemical Journal, 2021, 478, 2425-2443.	3.7	26
12	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp3 papain-like protease. Biochemical Journal, 2021, 478, 2517-2531.	3.7	49
13	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp14 RNA cap methyltransferase. Biochemical Journal, 2021, 478, 2481-2497.	3.7	39
14	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp13 helicase. Biochemical Journal, 2021, 478, 2405-2423.	3.7	46
15	Author's overview: identifying SARS-CoV-2 antiviral compounds. Biochemical Journal, 2021, 478, 2533-2535.	3.7	6
16	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp15 endoribonuclease. Biochemical Journal, 2021, 478, 2465-2479.	3.7	43
17	Rad53 checkpoint kinase regulation of DNA replication fork rate via Mrc1 phosphorylation. ELife, 2021, 10, .	6.0	29
18	Eukaryotic DNA replication with purified budding yeast proteins. Methods in Enzymology, 2021, 661,	1.0	10

#	Article	IF	CITATIONS
19	Mechanism of head-to-head MCM double-hexamer formation revealed by cryo-EM. Nature, 2019, 575, 704-710.	27.8	105
20	Rpd3L Contributes to the DNA Damage Sensitivity of <i>Saccharomyces cerevisiae</i> Checkpoint Mutants. Genetics, 2019, 211, 503-513.	2.9	9
21	The mechanism of eukaryotic CMG helicase activation. Nature, 2018, 555, 265-268.	27.8	196
22	Structure of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules in the eukaryotic replisome. Nature Communications, 2018, 9, 5061.	12.8	96
23	CMG–Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4141-4146.	7.1	88
24	Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates. Molecular Cell, 2017, 65, 117-130.	9.7	211
25	How the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication. Molecular Cell, 2017, 65, 105-116.	9.7	291
26	Bidirectional eukaryotic DNA replication is established by quasi-symmetrical helicase loading. Science, 2017, 357, 314-318.	12.6	100
27	Cdt1 stabilizes an open MCM ring for helicase loading. Nature Communications, 2017, 8, 15720.	12.8	69
28	Cryo-EM structure of a licensed DNA replication origin. Nature Communications, 2017, 8, 2241.	12.8	75
29	Recruitment of Mcm10 to Sites of Replication Initiation Requires Direct Binding to the Minichromosome Maintenance (MCM) Complex. Journal of Biological Chemistry, 2016, 291, 5879-5888.	3.4	47
30	MCM: one ring to rule them all. Current Opinion in Structural Biology, 2016, 37, 145-151.	5.7	143
31	Regulated eukaryotic DNA replication origin firing with purified proteins. Nature, 2015, 519, 431-435.	27.8	441
32	Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. EMBO Journal, 2014, 33, 605-620.	7.8	76
33	Origin Licensing Requires ATP Binding and Hydrolysis by the MCM Replicative Helicase. Molecular Cell, 2014, 55, 666-677.	9.7	104
34	ATPase-dependent quality control of DNA replication origin licensing. Nature, 2013, 495, 339-343.	27.8	181
35	Controlling DNA replication origins in response to DNA damage – inhibit globally, activate locally. Journal of Cell Science, 2013, 126, 1297-1306.	2.0	118
36	Regulating DNA Replication in Eukarya. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012930-a012930.	5.5	206

JOHN FRANCIS XAVIER DIFFLEY

#	Article	IF	CITATIONS
37	Activation of the replicative DNA helicase: breaking up is hard to do. Current Opinion in Cell Biology, 2012, 24, 423-430.	5.4	79
38	Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature, 2010, 467, 474-478.	27.8	261
39	DNA replication as a target of the DNA damage checkpoint. DNA Repair, 2009, 8, 1077-1088.	2.8	105
40	Eukaryotic DNA replication control: Lock and load, then fire. Current Opinion in Cell Biology, 2009, 21, 771-777.	5.4	223
41	Concerted Loading of Mcm2–7 Double Hexamers around DNA during DNA Replication Origin Licensing. Cell, 2009, 139, 719-730.	28.9	560
42	Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks. Genes and Development, 2008, 22, 1816-1827.	5.9	146
43	Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature, 2007, 445, 281-285.	27.8	438
44	Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control. Nature, 2004, 431, 1118-1123.	27.8	99
45	A Central Role for DNA Replication Forks in Checkpoint Activation and Response. Molecular Cell, 2003, 11, 1323-1336.	9.7	366
46	Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2–7 during G1 phase. Nature Cell Biology, 2002, 4, 198-207.	10.3	245
47	Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature, 2001, 412, 553-557.	27.8	622
48	A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature, 1998, 395, 615-618.	27.8	602