Luca Perico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8842070/publications.pdf

Version: 2024-02-01

361413 377865 38 2,238 20 34 h-index citations g-index papers 38 38 38 4425 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nature Reviews Nephrology, 2021, 17, 46-64.	9.6	444
2	Sirtuin 3–dependent mitochondrial dynamic improvements protect against acute kidney injury. Journal of Clinical Investigation, 2015, 125, 715-726.	8.2	335
3	Should COVID-19 Concern Nephrologists? Why and to What Extent? The Emerging Impasse of Angiotensin Blockade. Nephron, 2020, 144, 213-221.	1.8	245
4	Sirtuins in Renal Health and Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 1799-1809.	6.1	233
5	Podocyte–actin dynamics in health and disease. Nature Reviews Nephrology, 2016, 12, 692-710.	9.6	150
6	Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nature Communications, 2017, 8, 983.	12.8	124
7	<i>Sirt3</i> Deficiency Shortens Life Span and Impairs Cardiac Mitochondrial Function Rescued by <i>Opa1</i> Gene Transfer. Antioxidants and Redox Signaling, 2019, 31, 1255-1271.	5.4	70
8	β-Arrestin-1 Drives Endothelin-1–Mediated Podocyte Activation and Sustains Renal Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 523-533.	6.1	63
9	Mitochondrial Sirtuin 3 and Renal Diseases. Nephron, 2016, 134, 14-19.	1.8	58
10	Shiga Toxin Promotes Podocyte Injury in Experimental Hemolytic Uremic Syndrome via Activation of the Alternative Pathway of Complement. Journal of the American Society of Nephrology: JASN, 2014, 25, 1786-1798.	6.1	52
11	Manipulating Sirtuin 3 pathway ameliorates renal damage in experimental diabetes. Scientific Reports, 2020, 10, 8418.	3.3	51
12	Mitochondrial Dynamics Is Linked to Longevity and Protects from End-Organ Injury: The Emerging Role of Sirtuin 3. Antioxidants and Redox Signaling, 2016, 25, 185-199.	5.4	46
13	C3a receptor blockade protects podocytes from injury in diabetic nephropathy. JCI Insight, 2020, 5, .	5.0	46
14	SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and Complement System Leading to Platelet Aggregation. Frontiers in Immunology, 2022, 13, 827146.	4.8	45
15	Angiotensin II Contributes to Diabetic Renal Dysfunction in Rodents and Humans via Notch1/Snail Pathway. American Journal of Pathology, 2013, 183, 119-130.	3.8	39
16	COVID-19 and lombardy: TESTing the impact of the first wave of the pandemic. EBioMedicine, 2020, 61, 103069.	6.1	38
17	BRAF Signaling Pathway Inhibition, Podocyte Injury, and Nephrotic Syndrome. American Journal of Kidney Diseases, 2017, 70, 145-150.	1.9	25
18	Blood Pressure and Metabolic Effects of Acetyl-l-Carnitine in Type 2 Diabetes: DIABASI Randomized Controlled Trial. Journal of the Endocrine Society, 2018, 2, 420-436.	0.2	25

#	Article	IF	CITATIONS
19	Mitochondrial-dependent Autoimmunity in Membranous Nephropathy of IgG4-related Disease. EBioMedicine, 2015, 2, 456-466.	6.1	24
20	A previously unrecognized role of C3a in proteinuric progressive nephropathy. Scientific Reports, 2016, 6, 28445.	3.3	22
21	Sirtuin3 Dysfunction Is the Key Determinant of Skeletal Muscle Insulin Resistance by Angiotensin II. PLoS ONE, 2015, 10, e0127172.	2.5	16
22	The long journey through renal filtration. Current Opinion in Nephrology and Hypertension, 2017, 26, 148-153.	2.0	12
23	A new BEACON of hope for the treatment of inflammation? The endogenous metabolite itaconate as an alternative activator of the KEAP1-Nrf2 system. Kidney International, 2018, 94, 646-649.	5.2	10
24	A preclinical overview of emerging therapeutic targets for glomerular diseases. Expert Opinion on Therapeutic Targets, 2019, 23, 593-606.	3.4	10
25	Post-translational modifications by SIRT3 de-2-hydroxyisobutyrylase activity regulate glycolysis and enable nephrogenesis. Scientific Reports, 2021, 11, 23580.	3.3	10
26	Reply to the Comment by Dr. Cure on "Should COVID-19 Concern Nephrologists? Why and to What Extent? The Emerging Impasse of Angiotensin Blockade†Nephron, 2020, 144, 253-254.	1.8	7
27	Angiotensin-converting enzyme 2: from a vasoactive peptide to the gatekeeper of a global pandemic. Current Opinion in Nephrology and Hypertension, 2021, 30, 252-263.	2.0	7
28	Untangling the Knot in Diabetic Nephropathy: The Unanticipated Role of Glycocalyx in the Antiproteinuric Effect of Endothelin Receptor Antagonists. Diabetes, 2016, 65, 2115-2117.	0.6	5
29	The iNADequacy of renal cell metabolism: modulating NAD+ biosynthetic pathways to forestall kidney diseases. Kidney International, 2019, 96, 264-267.	5.2	5
30	CRISPR-Cas9-Mediated Correction of the G189R-PAX2 Mutation in Induced Pluripotent Stem Cells from a Patient with Focal Segmental Glomerulosclerosis. CRISPR Journal, 2019, 2, 108-120.	2.9	4
31	The incessant search for renal biomarkers. Current Opinion in Nephrology and Hypertension, 2019, 28, 195-202.	2.0	4
32	Sirtuin 3 in acute kidney injury. Oncotarget, 2015, 6, 16814-16815.	1.8	4
33	COVID-19 and the Kidney: Should Nephrologists Care about COVID-19 rather than Maintaining Their Focus on Renal Patients?. Contributions To Nephrology, 2021, 199, 1-15.	1.1	3
34	Shiga Toxin 2 Triggers C3a-Dependent Glomerular and Tubular Injury through Mitochondrial Dysfunction in Hemolytic Uremic Syndrome. Cells, 2022, 11, 1755.	4.1	3
35	Decreased Nephron Number within Physiologic Ranges Increases Susceptibility to Chronic Renal Diseases Later in Life. SSRN Electronic Journal, 0, , .	0.4	2
36	SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and Complement System Leading to Thrombus Formation. SSRN Electronic Journal, 0 , , .	0.4	1

#	Article	IF	CITATIONS
37	Mitochondrial dysfunction in kidney diseases. , 2021, , 119-154.		O
38	Sirtuins as key players in aging and kidney dysfunction. , 2021, , 309-328.		0