
Paola Briata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8842014/publications.pdf Version: 2024-02-01

Ρλοιλ Βριλτλ

#	Article	IF	CITATIONS
1	LINC00152 expression in normal and Chronic Lymphocytic Leukemia B cells. Hematological Oncology, 2022, 40, 41-48.	1.7	5
2	LncRNA <i>EPR</i> -induced METTL7A1 modulates target gene translation. Nucleic Acids Research, 2022, 50, 7608-7622.	14.5	6
3	Comprehensive multi-omics analysis uncovers a group of TGF-β-regulated genes among lncRNA EPR direct transcriptional targets. Nucleic Acids Research, 2020, 48, 9053-9066.	14.5	15
4	Long Non-Coding RNA-Ribonucleoprotein Networks in the Post-Transcriptional Control of Gene Expression. Non-coding RNA, 2020, 6, 40.	2.6	25
5	LncRNA EPR controls epithelial proliferation by coordinating Cdkn1a transcription and mRNA decay response to TGF-Î ² . Nature Communications, 2019, 10, 1969.	12.8	68
6	Resveratrol limits epithelial to mesenchymal transition through modulation of KHSRP/hnRNPA1-dependent alternative splicing in mammary gland cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 291-298.	1.9	15
7	miRNA-Mediated KHSRP Silencing Rewires Distinct Post-transcriptional Programs during TGF-β-Induced Epithelial-to-Mesenchymal Transition. Cell Reports, 2016, 16, 967-978.	6.4	45
8	Diverse roles of the nucleic acidâ€binding protein <scp>KHSRP</scp> in cell differentiation and disease. Wiley Interdisciplinary Reviews RNA, 2016, 7, 227-240.	6.4	57
9	H19 long noncoding RNA controls the mRNA decay promoting function of KSRP. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5023-8.	7.1	104
10	KSRP and MicroRNA 145 Are Negative Regulators of Lipolysis in White Adipose Tissue. Molecular and Cellular Biology, 2014, 34, 2339-2349.	2.3	42
11	KSRP Ablation Enhances Brown Fat Gene Program in White Adipose Tissue Through Reduced miR-150 Expression. Diabetes, 2014, 63, 2949-2961.	0.6	42
12	KSRP Controls Pleiotropic Cellular Functions. Seminars in Cell and Developmental Biology, 2014, 34, 2-8.	5.0	36
13	Functional and molecular insights into KSRP function in mRNA decay. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 689-694.	1.9	54
14	KSRP silencing favors neural differentiation of P19 teratocarcinoma cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 469-479.	1.9	8
15	Let-7b/c Enhance the Stability of a Tissue-Specific mRNA during Mammalian Organogenesis as Part of a Feedback Loop Involving KSRP. PLoS Genetics, 2012, 8, e1002823.	3.5	22
16	KH domains with impaired nucleic acid binding as a tool for functional analysis. Nucleic Acids Research, 2012, 40, 6873-6886.	14.5	106
17	Noncanonical G recognition mediates KSRP regulation of let-7 biogenesis. Nature Structural and Molecular Biology, 2012, 19, 1282-1286.	8.2	39
18	Bone Morphogenetic Protein/SMAD Signaling Orients Cell Fate Decision by Impairing KSRP-Dependent MicroRNA Maturation. Cell Reports, 2012, 2, 1159-1168.	6.4	22

Paola Briata

#	Article	IF	CITATIONS
19	KSRP, many functions for a single protein. Frontiers in Bioscience - Landmark, 2011, 16, 1787.	3.0	49
20	Autoregulatory circuit of human rpL3 expression requires hnRNP H1, NPM and KHSRP. Nucleic Acids Research, 2011, 39, 7576-7585.	14.5	35
21	The role of KSRP in mRNA decay and microRNA precursor maturation. Wiley Interdisciplinary Reviews RNA, 2010, 1, 230-239.	6.4	56
22	KSRP Promotes the Maturation of a Group of miRNA Precuresors. Advances in Experimental Medicine and Biology, 2010, 700, 36-42.	1.6	20
23	Orientation of the central domains of KSRP and its implications for the interaction with the RNA targets. Nucleic Acids Research, 2010, 38, 5193-5205.	14.5	31
24	KSRP promotes the maturation of a group of miRNA precursors. Advances in Experimental Medicine and Biology, 2010, 700, 36-42.	1.6	11
25	How to control miRNA maturation? Co-activators and co-repressors take the stage. RNA Biology, 2009, 6, 536-540.	3.1	40
26	LPS induces KHâ€ŧype splicing regulatory proteinâ€dependent processing of microRNAâ€155 precursors in macrophages. FASEB Journal, 2009, 23, 2898-2908.	0.5	188
27	KSRP-PMR1-exosome association determines parathyroid hormone mRNA levels and stability in transfected cells. BMC Cell Biology, 2009, 10, 70.	3.0	25
28	The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature, 2009, 459, 1010-1014.	27.8	588
29	Phosphorylation-mediated unfolding of a KH domain regulates KSRP localization via 14-3-3 binding. Nature Structural and Molecular Biology, 2009, 16, 238-246.	8.2	88
30	The mRNA decay promoting factor Kâ€homology splicing regulator protein postâ€ŧranscriptionally determines parathyroid hormone mRNA levels. FASEB Journal, 2008, 22, 3458-3468.	0.5	60
31	Identification of a set of KSRP target transcripts upregulated by PI3K-AKT signaling. BMC Molecular Biology, 2007, 8, 28.	3.0	53
32	The RNA-Binding Protein KSRP Promotes Decay of β-Catenin mRNA and Is Inactivated by PI3K-AKT Signaling. PLoS Biology, 2006, 5, e5.	5.6	132
33	p38-Dependent Phosphorylation of the mRNA Decay-Promoting Factor KSRP Controls the Stability of Select Myogenic Transcripts. Molecular Cell, 2005, 20, 891-903.	9.7	212
34	A KH Domain RNA Binding Protein, KSRP, Promotes ARE-Directed mRNA Turnover by Recruiting the Degradation Machinery. Molecular Cell, 2004, 14, 571-583.	9.7	390
35	The Wnt/β-Catenin→Pitx2 Pathway Controls the Turnover of Pitx2 and Other Unstable mRNAs. Molecular Cell, 2003, 12, 1201-1211.	9.7	156
36	Regulated subset of G ₁ growth-control genes in response to derepression by the Wnt pathway. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3245-3250.	7.1	139

Paola Briata

#	Article	IF	CITATIONS
37	Pituitary Homeobox Factor 1, A Novel Transcription Factor in the Adrenal Regulating Steroid 11ß-hydroxylase. Hormone and Metabolic Research, 2003, 35, 273-278.	1.5	9
38	ldentification of a Wnt/Dvl/Ĵ²-Catenin → Pitx2 Pathway Mediating Cell-Type-Specific Proliferation during Development. Cell, 2002, 111, 673-685.	28.9	519
39	Pitx Genes during Cardiovascular Development. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 81-88.	1.1	10
40	Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature, 1999, 401, 279-282.	27.8	568
41	OTX2 homeodomain protein binds a DNA element necessary for interphotoreceptor retinoid binding protein gene expression. Mechanisms of Development, 1999, 82, 165-169.	1.7	47
42	Binding properties of the human homeodomain protein OTX2 to a DNA target sequence. FEBS Letters, 1999, 445, 160-164.	2.8	39
43	EMX2 protein in the developing mouse brain and olfactory area. Mechanisms of Development, 1998, 77, 165-172.	1.7	141
44	Visceral endoderm-restricted translation of <i>Otx1</i> mediates recovery of <i>Otx2</i> requirements for specification of anterior neural plate and normal gastrulation. Development (Cambridge), 1998, 125, 5091-5104.	2.5	135
45	The Human Homeodomain Protein OTX2 Binds to the Human Tenascin-C Promoter and Trans-Represses Its Activity in Transfected Cells. DNA and Cell Biology, 1997, 16, 559-567.	1.9	33
46	Mapping of a potent transcriptional repression region of the human homeodomain protein EVX1. FEBS Letters, 1997, 402, 131-135.	2.8	17
47	Implication of OTX2 in Pigment Epithelium Determination and Neural Retina Differentiation. Journal of Neuroscience, 1997, 17, 4243-4252.	3.6	158
48	EMX1 homeoprotein is expressed in cell nuclei of the developing cerebral cortex and in the axons of the olfactory sensory neurons. Mechanisms of Development, 1996, 57, 169-180.	1.7	90
49	OTX2 homeoprotein in the developing central nervous system and migratory cells of the olfactory area. Mechanisms of Development, 1996, 58, 165-178.	1.7	83
50	Identification of putative ligand binding sites within I domain of integrin α2β1 (VLA-2,CD49b/CD29) Journal of Biological Chemistry, 1996, 271, 19008.	3.4	19
51	Transcriptional Repression by the Human Homeobox Protein EVX1 in Transfected Mammalian Cells. Journal of Biological Chemistry, 1995, 270, 27695-27701.	3.4	23
52	Ras antagonizes cAMP stimulated glucagon gene transcription in pancreatic islet cell lines. FEBS Letters, 1994, 353, 277-280.	2.8	4
53	AP-1 Activity during Normal Human Keratinocyte Differentiation: Evidence for a Cytosolic Modulator of AP-1/DNA Binding. Experimental Cell Research, 1993, 204, 136-146.	2.6	44
54	Differential DNA binding properties of three human homeodomain proteins. Nucleic Acids Research, 1992, 20, 4465-4472.	14.5	47

PAOLA BRIATA

#	Article	IF	CITATIONS
55	Androgens increase insulin receptor mRNA levels, insulin binding, and insulin responsiveness in HEp-2 larynx carcinoma cells. Molecular and Cellular Endocrinology, 1992, 86, 111-118.	3.2	19
56	Protein kinase C mRNA levels and activity in reconstituted normal human epidermis: Relationships to cell differentiation. Biochemical and Biophysical Research Communications, 1992, 184, 283-291.	2.1	41
57	Insulin receptor gene expression is reduced in cells from a progeric patient. Molecular and Cellular Endocrinology, 1991, 75, 9-14.	3.2	6
58	Glucose starvation and glycosylation inhibitors reduce insulin receptor gene expression: Characterization and potential mechanism in human cells. Biochemical and Biophysical Research Communications, 1990, 169, 397-405.	2.1	26
59	Multifactorial control of insulin receptor gene expression in human cell lines. Biochemical and Biophysical Research Communications, 1990, 170, 1184-1190.	2.1	8
60	Sequence polymorphism of HLA-DP beta chains. Immunogenetics, 1989, 29, 346-349.	2.4	24
61	Effect of two different glucose concentrations on insulin receptor mRNA levels in human hepatoma HepG2 cells. Biochemical and Biophysical Research Communications, 1989, 160, 1415-1420.	2.1	20
62	c-myc Gene expression in human cells is controlled by glucose. Biochemical and Biophysical Research Communications, 1989, 165, 1123-1129.	2.1	19
63	Alternative splicing of HLA-DQB transcripts and secretion of HLA-DQ beta-chain proteins: allelic polymorphism in splicing and polyadenylylation sites Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 1003-1007.	7.1	53
64	Alternative splicing and polyadenylation readthrough in DQ \hat{l}^2 alleles. Human Immunology, 1988, 23, 117.	2.4	0