Jo-Shu Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8841976/publications.pdf

Version: 2024-02-01

1301 4548 44,113 557 109 171 citations h-index g-index papers 560 560 560 24982 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 2011, 102, 71-81.	9.6	1,494
2	Microalgae biorefinery: High value products perspectives. Bioresource Technology, 2017, 229, 53-62.	9.6	947
3	Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 2012, 113, 244-252.	9.6	645
4	Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 2013, 78, 1-10.	3.6	563
5	Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 2013, 135, 191-198.	9.6	538
6	Perspectives on microalgal CO2-emission mitigation systems â€" A review. Biotechnology Advances, 2011, 29, 189-198.	11.7	482
7	Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource Technology, 2020, 303, 122886.	9.6	458
8	Thermochemical conversion of microalgal biomass into biofuels: A review. Bioresource Technology, 2015, 184, 314-327.	9.6	451
9	Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science, 2021, 82, 100887.	31.2	429
10	Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology, 2015, 184, 190-201.	9.6	417
11	Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Research, 1997, 31, 1651-1658.	11.3	411
12	Microalgae-based biorefinery – From biofuels to natural products. Bioresource Technology, 2013, 135, 166-174.	9.6	406
13	Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Research, 2001, 35, 2841-2850.	11.3	366
14	Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism. Chemical Engineering Journal, 2019, 357, 589-599.	12.7	363
15	Conventional and emerging technologies for removal of antibiotics from wastewater. Journal of Hazardous Materials, 2020, 400, 122961.	12.4	358
16	Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. Journal of Hazardous Materials, 2009, 167, 609-614.	12.4	341
17	Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology, 2016, 222, 485-497.	9.6	333
18	Exploring the potential of using algae in cosmetics. Bioresource Technology, 2015, 184, 355-362.	9.6	325

#	Article	IF	Citations
19	Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresource Technology, 2010, 101, 8725-8730.	9.6	295
20	Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 2018, 36, 54-67.	11.7	282
21	Recent developments on algal biochar production and characterization. Bioresource Technology, 2017, 246, 2-11.	9.6	281
22	Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology, 2015, 184, 421-428.	9.6	267
23	Fermentative hydrogen production from wastewaters: A review and prognosis. International Journal of Hydrogen Energy, 2012, 37, 15632-15642.	7.1	259
24	Perspectives on engineering strategies for improving biofuel production from microalgae $\hat{a} \in \text{``}$ A critical review. Biotechnology Advances, 2014, 32, 1448-1459.	11.7	258
25	Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, 2012, 105, 120-127.	9.6	254
26	Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–A review. Bioresource Technology, 2017, 244, 1198-1206.	9.6	250
27	Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnology and Bioengineering, 2006, 93, 934-946.	3.3	246
28	Biological hydrogen production of the genus Clostridium: Metabolic study and mathematical model simulation. International Journal of Hydrogen Energy, 2007, 32, 1728-1735.	7.1	246
29	Recent insights into biohydrogen production by microalgae – From biophotolysis to dark fermentation. Bioresource Technology, 2017, 227, 373-387.	9.6	241
30	Sustainable approaches for algae utilisation in bioenergy production. Renewable Energy, 2018, 129, 838-852.	8.9	241
31	Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochemical Engineering Journal, 2005, 27, 146-154.	3.6	238
32	Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresource Technology, 2015, 184, 251-257.	9.6	235
33	New Prospects for Modified Algae in Heavy Metal Adsorption. Trends in Biotechnology, 2019, 37, 1255-1268.	9.3	235
34	Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresource Technology, 2011, 102, 9135-9142.	9.6	230
35	Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. Journal of Hazardous Materials, 2006, 134, 80-86.	12.4	227
36	Biohydrogen production using sequential two-stage dark and photo fermentation processes. International Journal of Hydrogen Energy, 2008, 33, 4755-4762.	7.1	216

#	Article	IF	CITATIONS
37	High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge. Bioresource Technology, 2017, 246, 142-149.	9.6	216
38	A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes. Green Chemistry, 2017, 19, 44-67.	9.0	216
39	Bioreactor and process design for biohydrogen production. Bioresource Technology, 2011, 102, 8524-8533.	9.6	209
40	Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: Feasibility and kinetic studies. Water Research, 2008, 42, 827-842.	11.3	197
41	Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology, 2015, 198, 619-625.	9.6	195
42	Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresource Technology, 2020, 302, 122817.	9.6	195
43	Microalgal drying and cell disruption – Recent advances. Bioresource Technology, 2015, 184, 258-266.	9.6	192
44	Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp Bioresource Technology, 2014, 166, 485-493.	9.6	191
45	Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326. Journal of Hazardous Materials, 2009, 166, 1421-1428.	12.4	186
46	Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresource Technology, 2012, 108, 119-127.	9.6	186
47	Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnology and Bioengineering, 2004, 87, 648-657.	3.3	184
48	Biohydrogen production from lignocellulosic feedstock. Bioresource Technology, 2011, 102, 8514-8523.	9.6	182
49	Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation, 2010, 21, 999-1015.	3.0	179
50	Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues. Biotechnology for Biofuels, 2021, 14, 87.	6.2	176
51	Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga <i>Chlorella vulgaris</i> Biotechnology Journal, 2011, 6, 1358-1366.	3.5	175
52	Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Applied Energy, 2018, 220, 598-604.	10.1	175
53	Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 332-344.	5.3	174
54	Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresource Technology, 2013, 135, 157-165.	9.6	171

#	Article	IF	Citations
55	Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology, 2014, 152, 275-282.	9.6	171
56	Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction. Applied Energy, 2019, 235, 346-355.	10.1	170
57	Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environmental Pollution, 2021, 272, 115986.	7.5	165
58	Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production. Bioresource Technology, 2016, 215, 346-356.	9.6	162
59	Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bioâ€Based Chemicals. Biotechnology Journal, 2017, 12, 1600644.	3.5	162
60	Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresource Technology, 2016, 219, 725-737.	9.6	161
61	Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga <i>Chlorella vulgaris</i> ESPâ€31. Engineering in Life Sciences, 2010, 10, 201-208.	3.6	159
62	Current advances in biological swine wastewater treatment using microalgae-based processes. Bioresource Technology, 2019, 289, 121718.	9.6	158
63	Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresource Technology, 2008, 99, 1157-1164.	9.6	156
64	Cultivation in wastewaters for energy: A microalgae platform. Applied Energy, 2016, 179, 609-625.	10.1	156
65	Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresource Technology, 2000, 75, 107-111.	9.6	155
66	Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. Journal of Biotechnology, 2012, 158, 112-119.	3.8	154
67	Microalgal biosorption of heavy metals: A comprehensive bibliometric review. Journal of Hazardous Materials, 2021, 402, 123431.	12.4	151
68	Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. International Journal of Hydrogen Energy, 2008, 33, 1565-1572.	7.1	150
69	Impact of torrefaction on the composition, structure and reactivity of a microalga residue. Applied Energy, 2016, 181, 110-119.	10.1	149
70	Enhanced Production of Surfactin from Bacillussubtilis by Addition of Solid Carriers. Biotechnology Progress, 2008, 21, 1329-1334.	2.6	147
71	Dewatering and Drying Methods for Microalgae. Drying Technology, 2015, 33, 443-454.	3.1	147
72	Adsorption of p-nitrophenols (PNP) on microalgal biochar: Analysis of high adsorption capacity and mechanism. Bioresource Technology, 2017, 244, 1456-1464.	9.6	144

#	Article	IF	CITATIONS
73	Microalgae from wastewater treatment to biochar $\hat{a} \in \text{``Feedstock}$ preparation and conversion technologies. Energy Conversion and Management, 2017, 150, 1-13.	9.2	144
74	Potential biomedical applications of marine algae. Bioresource Technology, 2017, 244, 1407-1415.	9.6	142
75	Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Applied Energy, 2012, 100, 3-9.	10.1	141
76	Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis. Bioresource Technology, 2018, 247, 463-470.	9.6	138
77	Microalgae as sustainable food and feed sources for animals and humans – Biotechnological and environmental aspects. Chemosphere, 2021, 271, 129800.	8.2	136
78	Decolorization of azo dyes with immobilized Pseudomonas luteola. Process Biochemistry, 2001, 36, 757-763.	3.7	135
79	Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresource Technology, 2014, 169, 258-264.	9.6	135
80	Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal. Bioresource Technology, 2017, 246, 123-134.	9.6	134
81	CO ₂ , NO _x and SO _x removal from flue gas via microalgae cultivation: A critical review. Biotechnology Journal, 2015, 10, 829-839.	3.5	132
82	Microalgae–microbial fuel cell: A mini review. Bioresource Technology, 2015, 198, 891-895.	9.6	132
83	Hydrogen Production with Immobilized Sewage Sludge in Three-Phase Fluidized-Bed Bioreactors. Biotechnology Progress, 2003, 19, 828-832.	2.6	130
84	Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydrate Polymers, 2021, 251, 117006.	10.2	127
85	Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. Journal of Hazardous Materials, 2008, 151, 364-371.	12.4	126
86	Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresource Technology, 2013, 145, 142-149.	9.6	125
87	Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae. Bioresource Technology, 2016, 221, 284-290.	9.6	125
88	Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: Effects of nitrate concentration, light intensity and fed-batch operation. Bioresource Technology, 2013, 144, 435-444.	9.6	124
89	A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microbial Cell Factories, 2021, 20, 120.	4.0	124
90	Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. International Journal of Hydrogen Energy, 2006, 31, 465-472.	7.1	122

#	Article	IF	CITATIONS
91	Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Scientific Reports, 2017, 7, 45471.	3.3	121
92	Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 2020, 302, 122814.	9.6	120
93	Stimulation of bacterial decolorization of an azo dye by extracellular metabolites from Escherichia coli strain NO3. Bioresource Technology, 2004, 91, 243-248.	9.6	119
94	Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochemistry, 2006, 41, 1799-1805.	3.7	119
95	Algal biomass dehydration. Bioresource Technology, 2013, 135, 720-729.	9.6	119
96	Waste biorefineries â€" integrating anaerobic digestion and microalgae cultivation for bioenergy production. Current Opinion in Biotechnology, 2018, 50, 101-110.	6.6	119
97	Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresource Technology, 2010, 101, 5885-5891.	9.6	117
98	Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresource Technology, 2013, 135, 213-221.	9.6	117
99	Biomass based hydrogen production by dark fermentation â€" recent trends and opportunities for greener processes. Current Opinion in Biotechnology, 2018, 50, 136-145.	6.6	117
100	Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnology Advances, 2020, 43, 107554.	11.7	117
101	Biosorption of mercury by the inactivated cells ofpseudomonas aeruginosa PU21 (Rip64). Biotechnology and Bioengineering, 1994, 44, 999-1006.	3.3	116
102	Supercritical fluid extraction of valuable compounds from microalgal biomass. Bioresource Technology, 2015, 184, 291-296.	9.6	116
103	Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresource Technology, 2013, 145, 307-312.	9.6	115
104	Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes. Applied Energy, 2017, 185, 376-409.	10.1	115
105	Batch and continuous biohydrogen production from starch hydrolysate by Clostridium species. International Journal of Hydrogen Energy, 2008, 33, 1803-1812.	7.1	114
106	Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzyme and Microbial Technology, 2009, 44, 417-425.	3.2	114
107	Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresource Technology, 2012, 108, 211-215.	9.6	114
108	Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest. Bioresource Technology, 2013, 145, 285-289.	9.6	114

#	Article	IF	Citations
109	Bio-processing of algal bio-refinery: a review on current advances and future perspectives. Bioengineered, 2019, 10, 574-592.	3.2	114
110	H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnology Letters, 2003, 25, 133-138.	2.2	113
111	A Holistic Approach to Managing Microalgae for Biofuel Applications. International Journal of Molecular Sciences, 2017, 18, 215.	4.1	113
112	Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochemistry, 2007, 42, 40-45.	3.7	112
113	Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock. International Journal of Hydrogen Energy, 2012, 37, 15458-15464.	7.1	111
114	Hygroscopic transformation of woody biomass torrefaction for carbon storage. Applied Energy, 2018, 231, 768-776.	10.1	111
115	Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresource Technology, 2015, 184, 379-385.	9.6	110
116	Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 2014, 155, 245-251.	9.6	109
117	Title is missing!. Biotechnology Letters, 2001, 23, 631-636.	2.2	108
118	Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Bioresource Technology, 2013, 143, 163-171.	9.6	108
119	Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7. Journal of Bioscience and Bioengineering, 2014, 118, 29-33.	2.2	107
120	Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges. Renewable and Sustainable Energy Reviews, 2022, 154, 111852.	16.4	107
121	Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge. International Journal of Hydrogen Energy, 2006, 31, 2200-2210.	7.1	103
122	Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy and Environmental Science, 2013, 6, 1844.	30.8	103
123	Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating. Energy Conversion and Management, 2017, 141, 163-170.	9.2	103
124	Microbial Hydrogen Production with Immobilized Sewage Sludge. Biotechnology Progress, 2002, 18, 921-926.	2.6	102
125	Optimizing biodiesel production in marine Chlamydomonassp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy. Biotechnology for Biofuels, 2014, 7, 97.	6.2	101
126	Torrefaction operation and optimization of microalga residue for energy densification and utilization. Applied Energy, 2015, 154, 622-630.	10.1	101

#	Article	IF	Citations
127	Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas. Bioresource Technology, 2016, 221, 241-250.	9.6	101
128	Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresource Technology, 2016, 200, 557-564.	9.6	101
129	Thermal degradation of carbohydrates, proteins and lipids in microalgae analyzed by evolutionary computation. Energy Conversion and Management, 2018, 160, 209-219.	9.2	101
130	Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Bioresource Technology, 2015, 194, 326-333.	9.6	100
131	Pretreatment of microalgal biomass for efficient biohydrogen production – Recent insights and future perspectives. Bioresource Technology, 2020, 302, 122871.	9.6	100
132	Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge. Process Biochemistry, 2007, 42, 1165-1171.	3.7	99
133	Perspectives on cultivation strategies and photobioreactor designs for photo-fermentative hydrogen production. Bioresource Technology, 2011, 102, 8484-8492.	9.6	98
134	Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes. Bioresource Technology, 2015, 194, 179-186.	9.6	98
135	Current advances on fermentative biobutanol production using third generation feedstock. Biotechnology Advances, 2017, 35, 1049-1059.	11.7	98
136	Improving biohydrogen production in a carrier-induced granular sludge bed by altering physical configuration and agitation pattern of the bioreactor. International Journal of Hydrogen Energy, 2006, 31, 1648-1657.	7.1	97
137	Identification of anti-lung cancer extract from Chlorella vulgaris C-C by antioxidant property using supercritical carbon dioxide extraction. Process Biochemistry, 2010, 45, 1865-1872.	3.7	97
138	Fed-Batch Bioreactor Strategies for Microbial Decolorization of Azo Dye Using a Pseudomonas luteola Strain. Biotechnology Progress, 2000, 16, 979-985.	2.6	95
139	Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Applied Energy, 2012, 100, 41-46.	10.1	95
140	Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzyme and Microbial Technology, 2004, 35, 605-612.	3.2	94
141	Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination. Process Biochemistry, 2006, 41, 2041-2049.	3.7	94
142	Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage. Applied Energy, 2019, 235, 428-441.	10.1	93
143	Removal of antimony (Sb(V)) from Sb mine drainage: Biological sulfate reduction and sulfide oxidation–precipitation. Bioresource Technology, 2013, 146, 799-802.	9.6	92
144	Characterization, extraction and purification of lutein produced by an indigenous microalga Scenedesmus obliquus CNW-N. Biochemical Engineering Journal, 2013, 78, 24-31.	3.6	92

#	Article	IF	CITATIONS
145	Novel approaches of producing bioenergies from microalgae: A recent review. Biotechnology Advances, 2015, 33, 1219-1227.	11.7	92
146	Biohydrogen production with anaerobic sludge immobilized by ethylene-vinyl acetate copolymer. International Journal of Hydrogen Energy, 2005, 30, 1375-1381.	7.1	90
147	A pilot-scale high-rate biohydrogen production system with mixed microflora. International Journal of Hydrogen Energy, 2011, 36, 8758-8764.	7.1	90
148	Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris. Bioresource Technology, 2018, 267, 356-362.	9.6	89
149	pH-stat photoheterotrophic cultivation of indigenous Chlorella vulgaris ESP-31 for biomass and lipid production using acetic acid as the carbon source. Biochemical Engineering Journal, 2012, 64, 1-7.	3.6	88
150	Anaerobic co-digestion of sewage sludge and food waste for hydrogen and VFA production with microbial community analysis. Waste Management, 2018, 78, 789-799.	7.4	88
151	Azo dye decolorization with a mutant Escherichia coli strain. Biotechnology Letters, 2000, 22, 807-812.	2.2	87
152	Analysis of Economic and Environmental Aspects of Microalgae Biorefinery for Biofuels Production: A Review. Biotechnology Journal, 2018, 13, 1700618.	3.5	87
153	Mild cell disruption methods for bio-functional proteins recovery from microalgaeâ€"Recent developments and future perspectives. Algal Research, 2018, 31, 506-516.	4.6	87
154	Microalgae for biofuels, wastewater treatment and environmental monitoring. Environmental Chemistry Letters, 2021, 19, 2891-2904.	16.2	87
155	Recovery of high-value metals from geothermal sites by biosorption and bioaccumulation. Bioresource Technology, 2014, 160, 182-190.	9.6	86
156	Continuous hydrogen production by anaerobic mixed microflora using a hollow-fiber microfiltration membrane bioreactor. International Journal of Hydrogen Energy, 2007, 32, 950-957.	7.1	85
157	Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Applied Microbiology and Biotechnology, 2007, 76, 67-74.	3.6	85
158	Dispersed ozone flotation of Chlorella vulgaris. Bioresource Technology, 2010, 101, 9092-9096.	9.6	85
159	Establishment of an efficient genetic transformation system in Scenedesmus obliquus. Journal of Biotechnology, 2013, 163, 61-68.	3.8	85
160	Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment. Biotechnology for Biofuels, 2014, 7, 88.	6.2	85
161	Biosorption of cadmium by CO2-fixing microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 2012, 105, 74-80.	9.6	84
162	Biohydrogen production by a novel integration of dark fermentation and mixotrophic microalgae cultivation. International Journal of Hydrogen Energy, 2013, 38, 15807-15814.	7.1	84

#	Article	IF	Citations
163	Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresource Technology, 2008, 99, 8299-8303.	9.6	83
164	High yield bio-butanol production by solvent-producing bacterial microflora. Bioresource Technology, 2012, 113, 58-64.	9.6	83
165	Prospects and development of algal-bacterial biotechnology in environmental management and protection. Biotechnology Advances, 2021, 47, 107684.	11.7	83
166	Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix. Process Biochemistry, 2007, 42, 279-284.	3.7	82
167	Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp. JSC4. Bioresource Technology, 2014, 152, 247-252.	9.6	82
168	Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1. Bioresource Technology, 2016, 200, 500-505.	9.6	82
169	Enhancing biomass and lipid productions of microalgae in palm oil mill effluent using carbon and nutrient supplementation. Energy Conversion and Management, 2018, 164, 188-197.	9.2	82
170	Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresource Technology, 2022, 343, 126059.	9.6	82
171	Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Bioresource Technology, 2017, 242, 7-14.	9.6	81
172	Biohydrogen production from microalgae for environmental sustainability. Chemosphere, 2022, 291, 132717.	8.2	81
173	Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresource Technology, 2011, 102, 82-87.	9.6	80
174	Combining enzymatic hydrolysis and dark–photo fermentation processes for hydrogen production from starch feedstock: A feasibility study. International Journal of Hydrogen Energy, 2008, 33, 5224-5233.	7.1	79
175	A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production. Bioresource Technology, 2017, 244, 1341-1348.	9.6	79
176	Sustainable aquaculture and animal feed from microalgae – Nutritive value and techno-functional components. Renewable and Sustainable Energy Reviews, 2021, 150, 111549.	16.4	79
177	Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. Journal of Hazardous Materials, 2009, 161, 920-925.	12.4	78
178	Sequential dark–photo fermentation and autotrophic microalgal growth for high-yield and CO2-free biohydrogen production. International Journal of Hydrogen Energy, 2010, 35, 10944-10953.	7.1	78
179	Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresource Technology, 2011, 102, 8628-8634.	9.6	78
180	Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design. International Journal of Hydrogen Energy, 2007, 32, 940-949.	7.1	77

#	Article	IF	Citations
181	Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading. Bioresource Technology, 2019, 290, 121804.	9.6	77
182	State of the art and challenges of biohydrogen from microalgae. Bioresource Technology, 2019, 289, 121747.	9.6	77
183	Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate. Applied Microbiology and Biotechnology, 2007, 75, 693-701.	3.6	76
184	An energy analysis of torrefaction for upgrading microalga residue as a solid fuel. Bioresource Technology, 2015, 185, 285-293.	9.6	76
185	Biodiesel production using immobilized lipase: feasibility and challenges. Biofuels, Bioproducts and Biorefining, 2016, 10, 896-916.	3.7	76
186	Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3–5 using optical fiber-illuminating photobioreactors. Biochemical Engineering Journal, 2006, 32, 33-42.	3.6	75
187	Engineering strategies for enhancing the production of eicosapentaenoic acid (EPA) from an isolated microalga Nannochloropsis oceanica CY2. Bioresource Technology, 2013, 147, 160-167.	9.6	75
188	Characterization of biomass waste torrefaction under conventional and microwave heating. Bioresource Technology, 2018, 264, 7-16.	9.6	75
189	Adsorption behavior of Cr(VI) by magnetically modified Enteromorpha prolifera based biochar and the toxicity analysis. Journal of Hazardous Materials, 2020, 395, 122658.	12.4	75
190	A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production. International Journal of Hydrogen Energy, 2022, 47, 1481-1498.	7.1	75
191	Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Bioresource Technology, 2008, 99, 3609-3616.	9.6	74
192	Engineering strategies for the enhanced photo-H2 production using effluents of dark fermentation processes as substrate. International Journal of Hydrogen Energy, 2010, 35, 13356-13364.	7.1	74
193	Biodiesel synthesis via heterogeneous catalysis using modified strontium oxides as the catalysts. Bioresource Technology, 2012, 113, 8-13.	9.6	74
194	Microalgae cultivation in palm oil mill effluent (POME) for lipid production and pollutants removal. Energy Conversion and Management, 2018, 174, 430-438.	9.2	73
195	Recent advances in lutein production from microalgae. Renewable and Sustainable Energy Reviews, 2022, 153, 111795.	16.4	7 3
196	Simultaneous production of 2,3-butanediol, ethanol and hydrogen with a Klebsiella sp. strain isolated from sewage sludge. Bioresource Technology, 2008, 99, 7966-7970.	9.6	72
197	Anaerobic granulation: A review of granulation hypotheses, bioreactor designs and emerging green applications. Bioresource Technology, 2020, 300, 122751.	9.6	72
198	Dark fermentative hydrogen production with crude glycerol from biodiesel industry using indigenous hydrogen-producing bacteria. International Journal of Hydrogen Energy, 2013, 38, 15815-15822.	7.1	71

#	Article	IF	CITATIONS
199	A highly efficient two-stage cultivation strategy for lutein production using heterotrophic culture of Chlorella sorokiniana MB-1-M12. Bioresource Technology, 2018, 253, 141-147.	9.6	71
200	Cellulosic ethanol production performance with SSF and SHF processes using immobilized Zymomonas mobilis. Applied Energy, 2012, 100, 19-26.	10.1	70
201	Enhanced removal of Zn 2+ or Cd 2+ by the flocculating Chlorella vulgaris JSC-7. Journal of Hazardous Materials, 2015, 289, 38-45.	12.4	70
202	Optimizing Iron Supplement Strategies for Enhanced Surfactin Production with Bacillus subtilis. Biotechnology Progress, 2004, 20, 979-983.	2.6	69
203	Characterization of photosynthetic carbon dioxide fixation ability of indigenous Scenedesmus obliquus isolates. Biochemical Engineering Journal, 2010, 53, 57-62.	3.6	69
204	Extraction of astaxanthin from <i>Haematococcus pluvialis</i> by supercritical carbon dioxide fluid with ethanol modifier. Engineering in Life Sciences, 2012, 12, 638-647.	3.6	69
205	Recent advances in algae biodiesel production: From upstream cultivation to downstream processing. Bioresource Technology Reports, 2019, 7, 100227.	2.7	69
206	Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 131-141.	5. 3	68
207	Biohydrogen from organic wastes as a clean and environment-friendly energy source: Production pathways, feedstock types, and future prospects. Bioresource Technology, 2021, 342, 126021.	9.6	68
208	A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresource Technology, 2021, 342, 125982.	9.6	68
209	Optimizing lipase production of Burkholderia sp. by response surface methodology. Process Biochemistry, 2006, 41, 1940-1944.	3.7	67
210	Biohydrogen production from cellulosic hydrolysate produced via temperature-shift-enhanced bacterial cellulose hydrolysis. Bioresource Technology, 2009, 100, 5802-5807.	9.6	66
211	Harvesting of microalgae Desmodesmus sp. F51 by bioflocculation with bacterial bioflocculant. Algal Research, 2014, 6, 186-193.	4.6	66
212	Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production. International Journal of Hydrogen Energy, 2019, 44, 14362-14379.	7.1	66
213	Plasma gasification performances of various raw and torrefied biomass materials using different gasifying agents. Bioresource Technology, 2020, 314, 123740.	9.6	66
214	Enhancing cell growth and lutein productivity of Desmodesmus sp. F51 by optimal utilization of inorganic carbon sources and ammonium salt. Bioresource Technology, 2017, 244, 664-671.	9.6	65
215	Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresource Technology, 2018, 252, 180-187.	9.6	65
216	Improvements in algal lipid production: a systems biology and gene editing approach. Critical Reviews in Biotechnology, 2018, 38, 369-385.	9.0	65

#	Article	IF	CITATIONS
217	Enhancing microalgal oil/lipid production from Chlorella sorokiniana CY1 using deep-sea water supplemented cultivation medium. Biochemical Engineering Journal, 2013, 77, 74-81.	3.6	64
218	Electro-peroxone pretreatment for enhanced simulated hospital wastewater treatment and antibiotic resistance genes reduction. Environment International, 2018, 115, 70-78.	10.0	64
219	Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture. Environmental Technology and Innovation, 2020, 20, 101168.	6.1	64
220	Biohydrogen production from microalgae—Major bottlenecks and future research perspectives. Biotechnology Journal, 2021, 16, e2000124.	3.5	64
221	Recent advances and future directions on the valorization of spent mushroom substrate (SMS): A review. Bioresource Technology, 2022, 344, 126157.	9.6	64
222	Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate-buffered culture seeded with municipal sewage sludge. Process Biochemistry, 2006, 41, 1353-1358.	3.7	63
223	Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp. PG01. Process Biochemistry, 2007, 42, 669-675.	3.7	63
224	Exploring the high lipid production potential of a thermotolerant microalga using statistical optimization and semi-continuous cultivation. Bioresource Technology, 2014, 163, 128-135.	9.6	63
225	Feasibility of CO2 mitigation and carbohydrate production by microalga Scenedesmus obliquus CNW-N used for bioethanol fermentation under outdoor conditions: effects of seasonal changes. Biotechnology for Biofuels, 2017, 10, 27.	6.2	63
226	Biosorption of nickel, chromium and zinc by MerP-expressing recombinant Escherichia coli. Journal of Hazardous Materials, 2008, 158, 100-106.	12.4	62
227	Improved Production of Biosurfactant with Newly Isolated Pseudomonas aeruginosa S2. Biotechnology Progress, 2008, 23, 661-666.	2.6	62
228	Microalgae biomass harvesting by bioflocculation-interpretation by classical DLVO theory. Biochemical Engineering Journal, 2015, 101, 160-167.	3.6	62
229	Tyrosinase inhibition, free radical scavenging, antimicroorganism and anticancer proliferation activities of Sapindus mukorossi extracts. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41, 129-135.	5.3	61
230	Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions. Bioresource Technology, 2014, 156, 108-116.	9.6	61
231	Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity. Biotechnology for Biofuels, 2015, 8, 48.	6.2	61
232	Single-step disruption and protein recovery from Chlorella vulgaris using ultrasonication and ionic liquid buffer aqueous solutions as extractive solvents. Biochemical Engineering Journal, 2017, 124, 26-35.	3.6	61
233	Improving cell disruption efficiency to facilitate protein release from microalgae using chemical and mechanical integrated method. Biochemical Engineering Journal, 2018, 135, 83-90.	3.6	61
234	Recent advances in yeast cell-surface display technologies for waste biorefineries. Bioresource Technology, 2016, 215, 324-333.	9.6	60

#	Article	IF	CITATIONS
235	Biohydrogen production in a three-phase fluidized bed bioreactor using sewage sludge immobilized by ethylene–vinyl acetate copolymer. Bioresource Technology, 2009, 100, 3298-3301.	9.6	59
236	Continuous biodiesel conversion via enzymatic transesterification catalyzed by immobilized Burkholderia lipase in a packed-bed bioreactor. Applied Energy, 2016, 168, 340-350.	10.1	59
237	Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment. Renewable Energy, 2020, 156, 349-360.	8.9	59
238	Converting glycerol into hydrogen, ethanol, and diols with a Klebsiella sp. HE1 strain via anaerobic fermentation. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 20-25.	5.3	58
239	Photoheterotrophic growth of Chlorella vulgaris ESP6 on organic acids from dark hydrogen fermentation effluents. Bioresource Technology, 2013, 145, 331-336.	9.6	58
240	Proteins recovery from wet microalgae using liquid biphasic flotation (LBF). Bioresource Technology, 2017, 244, 1329-1336.	9.6	58
241	Combining light strategies with recycled medium to enhance the economic feasibility of phycocyanin production with Spirulina platensis. Bioresource Technology, 2018, 247, 669-675.	9.6	58
242	Surface grafting techniques on the improvement of membrane bioreactor: State-of-the-art advances. Bioresource Technology, 2018, 269, 489-502.	9.6	58
243	Cadmium biosorption by polyvinyl alcohol immobilized recombinant Escherichia coli. Journal of Hazardous Materials, 2009, 169, 651-658.	12.4	57
244	Expression of type 2 diacylglycerol acyltransferse gene <i>DGTT1</i> from <i>Chlamydomonas reinhardtii</i> enhances lipid production in <i>Scenedesmus obliquus</i> Biotechnology Journal, 2016, 11, 336-344.	3.5	57
245	Carbon capture and utilization of fermentation CO2: Integrated ethanol fermentation and succinic acid production as an efficient platform. Applied Energy, 2017, 206, 364-371.	10.1	57
246	Phyto-fabrication of silver nanoparticles by Acacia nilotica leaves: Investigating their antineoplastic, free radical scavenging potential and application in H2O2 sensing. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99, 239-249.	5. 3	57
247	Sulfate-reduction, sulfide-oxidation and elemental sulfur bioreduction process: Modeling and experimental validation. Bioresource Technology, 2013, 147, 202-211.	9.6	56
248	Simultaneous enhancement of CO2 fixation and lutein production with thermo-tolerant Desmodesmus sp. F51 using a repeated fed-batch cultivation strategy. Biochemical Engineering Journal, 2014, 86, 33-40.	3.6	56
249	Extraction of proteins from microalgae using integrated method of sugaring-out assisted liquid biphasic flotation (LBF) and ultrasound. Ultrasonics Sonochemistry, 2018, 48, 231-239.	8.2	56
250	Enhanced biohydrogen production from date seeds by Clostridium thermocellum ATCC 27405. International Journal of Hydrogen Energy, 2020, 45, 22271-22280.	7.1	56
251	Advanced oxidation process based on hydroxyl and sulfate radicals to degrade refractory organic pollutants in landfill leachate. Chemosphere, 2022, 297, 134214.	8.2	56
252	Characterization of phenol and trichloroethene degradation by the rhizobium Ralstonia taiwanensis. Research in Microbiology, 2004, 155, 672-680.	2.1	55

#	Article	IF	CITATIONS
253	Immobilized cell fixed-bed bioreactor for wastewater decolorization. Process Biochemistry, 2005, 40, 3434-3440.	3.7	55
254	Strategies to enhance cell growth and achieve highâ€level oil production of a <i>Chlorella vulgaris</i> isolate. Biotechnology Progress, 2010, 26, 679-686.	2.6	55
255	Engineering microbes for direct fermentation of cellulose to bioethanol. Critical Reviews in Biotechnology, 2018, 38, 1089-1105.	9.0	55
256	Enhancing lutein production with mixotrophic cultivation of Chlorella sorokiniana MB-1-M12 using different bioprocess operation strategies. Bioresource Technology, 2019, 278, 17-25.	9.6	55
257	Pyrolysis synergy of municipal solid waste (MSW): A review. Bioresource Technology, 2020, 318, 123912.	9.6	55
258	Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products. Biotechnology Advances, 2020, 44, 107631.	11.7	55
259	Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction. Fuel, 2020, 279, 118435.	6.4	55
260	Continuous cellulosic bioethanol co-fermentation by immobilized Zymomonas mobilis and suspended Pichia stipitis in a two-stage process. Applied Energy, 2020, 266, 114871.	10.1	55
261	Improving microalgal oil collecting efficiency by pretreating the microalgal cell wall with destructive bacteria. Biochemical Engineering Journal, 2013, 81, 170-176.	3.6	54
262	Lutein production with wild-type and mutant strains of Chlorella sorokiniana MB-1 under mixotrophic growth. Journal of the Taiwan Institute of Chemical Engineers, 2017, 79, 66-73.	5.3	54
263	Microwave-assisted wet torrefaction of microalgae under various acids for coproduction of biochar and sugar. Journal of Cleaner Production, 2020, 253, 119944.	9.3	54
264	Microalgae-based wastewater treatment – Microalgae-bacteria consortia, multi-omics approaches and algal stress response. Science of the Total Environment, 2022, 845, 157110.	8.0	54
265	Multicomponent cellulase production by <i>Cellulomonas biazotea</i> NCIMâ€2550 and its applications for cellulosic biohydrogen production. Biotechnology Progress, 2010, 26, 406-416.	2.6	52
266	Production of biohydrogen from hydrolyzed bagasse with thermally preheated sludge. International Journal of Hydrogen Energy, 2009, 34, 7612-7617.	7.1	52
267	Producing carbohydrate-rich microalgal biomass grown under mixotrophic conditions as feedstock for biohydrogen production. International Journal of Hydrogen Energy, 2016, 41, 4413-4420.	7.1	52
268	Recent advances in hydrogen production by thermo-catalytic conversion of biomass. International Journal of Hydrogen Energy, 2019, 44, 14266-14278.	7.1	52
269	Bio-based rhamnolipids production and recovery from waste streams: Status and perspectives. Bioresource Technology, 2021, 319, 124213.	9.6	52
270	Reuniting the Biogeochemistry of Algae for a Low-Carbon Circular Bioeconomy. Trends in Plant Science, 2021, 26, 729-740.	8.8	52

#	Article	IF	Citations
271	Photo fermentative hydrogen production using dominant components (acetate, lactate, and butyrate) in dark fermentation effluents. International Journal of Hydrogen Energy, 2011, 36, 14059-14068.	7.1	51
272	Enhancing the production of eicosapentaenoic acid (EPA) from Nannochloropsis oceanica CY2 using innovative photobioreactors with optimal light source arrangements. Bioresource Technology, 2015, 191, 407-413.	9.6	51
273	Hydrogen production from biomass using iron-based chemical looping technology: Validation, optimization, and efficiency. Chemical Engineering Journal, 2018, 337, 405-415.	12.7	51
274	Quantitative Analysis and Equilibrium Models of Selective Adsorption in Multimetal Systems Using a Bacterial Biosorbent. Separation Science and Technology, 1998, 33, 611-632.	2.5	50
275	Integration of fermentative hydrogen process and fuel cell for on-line electricity generation. International Journal of Hydrogen Energy, 2007, 32, 802-808.	7.1	50
276	Dark Fermentative Hydrogen Production from Xylose in Different Bioreactors Using Sewage Sludge Microflora. Energy & Sewage Sludge 113-119.	5.1	50
277	Effects of nitrogen source availability and bioreactor operating strategies on lutein production with Scenedesmus obliquus FSP-3. Bioresource Technology, 2015, 184, 131-138.	9.6	50
278	Evolutionary engineering of salt-resistant Chlamydomonas sp. strains reveals salinity stress-activated starch-to-lipid biosynthesis switching. Bioresource Technology, 2017, 245, 1484-1490.	9.6	50
279	Landfill leachate wastewater treatment to facilitate resource recovery by a coagulation-flocculation process via hydrogen bond. Chemosphere, 2021, 262, 127829.	8.2	50
280	Separation of microalgae with different lipid contents by dielectrophoresis. Bioresource Technology, 2013, 135, 137-141.	9.6	49
281	Surfactant (CTAB) assisted flower-like Bi2WO6 through hydrothermal method: Unintentional bromide ion doping and photocatalytic activity. Catalysis Communications, 2017, 88, 68-72.	3.3	49
282	Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum. Applied Energy, 2020, 277, 115531.	10.1	49
283	Biofuel from Microalgae: Sustainable Pathways. Sustainability, 2020, 12, 8009.	3.2	49
284	Photobioreactor strategies for improving the CO2 fixation efficiency of indigenous Scenedesmus obliquus CNW-N: Statistical optimization of CO2 feeding, illumination, and operation mode. Bioresource Technology, 2012, 105, 106-113.	9.6	48
285	Microalgae harvesting and subsequent biodiesel conversion. Bioresource Technology, 2013, 140, 179-186.	9.6	48
286	Integrated algal biorefineries from process systems engineering aspects: A review. Bioresource Technology, 2019, 291, 121939.	9.6	48
287	Applying microwave vacuum pyrolysis to design moisture retention and pH neutralizing palm kernel shell biochar for mushroom production. Bioresource Technology, 2020, 312, 123572.	9.6	48
288	Smart sustainable biorefineries for lignocellulosic biomass. Bioresource Technology, 2022, 344, 126215.	9.6	47

#	Article	IF	Citations
289	Selective Adsorption/Recovery of Pb, Cu, and Cd with Multiple Fixed Beds Containing Immobilized Bacterial Biomass. Biotechnology Progress, 1998, 14, 735-741.	2.6	46
290	Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines. Toxicology and Applied Pharmacology, 2009, 235, 253-260.	2.8	46
291	Exploring fermentation strategies for enhanced lactic acid production with polyvinyl alcohol-immobilized Lactobacillus plantarum 23 using microalgae as feedstock. Bioresource Technology, 2020, 308, 123266.	9.6	46
292	Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: Modeling and experimental validation. Journal of Hazardous Materials, 2014, 264, 16-24.	12.4	45
293	Applications of microfluidics in microalgae biotechnology: A review. Biotechnology Journal, 2016, 11, 327-335.	3.5	45
294	Using an innovative pH-stat CO2 feeding strategy to enhance cell growth and C-phycocyanin production from Spirulina platensis. Biochemical Engineering Journal, 2016, 112, 78-85.	3.6	45
295	Expression of Synthetic Phytoene Synthase Gene to Enhance β arotene Production in <i>Scenedesmus</i> sp. CPC2. Biotechnology Journal, 2017, 12, 1700204.	3.5	45
296	Enhancing lutein production with Chlorella sorokiniana Mb-1 by optimizing acetate and nitrate concentrations under mixotrophic growth. Journal of the Taiwan Institute of Chemical Engineers, 2017, 79, 88-96.	5.3	45
297	Microalgae cultivation in wastewater and potential processing strategies using solvent and membrane separation technologies. Journal of Water Process Engineering, 2021, 39, 101701.	5.6	45
298	How does the Internet of Things (IoT) help in microalgae biorefinery?. Biotechnology Advances, 2022, 54, 107819.	11.7	45
299	Structure and Biological Activity Analysis of Fucoidan Isolated from <i>Sargassum siliquosum</i> ACS Omega, 2020, 5, 32447-32455.	3.5	45
300	Pseudoxanthomonas kaohsiungensis, sp. nov., a novel bacterium isolated from oil-polluted site produces extracellular surface activity. Systematic and Applied Microbiology, 2005, 28, 137-144.	2.8	44
301	Identification and Kinetic Characteristics of an Indigenous Diesel-degrading Gordonia alkanivorans Strain. World Journal of Microbiology and Biotechnology, 2005, 21, 1409-1414.	3.6	44
302	Enhancing butanol production with Clostridium pasteurianum CH4 using sequential glucose–glycerol addition and simultaneous dual-substrate cultivation strategies. Bioresource Technology, 2013, 135, 324-330.	9.6	44
303	Fixed-bed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge. Bioresource Technology, 2014, 160, 175-181.	9.6	44
304	Using recombinant cyanobacterium (Synechococcus elongatus) with increased carbohydrate productivity as feedstock for bioethanol production via separate hydrolysis and fermentation process. Bioresource Technology, 2015, 184, 33-41.	9.6	44
305	Bioreactors configured with distributors and carriers enhance the performance of continuous dark hydrogen fermentation. Bioresource Technology, 2009, 100, 4381-4387.	9.6	43
306	Thermophilic hydrogen production from sludge pretreated by thermophilic bacteria: Analysis of the advantages of microbial community and metabolism. Bioresource Technology, 2014, 172, 433-437.	9.6	43

#	Article	IF	Citations
307	Adding carbon-based materials on anaerobic digestion performance: A mini-review. Bioresource Technology, 2020, 300, 122696.	9.6	43
308	Undecylprodigiosin selectively induces apoptosis in human breast carcinoma cells independent of p53. Toxicology and Applied Pharmacology, 2007, 225, 318-328.	2.8	42
309	Fermentative biohydrogen production from starch-containing textile wastewater. International Journal of Hydrogen Energy, 2012, 37, 2050-2057.	7.1	42
310	Microalgae Oil: Algae Cultivation and Harvest, Algae Residue Torrefaction and Diesel Engine Emissions Tests. Aerosol and Air Quality Research, 2015, 15, 81-98.	2.1	42
311	Lutein in specific marigold flowers and microalgae. Journal of the Taiwan Institute of Chemical Engineers, 2015, 49, 90-94.	5 . 3	42
312	Dark fermentative hydrogen production using macroalgae (Ulva sp.) as the renewable feedstock. Applied Energy, 2020, 262, 114574.	10.1	42
313	Enhanced biodegradation of chlortetracycline via a microalgae-bacteria consortium. Bioresource Technology, 2022, 343, 126149.	9.6	42
314	Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochemical Engineering Journal, 2022, 185, 108541.	3.6	42
315	Coagulation-membrane filtration of Chlorella vulgaris. Bioresource Technology, 2012, 108, 184-189.	9.6	41
316	Hydrogen production using biocathode single-chamber microbial electrolysis cells fed by molasses wastewater at low temperature. International Journal of Hydrogen Energy, 2014, 39, 19369-19375.	7.1	41
317	Selecting an indigenous microalgal strain for lipid production in anaerobically treated piggery wastewater. Bioresource Technology, 2015, 191, 369-376.	9.6	41
318	Economic and life-cycle greenhouse gas optimization of microalgae-to-biofuels chains. Bioresource Technology, 2018, 267, 550-559.	9.6	41
319	Diffusion characteristics and controlled release of bacterial fertilizers from modified calcium alginate capsules. Bioresource Technology, 2008, 99, 1904-1910.	9.6	40
320	Disruption of thermo-tolerant Desmodesmus sp. F51 in high pressure homogenization as a prelude to carotenoids extraction. Biochemical Engineering Journal, 2016, 109, 243-251.	3.6	40
321	Ability of an alkali-tolerant mutant strain of the microalga Chlorella sp. AT1 to capture carbon dioxide for increasing carbon dioxide utilization efficiency. Bioresource Technology, 2017, 244, 243-251.	9.6	40
322	Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery. Renewable and Sustainable Energy Reviews, 2018, 96, 76-90.	16.4	40
323	Biodiesel production from heterotrophic oleaginous microalga Thraustochytrium sp. BM2 with enhanced lipid accumulation using crude glycerol as alternative carbon source. Bioresource Technology, 2020, 306, 123113.	9.6	40
324	Semi-batch cultivation of Chlorella sorokiniana AK-1 with dual carriers for the effective treatment of full strength piggery wastewater treatment. Bioresource Technology, 2021, 326, 124773.	9.6	40

#	Article	IF	CITATIONS
325	Caldimonas taiwanensis sp. nov., a amylase producing bacterium isolated from a hot spring. Systematic and Applied Microbiology, 2005, 28, 415-420.	2.8	39
326	Prodigiosin downâ€regulates SKP2 to induce p27 ^{KIP1} stabilization and antiproliferation in human lung adenocarcinoma cells. British Journal of Pharmacology, 2012, 166, 2095-2108.	5.4	39
327	Waste to energy: the effects of Pseudomonas sp. on Chlorella sorokiniana biomass and lipid productions in palm oil mill effluent. Clean Technologies and Environmental Policy, 2018, 20, 2037-2045.	4.1	39
328	The Role of Biochar in Regulating the Carbon, Phosphorus, and Nitrogen Cycles Exemplified by Soil Systems. Sustainability, 2021, 13, 5612.	3.2	39
329	Lutein production with Chlorella sorokiniana MB-1-M12 using novel two-stage cultivation strategies – metabolic analysis and process improvement. Bioresource Technology, 2021, 334, 125200.	9.6	39
330	Producing fucoxanthin from algae – Recent advances in cultivation strategies and downstream processing. Bioresource Technology, 2022, 344, 126170.	9.6	39
331	Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering. Biotechnology Journal, 2015, 10, 886-898.	3.5	38
332	Valorization of fruit wastes for circular bioeconomy: Current advances, challenges, and opportunities. Bioresource Technology, 2022, 359, 127459.	9.6	38
333	Characterization of floating activity of indigenous diesel-assimilating bacterial isolates. Journal of Bioscience and Bioengineering, 2005, 99, 466-472.	2.2	37
334	Bio-butanol production from glycerol with Clostridium pasteurianum CH4: the effects of butyrate addition and in situ butanol removal via membrane distillation. Biotechnology for Biofuels, 2015, 8, 168.	6.2	37
335	Environmental life cycle comparisons of pig farming integrated with anaerobic digestion and algae-based wastewater treatment. Journal of Environmental Management, 2020, 264, 110512.	7.8	37
336	Biohydrogen Production From Renewable Biomass Resources. , 2019, , 247-277.		37
337	Exploring bioaugmentation strategies for azo-dye decolorization using a mixed consortium of Pseudomonas luteola and Escherichia coli. Process Biochemistry, 2006, 41, 1574-1581.	3.7	36
338	Supercritical water gasification (SCWG) as a potential tool for the valorization of phycoremediation-derived waste algal biomass for biofuel generation. Journal of Hazardous Materials, 2021, 418, 126278.	12.4	36
339	Characterization of Burkholderia lipase immobilized on celite carriers. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40, 359-363.	5. 3	35
340	Characterization of an alkaline earth metal-doped solid superacid and its activity for the esterification of oleic acid with methanol. Green Chemistry, 2015, 17, 3609-3620.	9.0	35
341	Non-catalytic in-situ (trans) esterification of lipids in wet microalgae Chlorella vulgaris under subcritical conditions for the synthesis of fatty acid methyl esters. Applied Energy, 2019, 248, 526-537.	10.1	35
342	Energy, exergy, and environmental analyses of renewable hydrogen production through plasma gasification of microalgal biomass. Energy, 2021, 223, 120025.	8.8	35

#	Article	IF	CITATIONS
343	Monitoring dark hydrogen fermentation performance of indigenous Clostridium butyricum by hydrogenase gene expression using RT-PCR and qPCR. International Journal of Hydrogen Energy, 2008, 33, 4730-4738.	7.1	34
344	Continuous Biohydrogen Production from Starch with Granulated Mixed Bacterial Microflora. Energy & Ene	5.1	34
345	Biohydrogen from lignocellulosic feedstock via one-step process. International Journal of Hydrogen Energy, 2012, 37, 15569-15574.	7.1	34
346	Life cycle assessment of upgraded microalgae-to-biofuel chains. Bioresource Technology, 2019, 288, 121492.	9.6	34
347	Effects of dry and wet torrefaction pretreatment on microalgae pyrolysis analyzed by TG-FTIR and double-shot Py-GC/MS. Energy, 2020, 210, 118579.	8.8	34
348	Lactic Acid Production from Renewable Feedstocks Using Poly(vinyl alcohol)-Immobilized <i>Lactobacillus plantarum</i> 23. Industrial & Engineering Chemistry Research, 2020, 59, 17156-17164.	3.7	34
349	Covalent organic framework EB-COF:Br as adsorbent for phosphorus (V) or arsenic (V) removal from nearly neutral waters. Chemosphere, 2020, 253, 126736.	8.2	34
350	Biosurfactant production by Serratia marcescens SS-1 and its isogenic strain SMΔR defective in SpnR, a quorum-sensing LuxR family protein. Biotechnology Letters, 2004, 26, 799-802.	2.2	33
351	Fermentative hydrogen production from hydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterial isolate. International Journal of Hydrogen Energy, 2009, 34, 6189-6200.	7.1	33
352	Enhancing the performance of pilot-scale fermentative hydrogen production by proper combinations of HRT and substrate concentration. International Journal of Hydrogen Energy, 2011, 36, 14289-14294.	7.1	33
353	Effects of pH and fermentation strategies on 2,3-butanediol production with an isolated Klebsiella sp. Zmd30 strain. Bioresource Technology, 2014, 152, 169-176.	9.6	33
354	Improving protein production of indigenous microalga <i>Chlorella vulgaris</i> FSPâ€E by photobioreactor design and cultivation strategies. Biotechnology Journal, 2015, 10, 905-914.	3.5	33
355	Extractive disruption process integration using ultrasonication and an aqueous twoâ€phase system for protein recovery from <i>Chlorella sorokiniana</i> . Engineering in Life Sciences, 2017, 17, 357-369.	3.6	33
356	A multi-objective hybrid machine learning approach-based optimization for enhanced biomass and bioactive phycobiliproteins production in Nostoc sp. CCC-403. Bioresource Technology, 2021, 329, 124908.	9.6	33
357	Emerging algal nanotechnology for high-value compounds: A direction to future food production. Trends in Food Science and Technology, 2021, 116, 290-302.	15.1	33
358	Biohydrogen production from pure and natural lignocellulosic feedstock with chemical pretreatment and bacterial hydrolysis. International Journal of Hydrogen Energy, 2011, 36, 13955-13963.	7.1	32
359	Producing 2,3-butanediol from agricultural waste using an indigenous Klebsiella sp. Zmd30 strain. Biochemical Engineering Journal, 2012, 69, 32-40.	3.6	32
360	Rapid and in Vivo Quantification of Cellular Lipids in Chlorella vulgaris Using Near-Infrared Raman Spectrometry. Analytical Chemistry, 2013, 85, 2155-2160.	6.5	32

#	Article	IF	Citations
361	Simultaneous nutrient removal and lipid production with Chlorella vulgaris on sterilized and non-sterilized anaerobically pretreated piggery wastewater. Biochemical Engineering Journal, 2015, 103, 177-184.	3.6	32
362	Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions. Applied Energy, 2017, 197, 63-82.	10.1	32
363	A novel process for the mixotrophic production of lutein with Chlorella sorokiniana MB-1-M12 using aquaculture wastewater. Bioresource Technology, 2019, 290, 121786.	9.6	32
364	Enhancing production of lutein by a mixotrophic cultivation system using microalga Scenedesmus obliquus CWL-1. Bioresource Technology, 2019, 291, 121891.	9.6	32
365	Towards protein production and application by using Chlorella species as circular economy. Bioresource Technology, 2019, 289, 121625.	9.6	32
366	Isolation and purification of brown algae fucoidan from Sargassum siliquosum and the analysis of anti-lipogenesis activity. Biochemical Engineering Journal, 2021, 165, 107798.	3.6	32
367	Removal and recovery of lead fixed-bed biosorption with immobilized bacterial biomass. Water Science and Technology, 1998, 38, 171-178.	2.5	32
368	Integrating anaerobic digestion and microalgae cultivation for dairy wastewater treatment and potential biochemicals production from the harvested microalgal biomass. Chemosphere, 2022, 291, 133057.	8.2	32
369	Bioremediation of sulfonamides by a microalgae-bacteria consortium – Analysis of pollutants removal efficiency, cellular composition, and bacterial community. Bioresource Technology, 2022, 351, 126964.	9.6	32
370	Polypeptides for heavy-metal biosorption: capacity and specificity of two heterogeneous MerP proteins. Enzyme and Microbial Technology, 2003, 33, 379-385.	3.2	31
371	Relationship among growth parameters for Clostridium butyricum, hydA gene expression, and biohydrogen production in a sucrose-supplemented batch reactor. Applied Microbiology and Biotechnology, 2008, 78, 525-532.	3.6	31
372	Exopolysaccharides produced by Gordonia alkanivorans enhance bacterial degradation activity for diesel. Biotechnology Letters, 2008, 30, 1201-1206.	2.2	31
373	Recent progress in catalytic conversion of microalgae oil to green hydrocarbon: A review. Journal of the Taiwan Institute of Chemical Engineers, 2017, 79, 116-124.	5.3	31
374	Effect of wet torrefaction on pyrolysis kinetics and conversion of microalgae carbohydrates, proteins, and lipids. Energy Conversion and Management, 2021, 227, 113609.	9.2	31
375	Pollution prevention and waste phycoremediation by algal-based wastewater treatment technologies: The applications of high-rate algal ponds (HRAPs) and algal turf scrubber (ATS). Journal of Environmental Management, 2021, 296, 113193.	7.8	31
376	Valorization of wastewater through microalgae as a prospect for generation of biofuel and high-value products. Journal of Cleaner Production, 2022, 362, 132114.	9.3	31
377	Optimal biostimulation strategy for phenol degradation with indigenous rhizobium Ralstonia taiwanensis. Journal of Hazardous Materials, 2007, 139, 232-237.	12.4	30
378	Phenol Degradation and Toxicity Assessment upon Biostimulation to an Indigenous Rhizobium Ralstonia taiwanensis. Biotechnology Progress, 2008, 21, 1085-1092.	2.6	30

#	Article	IF	Citations
379	Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1. Bioresource Technology, 2011, 102, 8384-8392.	9.6	30
380	Evaluating new bio-hydrogen producers: Clostridium perfringens strain JJC, Clostridium bifermentans strain WYM and Clostridium sp. strain Ade.TY. Journal of Bioscience and Bioengineering, 2018, 125, 590-598.	2.2	30
381	Isolation and characterization of Chlorella sp. mutants with enhanced thermo- and CO2 tolerances for CO2 sequestration and utilization of flue gases. Biotechnology for Biofuels, 2019, 12, 251.	6.2	30
382	Enhanced production of microalgal lipids using a heterotrophic marine microalga Thraustochytrium sp. BM2. Biochemical Engineering Journal, 2020, 154, 107429.	3.6	30
383	Metabolic engineering probiotic yeast produces 3S, 3â€2S-astaxanthin to inhibit B16F10 metastasis. Food and Chemical Toxicology, 2020, 135, 110993.	3.6	30
384	Enhancing carbohydrate repartitioning into lipid and carotenoid by disruption of microalgae starch debranching enzyme. Communications Biology, 2021, 4, 450.	4.4	30
385	Microalgae: The Future Supply House of Biohydrogen and Biogas. Frontiers in Energy Research, 2021, 9,	2.3	30
386	Characterization and high-level production of xylanase from an indigenous cellulolytic bacterium Acinetobacter junii F6-02 from southern Taiwan soil. Biochemical Engineering Journal, 2010, 53, 77-84.	3.6	29
387	Gasification kinetics of raw and wet-torrefied microalgae Chlorella vulgaris ESP-31 in carbon dioxide. Bioresource Technology, 2017, 244, 1393-1399.	9.6	29
388	Light/dark cycling causes delayed lipid accumulation and increased photoperiod-based biomass yield by altering metabolic flux in oleaginous Chlamydomonas sp Biotechnology for Biofuels, 2019, 12, 39.	6.2	29
389	Algae-derived hydrocolloids in foods: applications and health-related issues. Bioengineered, 2021, 12, 3787-3801.	3.2	29
390	Localization Effect on the Metal Biosorption Capability of Recombinant Mammalian and Fish Metallothioneins in <i>Escherichia coli</i> i>. Biotechnology Progress, 2006, 22, 1256-1264.	2.6	29
391	An assessment of the toxicity of metals to Pseudomonas aeruginosa PU21 (Rip64). Bioresource Technology, 2006, 97, 1880-1886.	9.6	28
392	Converting crude glycerol to 1,3-propandiol using resting and immobilized Klebsiella sp. HE-2 cells. Biochemical Engineering Journal, 2011, 58-59, 177-183.	3.6	28
393	Characterization and kinetics of bio-butanol production with Clostridium acetobutylicum ATCC824 using mixed sugar medium simulating microalgae-based carbohydrates. Biochemical Engineering Journal, 2014, 91, 220-230.	3.6	28
394	Improving carbohydrate production of <i>Chlorella sorokiniana</i> NIESâ€2168 through semiâ€continuous process coupled with mixotrophic cultivation. Biotechnology Journal, 2016, 11, 1072-1081.	3.5	28
395	Iron oxide reduction by torrefied microalgae for CO2 capture and abatement in chemical-looping combustion. Energy, 2019, 186, 115903.	8.8	28
396	Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae. Applied Energy, 2021, 300, 117372.	10.1	28

#	Article	IF	CITATIONS
397	Effect of molecular mass and sulfate content of fucoidan from Sargassum siliquosum on antioxidant, anti-lipogenesis, and anti-inflammatory activity. Journal of Bioscience and Bioengineering, 2021, 132, 359-364.	2.2	28
398	Integrating anaerobic digestion with bioelectrochemical system for performance enhancement: A mini review. Bioresource Technology, 2022, 345, 126519.	9.6	28
399	Haematococcus pluvialis: A potential feedstock for multiple-product biorefining. Journal of Cleaner Production, 2022, 344, 131103.	9.3	28
400	Strategies for enhancing lipid production from indigenous microalgae isolates. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63, 189-194.	5.3	27
401	Recovery of gold from industrial wastewater by extracellular proteins obtained from a thermophilic bacterium Tepidimonas fonticaldi AT-A2. Bioresource Technology, 2017, 239, 160-170.	9.6	27
402	Design of photobioreactors for algal cultivation. , 2019, , 225-256.		27
403	Current advances and future challenges of AloT applications in particulate matters (PM) monitoring and control. Journal of Hazardous Materials, 2021, 419, 126442.	12.4	27
404	Fermentative lactic acid production from seaweed hydrolysate using Lactobacillus sp. And Weissella sp. Bioresource Technology, 2022, 344, 126166.	9.6	27
405	Dark Hydrogen Fermentation from Hydrolyzed Starch Treated with Recombinant Amylase Originating from <i>Caldimonastaiwanensis</i> On1. Biotechnology Progress, 2007, 23, 1312-1320.	2.6	26
406	Improving PCR and qPCR detection of hydrogenase A (hydA) associated with Clostridia in pure cultures and environmental sludges using bovine serum albumin. Applied Microbiology and Biotechnology, 2007, 77, 645-656.	3.6	26
407	Prodigiosin-induced cytotoxicity involves RAD51 down-regulation through the JNK and p38 MAPK pathways in human breast carcinoma cell lines. Toxicology Letters, 2012, 212, 83-89.	0.8	26
408	Biohydrogen from cellulosic feedstock: Dilution-to-stimulation approach. International Journal of Hydrogen Energy, 2012, 37, 15582-15587.	7.1	26
409	Tepidimonas fonticaldi sp. nov., a slightly thermophilic betaproteobacterium isolated from a hot spring. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1810-1816.	1.7	26
410	Improvement of outdoor culture efficiency of cyanobacteria by over-expression of stress tolerance genes and its implication as bio-refinery feedstock. Bioresource Technology, 2017, 244, 1294-1303.	9.6	26
411	Continuous production of algicidal compounds against Akashiwo sanguinea via a Vibrio sp. co-culture. Bioresource Technology, 2020, 295, 122246.	9.6	26
412	Efficient biotransformation of l-lysine into cadaverine by strengthening pyridoxal 5'-phosphate-dependent proteins in Escherichia coli with cold shock treatment. Biochemical Engineering Journal, 2020, 161, 107659.	3.6	26
413	Current application of electrical pre-treatment for enhanced microalgal biomolecules extraction. Bioresource Technology, 2020, 302, 122874.	9.6	26
414	Microalgaeâ€microbial fuel cell (<scp>mMFC</scp>): an integrated process for electricity generation, wastewater treatment, <scp>CO₂</scp> sequestration and biomass production. International Journal of Energy Research, 2020, 44, 9254-9265.	4.5	26

#	Article	IF	CITATIONS
415	Emerging prospects of microbial production of omega fatty acids: Recent updates. Bioresource Technology, 2022, 360, 127534.	9.6	26
416	Biodiesel Production from Waste Cooking Oil by Two-step Catalytic Conversion. Energy Procedia, 2014, 61, 1302-1305.	1.8	25
417	Ethanol production by modified polyvinyl alcohol-immobilized Zymomonas mobilis and in situ membrane distillation under very high gravity condition. Applied Energy, 2017, 202, 1-5.	10.1	25
418	High-performance enzymatic biofuel cell based on three-dimensional graphene. International Journal of Hydrogen Energy, 2019, 44, 30367-30374.	7.1	25
419	Circular bioeconomy approaches for sustainability. Bioresource Technology, 2020, 318, 124084.	9.6	25
420	Machine learningâ€based energy consumption clustering and forecasting for mixedâ€use buildings. International Journal of Energy Research, 2020, 44, 9659-9673.	4.5	25
421	Comparative life cycle assessment and economic analysis of methanol/hydrogen production processes for fuel cell vehicles. Journal of Cleaner Production, 2021, 300, 126959.	9.3	25
422	Effect of pH on biomass production and carbohydrate accumulation of Chlorella vulgaris JSC-6 under autotrophic, mixotrophic, and photoheterotrophic cultivation. Bioresource Technology, 2022, 351, 127021.	9.6	25
423	Exploring multi-metal biosorption by indigenous metal-hyperresistant Enterobacter sp. J1 using experimental design methodologies. Journal of Hazardous Materials, 2008, 153, 372-381.	12.4	24
424	Lutein recovery from Chlorella sp. ESP-6 with coagulants. Bioresource Technology, 2013, 139, 176-180.	9.6	24
425	Liquid triphasic systems as sustainable downstream processing of Chlorella sp. biorefinery for potential biofuels and feed production. Bioresource Technology, 2021, 333, 125075.	9.6	24
426	Boosting photo-biochemical conversion and carbon dioxide bio-fixation of Chlorella vulgaris in an optimized photobioreactor with airfoil-shaped deflectors. Bioresource Technology, 2021, 337, 125355.	9.6	24
427	Biosorption of Lead, Copper, and Cadmium with Continuous Hollow-Fiber Microfiltration Processes. Separation Science and Technology, 1999, 34, 1607-1627.	2.5	23
428	Current developments in highâ€ŧhroughput analysis for microalgae cellular contents. Biotechnology Journal, 2013, 8, 1301-1314.	3.5	23
429	Sonication and grinding pre-treatments on Gelidium amansii seaweed for the extraction and characterization of Agarose. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	6.0	23
430	Application of thermo-separating aqueous two-phase system in extractive bioconversion of polyhydroxyalkanoates by Cupriavidus necator H16. Bioresource Technology, 2019, 287, 121474.	9.6	23
431	Immobilization of Hg(II) on high-salinity Spirulina residue-induced biochar from aqueous solutions: Sorption and transformation mechanisms by the dual-mode isotherms. Environmental Pollution, 2020, 265, 115087.	7.5	23
432	Microbial electrolysis: a promising approach for treatment and resource recovery from industrial wastewater. Bioengineered, 2022, 13, 8115-8134.	3.2	23

#	Article	IF	CITATIONS
433	Development of microbial mercury detoxification processes using mercury-hyperresistant strain of Pseudomonas aeruginosa PU21., 1998, 57, 462-470.		22
434	Fermentative production of biofuels with entrapped anaerobic sludge using sequential HRT shifting operation in continuous cultures. Journal of the Taiwan Institute of Chemical Engineers, 2007, 38, 205-213.	1.4	22
435	Selection of elite microalgae for biodiesel production in tropical conditions using a standardized platform. Bioresource Technology, 2013, 147, 135-142.	9.6	22
436	Struvite as alternative nutrient source for cultivation of microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 2015, 56, 73-76.	5.3	22
437	Docosahexaenoic acid production from crude glycerol by Schizochytrium limacinum SR21. Clean Technologies and Environmental Policy, 2016, 18, 2209-2216.	4.1	22
438	Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater. Bioresource Technology, 2022, 352, 127086.	9.6	22
439	Sequencing batch reactor enhances bacterial hydrolysis of starch promoting continuous bio-hydrogen production from starch feedstock. International Journal of Hydrogen Energy, 2009, 34, 8549-8557.	7.1	21
440	Cloning and characterization of a robust recombinant azoreductase from Shewanella xiamenensis BC01. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61, 97-105.	5.3	21
441	Characterization of a heat-tolerant Chlorella sp. GD mutant with enhanced photosynthetic CO2 fixation efficiency and its implication as lactic acid fermentation feedstock. Biotechnology for Biofuels, 2017, 10, 214.	6.2	21
442	Direct and highly productive conversion of cyanobacteria Arthrospira platensis to ethanol with CaCl2 addition. Biotechnology for Biofuels, 2018, 11, 50.	6.2	21
443	Investigation of reverse ionic diffusion in forward-osmosis-aided dewatering of microalgae: A molecular dynamics study. Bioresource Technology, 2019, 279, 181-188.	9.6	21
444	Methods for rapid screening and isolation of bacteria producing acidic lipase: feasibility studies and novel activity assay protocols. World Journal of Microbiology and Biotechnology, 2007, 23, 633-640.	3.6	20
445	Lipolytic activity of suspended and membrane immobilized lipase originating from indigenous Burkholderia sp. C20. Bioresource Technology, 2008, 99, 1616-1622.	9.6	20
446	Hydrocarbon degrading potential of bacteria isolated from oil-contaminated soil. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40, 580-582.	5.3	20
447	Kinetics of transesterification of olive oil with methanol catalyzed by immobilized lipase derived from an isolated Burkholderia sp. strain. Bioresource Technology, 2013, 145, 193-203.	9.6	20
448	The effects of dissolved oxygen level on the distribution of 1,3-propanediol and 2,3-butanediol produced from glycerol by an isolated indigenous Klebsiella sp. Ana-WS5. Bioresource Technology, 2014, 153, 374-378.	9.6	20
449	Exploring the inhibitory characteristics of acid hydrolysates upon butanol fermentation: A toxicological assessment. Bioresource Technology, 2015, 198, 571-576.	9.6	20
450	High-level l-lysine bioconversion into cadaverine with enhanced productivity using engineered Escherichia coli whole-cell biocatalyst. Biochemical Engineering Journal, 2020, 157, 107547.	3.6	20

#	Article	IF	CITATIONS
451	Kinetic modelling of heterotrophic microalgae culture in wastewater: Storage molecule generation and pollutants mitigation. Biochemical Engineering Journal, 2020, 157, 107523.	3.6	20
452	Whole-cell biocatalyst for cadaverine production using stable, constitutive and high expression of lysine decarboxylase in recombinant Escherichia coli W3110. Enzyme and Microbial Technology, 2021, 148, 109811.	3.2	20
453	Integration of Internet-of-Things as sustainable smart farming technology for the rearing of black soldier fly to mitigate food waste. Journal of the Taiwan Institute of Chemical Engineers, 2022, 137, 104235.	5.3	20
454	Repeated fed-batch operations for microbial detoxification of mercury using wild-type and recombinant mercury-resistant bacteria. Journal of Biotechnology, 1998, 64, 219-230.	3.8	19
455	Transcriptome and physiological analysis of a lutein-producing alga Desmodesmus sp. reveals the molecular mechanisms for high lutein productivity. Algal Research, 2017, 21, 103-119.	4.6	19
456	Exploitation and Biorefinery of Microalgae. , 2018, , 571-601.		19
457	Influence of Mo and Fe on Photosynthetic and Nitrogenase Activities of Nitrogen-Fixing Cyanobacteria under Nitrogen Starvation. Cells, 2022, 11, 904.	4.1	19
458	Synthesis of a novel solid mediator Z-scheme heterojunction photocatalysis CuFe2O4/Cu/UiO-66-NH2 for oxidation of dye in water. Chemosphere, 2022, 296, 134080.	8.2	19
459	Mechanism for sludge acidification in aerobic treatment of coking wastewater. Journal of Hazardous Materials, 2006, 137, 1781-1787.	12.4	18
460	Deciphering butanol inhibition to Clostridial species in acclimatized sludge for improving biobutanol production. Biochemical Engineering Journal, 2012, 69, 100-105.	3.6	18
461	Enhancing the oil extraction efficiency of Chlorella vulgaris with cell-disruptive pretreatment using active extracellular substances from Bacillus thuringiensis ITRI-G1. Biochemical Engineering Journal, 2015, 101, 185-190.	3.6	18
462	Short-Term Temporal Metabolic Behavior in Halophilic Cyanobacterium Synechococcus sp. Strain PCC 7002 after Salt Shock. Metabolites, 2019, 9, 297.	2.9	18
463	Development of Aurantiochytrium limacinum SR21 cultivation using salt-rich waste feedstock for docosahexaenoic acid production and application of natural colourant in food product. Bioresource Technology, 2019, 271, 30-36.	9.6	18
464	Metabolic Cascade for Remediation of Plastic Waste: a Case Study on Microplastic Degradation. Current Pollution Reports, 2022, 8, 30-50.	6.6	18
465	Chitosan coagulation–membrane filtration of Chlorella vulgaris. International Journal of Hydrogen Energy, 2012, 37, 15643-15647.	7.1	17
466	Biosorption of cadmium by a lipid extraction residue of lipid-rich microalgae. RSC Advances, 2016, 6, 20051-20057.	3.6	17
467	Thermal-Fenton mechanism with sonoprocessing for rapid non-catalytic transesterification of microalgal to biofuel production. Chemical Engineering Journal, 2021, 408, 127264.	12.7	17
468	Bacterial decolorization of an azo dye with a natural isolate of Pseudomonas luteola and genetically modified Escherichia coli. Journal of Chemical Technology and Biotechnology, 2004, 79, 1354-1360.	3.2	16

#	Article	IF	Citations
469	Optimizing lipase production from isolated Burkholderia sp Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 511-516.	5.3	16
470	Biohydrogen from Renewable Resources. , 2013, , 185-221.		16
471	Kinetics of enzymatic transesterification and thermal deactivation using immobilized Burkholderia lipase as catalyst. Bioprocess and Biosystems Engineering, 2014, 37, 481-491.	3.4	16
472	An efficient Photobioreactors/Raceway circulating system combined with alkaline-CO2 capturing medium for microalgal cultivation. Bioresource Technology, 2018, 266, 398-406.	9.6	16
473	Engineering cyanobacteria with enhanced growth in simulated flue gases for high-yield bioethanol production. Biochemical Engineering Journal, 2021, 165, 107823.	3.6	16
474	Converting waste molasses liquor into biohydrogen via dark fermentation using a continuous bioreactor. International Journal of Hydrogen Energy, 2021, 46, 16546-16554.	7.1	16
475	Novel application of microalgae platform for biodesalination process: A review. Bioresource Technology, 2021, 337, 125343.	9.6	16
476	Sustainable strategies for combating hydrocarbon pollution: Special emphasis on mobil oil bioremediation. Science of the Total Environment, 2022, 832, 155083.	8.0	16
477	Fermentation strategies for the production of lipase by an indigenous isolate Burkholderia sp. C20. Biochemical Engineering Journal, 2011, 58-59, 96-102.	3.6	15
478	Modeling the methanolysis of triglyceride catalyzed by immobilized lipase in a continuous-flow packed-bed reactor. Applied Energy, 2014, 126, 151-160.	10.1	15
479	Mechanism study of photo-induced gold nanoparticles formation by Shewanella oneidensis MR-1. Scientific Reports, 2019, 9, 7589.	3.3	15
480	Genome sequencing, assembly, and annotation of the self-flocculating microalga Scenedesmus obliquus AS-6-11. BMC Genomics, 2020, 21, 743.	2.8	15
481	Optimisation of biomass and lipid production of a tropical thraustochytrid Aurantiochytrium sp. UMACC-T023 in submerged-liquid fermentation for large-scale biodiesel production. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101496.	3.1	15
482	Microbial cell factories for the production of polyhydroxyalkanoates. Essays in Biochemistry, 2021, 65, 337-353.	4.7	15
483	Enhanced sulfonamides removal via microalgae-bacteria consortium via co-substrate supplementation. Bioresource Technology, 2022, 358, 127431.	9.6	15
484	Bacterial Species Diversity and Dye Decolorization of a Two-Species Mixed Consortium. Environmental Engineering Science, 2003, 20, 337-345.	1.6	14
485	Immobilization of Zymomonas mobilis with Fe2O3-modified polyvinyl alcohol for continuous ethanol fermentation. Biochemical Engineering Journal, 2016, 114, 298-306.	3.6	14
486	Ferrofluid-assisted rapid and directional harvesting of marine microalgal Chlorella sp. used for biodiesel production. Bioresource Technology, 2017, 244, 1337-1340.	9.6	14

#	Article	IF	CITATIONS
487	Investigation of direct biodiesel production from wet microalgae using definitive screening design. Energy Procedia, 2019, 158, 1149-1154.	1.8	14
488	Novel Renewable Double-Energy System for Activated Biochar Production and Thermoelectric Generation from Waste Heat. Energy & Samp; Fuels, 2020, 34, 3383-3393.	5.1	14
489	Application of computational fluid dynamics (CFD) on the raceway design for the cultivation of microalgae: a review. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 373-382.	3.0	14
490	Treatment of Sulfate/Sulfide-Containing Wastewaters Using a Microbial Fuel Cell: Single and Two-Anode Systems. International Journal of Green Energy, 2015, 12, 998-1004.	3.8	13
491	Liquid Biphasic Systems for Oil-Rich Algae Bioproducts Processing. Sustainability, 2019, 11, 4682.	3.2	13
492	Examination of indigenous microalgal species for maximal protein synthesis. Biochemical Engineering Journal, 2020, 154, 107425.	3.6	13
493	Using low carbon footprint high-pressure carbon dioxide in bioconversion of aspen branch waste for sustainable bioethanol production. Bioresource Technology, 2020, 313, 123675.	9.6	13
494	Template-based textural modifications of polymeric graphitic carbon nitrides towards waste water treatment. Chemosphere, 2022, 302, 134792.	8.2	13
495	Effect of Medium Composition and pH Control Strategies on Butanol Fermentation with Clostridium Acetobutylicum. Energy Procedia, 2014, 61, 1691-1694.	1.8	12
496	Unlocking the Secret of Bio-additive Components in Rubber Compounding in Processing Quality Nitrile Glove. Applied Biochemistry and Biotechnology, 2020, 191, 1-28.	2.9	12
497	Facilitating the enzymatic conversion of lysineto cadaverine in engineered Escherichia coli with metabolic regulation by genes deletion. Biochemical Engineering Journal, 2020, 156, 107514.	3.6	12
498	Renewable biohydrogen production from straw biomass – Recent advances in pretreatment/hydrolysis technologies and future development. International Journal of Hydrogen Energy, 2022, 47, 37359-37373.	7.1	12
499	Lutein production by microalgae using corn starch wastewater pretreated with rapid enzymatic hydrolysis. Bioresource Technology, 2022, 352, 126940.	9.6	12
500	Detoxification of mercury by immobilized mercuric reductase. Journal of Chemical Technology and Biotechnology, 1999, 74, 965-973.	3.2	11
501	Use of active consortia of constructed ternary bacterial cultures via mixture design for azo-dye decolorization enhancement. Journal of Hazardous Materials, 2007, 145, 404-409.	12.4	11
502	Cloning and expression of Cel8A from Klebsiella pneumoniae in Escherichia coli and comparison to cel gene of Cellulomonas uda. Biochemical Engineering Journal, 2013, 78, 53-58.	3.6	11
503	Fuel Property Variation of Biomass Undergoing Torrefaction. Energy Procedia, 2017, 105, 108-112.	1.8	11
504	Calcium ion adsorption with extracellular proteins of thermophilic bacteria isolated from geothermal sites—A feasibility study. Biochemical Engineering Journal, 2017, 117, 48-56.	3.6	11

#	Article	IF	Citations
505	An evaluation of thermal characteristics of bacterium Actinobacillus succinogenes for energy use and circular bioeconomy. Bioresource Technology, 2020, 301, 122774.	9.6	11
506	High-level production and extraction of C-phycocyanin from cyanobacteria Synechococcus sp. PCC7002 for antioxidation, antibacterial and lead adsorption. Environmental Research, 2022, 206, 112283.	7.5	11
507	Efficient fucoidan extraction and purification from Sargassum cristaefolium and preclinical dermal biological activity assessments of the purified fucoidans. Journal of the Taiwan Institute of Chemical Engineers, 2022, 137, 104294.	5.3	11
508	Integrated role of algae in the closed-loop circular economy of anaerobic digestion. Bioresource Technology, 2022, 360, 127618.	9.6	11
509	Effect of Wet Torrefaction on Thermal Decomposition Behavior of Microalga Chlorella vulgaris ESP-31. Energy Procedia, 2017, 105, 206-211.	1.8	10
510	Exploring Dual-Substrate Cultivation Strategy of 1,3-Propanediol Production Using Klebsiella pneumoniae. Applied Biochemistry and Biotechnology, 2020, 191, 346-359.	2.9	10
511	Succinic acid fermentation with immobilized Actinobacillus succinogenes using hydrolysate of carbohydrate-rich microalgal biomass. Bioresource Technology, 2021, 342, 126014.	9.6	10
512	Response to comments on: Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge (Int J Hydrogen Energy, 2005;30:1063–70). International Journal of Hydrogen Energy, 2006, 31, 1799-1801.	7.1	9
513	A sulfated/chlorinated Sr–Fe composite oxide as a novel solid and reusable superacid catalyst for oleic acid esterification. New Journal of Chemistry, 2020, 44, 13669-13684.	2.8	9
514	Torrefaction Thermogravimetric Analysis and Kinetics of Sorghum Distilled Residue for Sustainable Fuel Production. Sustainability, 2021, 13, 4246.	3.2	9
515	Hair growth-promoting effects of Sargassum glaucescens oligosaccharides extracts. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134, 104307.	5.3	9
516	Enhanced chlortetracycline removal by iron oxide modified spent coffee grounds biochar and persulfate system. Chemosphere, 2022, 301, 134654.	8.2	9
517	Integration of calcium looping technology in combined cycle power plants using co-gasification of torrefied biomass and coal blends. Energy Conversion and Management, 2018, 174, 489-503.	9.2	8
518	Biodiesel From Microalgae. , 2019, , 601-628.		8
519	Optimal design of an integrated renewableâ€storage energy system in a mixedâ€use building. International Journal of Energy Research, 2020, 44, 9646-9658.	4.5	8
520	Immobilization of Chlorella sorokiniana AK-1 in bacterial cellulose by co-culture and its application in wastewater treatment. Journal of the Taiwan Institute of Chemical Engineers, 2022, 137, 104286.	5.3	8
521	Role of nitrogen transport for efficient energy conversion potential in low carbon and high nitrogen/phosphorus wastewater by microalgal-bacterial system. Bioresource Technology, 2022, 351, 127019.	9.6	8
522	Enhancing Biohydrogen Production from Chlorella Vulgaris FSP-E Under Mixotrophic Cultivation Conditions. Energy Procedia, 2014, 61, 870-873.	1.8	7

#	Article	IF	CITATIONS
523	Application of Biosurfactant Surfactin on Copper Ion Removal from Sand Surfaces with Continuous Flushing Technique. Tenside, Surfactants, Detergents, 2014, 51, 407-414.	1.2	7
524	Heterotrophic Microalgal Cultivation. Green Energy and Technology, 2018, , 117-160.	0.6	7
525	Biofuels from Microbial Lipids. Green Energy and Technology, 2018, , 359-388.	0.6	7
526	Catalytic microwave torrefaction of microalga Chlorella vulgaris FSP-E with magnesium oxide optimized via taguchi approach: A thermo-energetic analysis. Chemosphere, 2022, 290, 133374.	8.2	7
527	The impact of the surfactant type on physicochemical properties, encapsulation, and in vitro biocompatibility of coconut oil nanoemulsions. Journal of the Taiwan Institute of Chemical Engineers, 2022, 137, 104217.	5.3	7
528	Recent advances in lignocellulosic biomass refinery. Bioresource Technology, 2022, 347, 126735.	9.6	7
529	Localization Effect on the Metal Biosorption Capability of Recombinant Mammalian and Fish Metallothioneins in Escherichia coli. Biotechnology Progress, 2008, 22, 1256-1264.	2.6	6
530	Using a starch-rich mutant of Arabidopsis thaliana as feedstock for fermentative hydrogen production. Bioresource Technology, 2011, 102, 8543-8546.	9.6	6
531	Kinetics and thermodynamics dataset of iron oxide reduction using torrefied microalgae for chemical looping combustion. Data in Brief, 2020, 29, 105261.	1.0	6
532	Polyhydroxybutyrate (PHB) production from crude glycerol by genetic engineering of Rhodotorula glutinis. Bioresource Technology Reports, 2022, 18, 101048.	2.7	6
533	Clean Energy for Future Generations: Editorial of the 11th International Conference on Clean Energy (ICCE-2011). Applied Energy, 2012, 100, 1-2.	10.1	5
534	Cyclic Filtration-Cleaning of <i> Chlorella vulgaris </i> Using Surface-Modified Hydrophilic Polytetrafluoroethylene Membrane with Polyaluminum Chloride as Coagulant. Drying Technology, 2013, 31, 207-212.	3.1	5
535	The influences of pH control strategies on the distribution of 1,3-propanediols and 2,3-butanediols production by an isolated indigenous Klebsiella sp. Ana-WS5. Bioresource Technology, 2014, 159, 292-296.	9.6	5
536	A process for simultaneously achieving phenol biodegradation and polyhydroxybutyrate accumulation using Cupriavidus taiwanesis 187. Journal of Polymer Research, 2018, 25, 1.	2.4	5
537	Recovery of gold from industrial wastewater by immobilized gold-binding proteins on porous silica carriers grafted with amino group. Biochemical Engineering Journal, 2019, 152, 107388.	3.6	5
538	Diverse Enzymes With Industrial Applications in Four Thraustochytrid Genera. Frontiers in Microbiology, 2020, 11, 573907.	3.5	5
539	Numerical Simulation of Light/Dark Cycle Frequency of Microalgae Fluid in a Helical Tubular Photobioreactor for Carbon Dioxide Capture. International Journal of Green Energy, 2015, 12, 1037-1045.	3.8	4
540	Ultrasonic-assisted ozone oxidation process for sulfamethoxazole removal: impact factors and degradation process. Desalination and Water Treatment, 0, , 1-8.	1.0	4

#	Article	IF	CITATIONS
541	Biogas Upgrading by Microalgae: Strategies and Future Perspectives. , 2019, , 347-395.		4
542	Exploring the potency of integrating semi-batch operation into lipid yield performance of Chlamydomonas sp. Tai-03. Bioresource Technology, 2019, 285, 121331.	9.6	4
543	Circular bioeconomy approaches for sustainability and carbon mitigation in microalgal biorefinery. , 2022, , 557-598.		4
544	Recent advances in algal biorefinery. Bioresource Technology, 2022, 347, 126734.	9.6	4
545	Optimization and modeling of carbohydrate production in microalgae for use as feedstock in bioethanol fermentation. International Journal of Energy Research, 2022, 46, 19300-19312.	4.5	4
546	Editorial: Recent Progress in Algal Biotechnology. Biotechnology Journal, 2016, 11, 301-302.	3.5	3
547	Density Functional Theory-based modeling and calculations of a polyamide molecular unit for studying forward-osmosis-dewatering of microalgae. , $2018, , .$		3
548	Circular Bioeconomy: An Introduction. , 2021, , 3-23.		3
549	Molecular mechanism of arachidonic acid biosynthesis in Porphyridium purpureum promoted by nitrogen limitation. Bioprocess and Biosystems Engineering, 2021, 44, 1491-1499.	3.4	3
550	Basic oxygen furnace slag as a support material for the cultivation of indigenous marine microalgae. Bioresource Technology, 2021, 342, 125968.	9.6	3
551	Enhancement of Lutein Yield from Coagulated <i>Chlorella </i> sp. ESP-6 with Sodium Hypochlorite. Drying Technology, 2015, 33, 429-433.	3.1	2
552	Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective. Sustainability, 2021, 13, 6962.	3.2	2
553	A novel microwave air heater integrated with thermal energy storage. International Journal of Energy Research, 0 , , .	4.5	2
554	Uncatalyzed direct biodiesel production from wet microalgae under subcritical conditions., 2017,,.		1
555	A molecular dynamics study on the CO2 permeability of microalgae lipid membrane. Journal of Applied Phycology, 2020, 32, 291-297.	2.8	1
556	Bioprocess Development for Mercury Detoxification and Azo-Dye Decolorization. ACS Symposium Series, 2003, , 159-172.	0.5	0
557	Editorial. Bioresource Technology, 2015, 184, 1.	9.6	0