
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8841584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antigen-specific nanomedicines for the treatment of autoimmune disease: target cell types, mechanisms and outcomes. Current Opinion in Biotechnology, 2022, 74, 285-292.	6.6	2
2	Gut Microbial Antigenic Mimicry in Autoimmunity. Frontiers in Immunology, 2022, 13, 873607.	4.8	28
3	Re-programming mouse liver-resident invariant natural killer T cells for suppressing hepatic and diabetogenic autoimmunity. Nature Communications, 2022, 13, .	12.8	7
4	Highly Sensitive and Specific Multiplex Antibody Assays To Quantify Immunoglobulins M, A, and G against SARS-CoV-2 Antigens. Journal of Clinical Microbiology, 2021, 59, .	3.9	64
5	Liver-specific T regulatory type-1 cells program local neutrophils to suppress hepatic autoimmunity via CRAMP. Cell Reports, 2021, 34, 108919.	6.4	12
6	Single Topic Conference on Autoimmune Liver Disease from the Canadian Association for the Study of the Liver. Canadian Liver Journal, 2021, 4, 401-425.	0.9	1
7	Persistence and baseline determinants of seropositivity and reinfection rates in health care workers up to 12.5 months after COVID-19. BMC Medicine, 2021, 19, 155.	5.5	34
8	Re-Programming Autoreactive T Cells Into T-Regulatory Type 1 Cells for the Treatment of Autoimmunity. Frontiers in Immunology, 2021, 12, 684240.	4.8	9
9	Recognition of Multiple Hybrid Insulin Peptides by a Single Highly Diabetogenic T-Cell Receptor. Frontiers in Immunology, 2021, 12, 737428.	4.8	8
10	Evolution of nanomedicines for the treatment of autoimmune disease: From vehicles for drug delivery to inducers of bystander immunoregulation. Advanced Drug Delivery Reviews, 2021, 176, 113898.	13.7	12
11	Extremely short bioavailability and fast pharmacodynamic effects of pMHC-based nanomedicines. Journal of Controlled Release, 2021, 338, 557-570.	9.9	7
12	De novo germline mutation in the dual specificity phosphatase 10 gene accelerates autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	3
13	Immunomodulatory and immunoregulatory nanomedicines for autoimmunity. Seminars in Immunology, 2021, 56, 101535.	5.6	6
14	Reversal of autoimmunity by mixed chimerism enables reactivation of Î ² cells and transdifferentiation of α cells in diabetic NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31219-31230.	7.1	11
15	Quantifying immunoregulation by autoantigenâ€specific Tâ€regulatory type 1 cells in mice with simultaneous hepatic and extraâ€hepatic autoimmune disorders. Immunology, 2020, 161, 209-229.	4.4	8
16	Peptide-MHC-Based Nanomedicines for the Treatment of Autoimmunity: Engineering, Mechanisms, and Diseases. Frontiers in Immunology, 2020, 11, 621774.	4.8	9
17	Ubiquitous antigen-specific T regulatory type 1 cells variably suppress hepatic and extrahepatic autoimmunity. Journal of Clinical Investigation, 2020, 130, 1823-1829.	8.2	31
18	260-OR: Transdifferentiation of a-Cells and Redifferentiation of InsulinLo ß-Cells Dominate ß-Cell Regeneration in Late-Stage Diabetic NOD Mice Cured with Induction of Mixed Chimerism and Administration of Gastrin and Epidermal Growth Factor. Diabetes, 2020, 69, 260-OR.	0.6	0

#	Article	IF	CITATIONS
19	Increased yields and biological potency of knob-into-hole-based soluble MHC class II molecules. Nature Communications, 2019, 10, 4917.	12.8	13
20	In vivo clearance of nanoparticles by transcytosis across alveolar epithelial cells. PLoS ONE, 2019, 14, e0223339.	2.5	23
21	Taming autoimmunity: Translating antigen-specific approaches to induce immune tolerance. Journal of Experimental Medicine, 2019, 216, 247-250.	8.5	19
22	Suppression of a broad spectrum of liver autoimmune pathologies by single peptide-MHC-based nanomedicines. Nature Communications, 2019, 10, 2150.	12.8	73
23	Antigen-specific therapeutic approaches for autoimmunity. Nature Biotechnology, 2019, 37, 238-251.	17.5	154
24	In vivo clearance of nanoparticles by transcytosis across alveolar epithelial cells. , 2019, 14, e0223339.		0
25	In vivo clearance of nanoparticles by transcytosis across alveolar epithelial cells. , 2019, 14, e0223339.		0
26	In vivo clearance of nanoparticles by transcytosis across alveolar epithelial cells. , 2019, 14, e0223339.		0
27	In vivo clearance of nanoparticles by transcytosis across alveolar epithelial cells. , 2019, 14, e0223339.		0
28	Nanoparticleâ€based approaches to immune tolerance for the treatment of autoimmune diseases. European Journal of Immunology, 2018, 48, 751-756.	2.9	51
29	Nanoparticles for Immune Stimulation Against Infection, Cancer, and Autoimmunity. ACS Nano, 2018, 12, 10621-10635.	14.6	79
30	Peptide–MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. Nature Nanotechnology, 2017, 12, 701-710.	31.5	114
31	A Gut Microbial Mimic that Hijacks Diabetogenic Autoreactivity to Suppress Colitis. Cell, 2017, 171, 655-667.e17.	28.9	106
32	Loss of immune tolerance to IL-2 in type 1 diabetes. Nature Communications, 2016, 7, 13027.	12.8	28
33	Expanding antigen-specific regulatory networks to treat autoimmunity. Nature, 2016, 530, 434-440.	27.8	409
34	Prolactin as an Adjunct for Type 1 Diabetes Immunotherapy. Endocrinology, 2016, 157, 150-165.	2.8	19
35	E2-2 Dependent Plasmacytoid Dendritic Cells Control Autoimmune Diabetes. PLoS ONE, 2015, 10, e0144090.	2.5	13
36	Nanoparticle-based autoimmune disease therapy. Clinical Immunology, 2015, 160, 3-13.	3.2	84

#	Article	IF	CITATIONS
37	Nanoparticle-Based Immunotherapy for Cancer. ACS Nano, 2015, 9, 16-30.	14.6	391
38	Nanomedicine in autoimmunity. Immunology Letters, 2014, 158, 167-174.	2.5	47
39	A Monoclonal Antibody Against the Extracellular Domain of Mouse and Human Epithelial V-like Antigen 1 Reveals a Restricted Expression Pattern Among CD4- CD8- Thymocytes. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2014, 33, 305-311.	1.6	4
40	The Cross-Priming Capacity and Direct Presentation Potential of an Autoantigen Are Separable and Inversely Related Properties. Journal of Immunology, 2014, 193, 3296-3307.	0.8	3
41	Prolactin Improved Anti-CD3-Mediated Diabetes Cure in NOD Mice. Canadian Journal of Diabetes, 2014, 38, S65.	0.8	0
42	Contribution of a Non-β-Cell Source to β-Cell Mass during Pregnancy. PLoS ONE, 2014, 9, e100398.	2.5	23
43	DEC-205-mediated antigen targeting to steady-state dendritic cells induces deletion of diabetogenic CD8+ T cells independently of PD-1 and PD-L1. International Immunology, 2013, 25, 651-660.	4.0	21
44	The CD19 signalling molecule is elevated in NOD mice and controls type 1 diabetes development. Diabetologia, 2013, 56, 2659-2668.	6.3	7
45	<scp>IL</scp> â€2 promotes the function of memoryâ€like autoregulatory <scp>CD</scp> 8 ⁺ <scp>T</scp> cells but suppresses their development via <scp>F</scp> ox <scp>P</scp> 3 ⁺ <scp>T</scp> reg cells. European Journal of Immunology, 2013, 43, 394-403.	2.9	26
46	Antidiabetogenic MHC class II promotes the differentiation of MHC-promiscuous autoreactive T cells into FOXP3 ⁺ regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3471-3476.	7.1	15
47	Dendritic Cell–Dependent In Vivo Generation of Autoregulatory T Cells by Antidiabetogenic MHC Class II. Journal of Immunology, 2013, 191, 70-82.	0.8	14
48	MHC Class II Polymorphisms, Autoreactive T-Cells, and Autoimmunity. Frontiers in Immunology, 2013, 4, 321.	4.8	123
49	Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy. Immunology and Cell Biology, 2013, 91, 350-359.	2.3	13
50	Local Autoantigen Expression as Essential Gatekeeper of Memory T-Cell Recruitment to Islet Grafts in Diabetic Hosts. Diabetes, 2013, 62, 905-911.	0.6	16
51	Interview: Disease-specific therapeutic interventions in Type 1 diabetes. Diabetes Management, 2013, 3, 363-365.	0.5	0
52	An indirect role for NK cells in a CD4 + Tâ€cellâ€dependent mouse model of type I diabetes. Immunology and Cell Biology, 2012, 90, 243-247.	2.3	10
53	Autoantigen Recognition Is Required for Recruitment of IGRP206–214-Autoreactive CD8+ T Cells but Is Dispensable for Tolerance. Journal of Immunology, 2012, 189, 2975-2984.	0.8	7
54	Complete Diabetes Protection Despite Delayed Thymic Tolerance in NOD8.3 TCR Transgenic Mice Due to Antigen-Induced Extrathymic Deletion of T Cells. Diabetes, 2012, 61, 425-435.	0.6	13

#	Article	IF	CITATIONS
55	Antigen-Specific Therapeutic Approaches in Type 1 Diabetes. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007773-a007773.	6.2	40
56	Intraâ€ i slet proliferation of cytotoxic <scp>T</scp> lymphocytes contributes to insulitis progression. European Journal of Immunology, 2012, 42, 1717-1722.	2.9	34
57	Beyond HLA-A*0201: New HLA-Transgenic Nonobese Diabetic Mouse Models of Type 1 Diabetes Identify the Insulin C-Peptide as a Rich Source of CD8+ T Cell Epitopes. Journal of Immunology, 2012, 188, 5766-5775.	0.8	9
58	Synergistic Reversal of Type 1 Diabetes in NOD Mice With Anti-CD3 and Interleukin-1 Blockade. Diabetes, 2012, 61, 145-154.	0.6	98
59	Autoreactive Cytotoxic T Lymphocytes Acquire Higher Expression of Cytotoxic Effector Markers in the Islets of NOD Mice after Priming in Pancreatic Lymph Nodes. American Journal of Pathology, 2011, 178, 2716-2725.	3.8	40
60	The pro-apoptotic BH3-only protein Bid is dispensable for development of insulitis and diabetes in the non-obese diabetic mouse. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 822-830.	4.9	7
61	Peptide-MHC-based nanovaccines for the treatment of autoimmunity: a "one size fits all―approach?. Journal of Molecular Medicine, 2011, 89, 733-742.	3.9	33
62	CD8+ Tregs in autoimmunity: learning "self―control from experience. Cellular and Molecular Life Sciences, 2011, 68, 3781-3795.	5.4	27
63	TNF Receptor 1 Deficiency Increases Regulatory T Cell Function in Nonobese Diabetic Mice. Journal of Immunology, 2011, 187, 1702-1712.	0.8	39
64	Development of Memory-Like Autoregulatory CD8+ T Cells Is CD4+ T Cell Dependent. Journal of Immunology, 2011, 187, 2859-2866.	0.8	13
65	Correction: Levels of Adenosine Deaminase on Dendritic Cells Promote Autoreactive T Cell Activation and Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2011, 187, 2031-2031.	0.8	0
66	High Levels of Adenosine Deaminase on Dendritic Cells Promote Autoreactive T Cell Activation and Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2011, 186, 6798-6806.	0.8	23
67	Reversal of Autoimmunity by Boosting Memory-like Autoregulatory T Cells. Immunity, 2010, 32, 568-580.	14.3	284
68	The Long and Winding Road to Understanding and Conquering Type 1 Diabetes. Immunity, 2010, 32, 437-445.	14.3	67
69	<i>Idd9.1</i> Locus Controls the Suppressive Activity of FoxP3+CD4+CD25+ Regulatory T-Cells. Diabetes, 2010, 59, 272-281.	0.6	31
70	The pathogenicity of self-antigen decreases at high levels of autoantigenicity: a computational approach. International Immunology, 2010, 22, 571-582.	4.0	10
71	On How Monospecific Memory-Like Autoregulatory CD8+ T Cells Can Blunt Diabetogenic Autoimmunity: A Computational Approach. Journal of Immunology, 2010, 185, 5962-5972.	0.8	15
72	TLR9 Blockade Inhibits Activation of Diabetogenic CD8+ T Cells and Delays Autoimmune Diabetes. Journal of Immunology, 2010, 184, 5645-5653.	0.8	70

#	Article	IF	CITATIONS
73	In situ recognition of autoantigen as an essential gatekeeper in autoimmune CD8 ⁺ T cell inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9317-9322.	7.1	52
74	Turning Human Epidermis Into Pancreatic Endoderm. Review of Diabetic Studies, 2010, 7, 158-167.	1.3	13
75	Cutting Edge: CD28 Engagement Releases Antigen-Activated Invariant NKT Cells from the Inhibitory Effects of PD-1. Journal of Immunology, 2009, 182, 6644-6647.	0.8	31
76	Spontaneous Autoimmunity Sufficiently Potent to Induce Diabetes Mellitus Is Insufficient to Protect against Insulinoma. Journal of Immunology, 2009, 183, 1705-1714.	0.8	6
77	T Cell Islet Accumulation in Type 1 Diabetes Is a Tightly Regulated, Cell-Autonomous Event. Immunity, 2009, 31, 643-653.	14.3	142
78	In vivo effects of cytokines on pancreatic βâ€cells in models of type I diabetes dependent on CD4 + T lymphocytes. Immunology and Cell Biology, 2009, 87, 178-185.	2.3	21
79	The role of low avidity T cells in the protection against type 1 diabetes: A modeling investigation. Journal of Theoretical Biology, 2009, 256, 126-141.	1.7	27
80	IL-2 and its high-affinity receptor: Genetic control of immunoregulation and autoimmunity. Seminars in Immunology, 2009, 21, 363-371.	5.6	52
81	In vivo imaging of a diabetogenic CD8+ T cell response during type 1 diabetes progression. Magnetic Resonance in Medicine, 2008, 59, 712-720.	3.0	31
82	Identification of novel IGRP epitopes targeted in type 1 diabetes patients. Clinical Immunology, 2008, 127, 359-365.	3.2	69
83	Chapter 4 CD8+ T Cells in Type 1 Diabetes. Advances in Immunology, 2008, 100, 79-124.	2.2	105
84	Mast Cells Regulate the Magnitude and the Cytokine Microenvironment of the Contact Hypersensitivity Response. American Journal of Pathology, 2008, 172, 1638-1649.	3.8	45
85	Autoimmunity to Both Proinsulin and IGRP Is Required for Diabetes in Nonobese Diabetic 8.3 TCR Transgenic Mice. Journal of Immunology, 2008, 180, 4458-4464.	0.8	51
86	B-Cells Promote Intra-Islet CD8+ Cytotoxic T-Cell Survival to Enhance Type 1 Diabetes. Diabetes, 2008, 57, 909-917.	0.6	56
87	On the Pathogenicity of Autoantigen-Specific T-Cell Receptors. Diabetes, 2008, 57, 1321-1330.	0.6	89
88	The Proline-Rich Sequence of CD3ε as an Amplifier of Low-Avidity TCR Signaling. Journal of Immunology, 2008, 181, 243-255.	0.8	46
89	Genetic and Therapeutic Control of Diabetogenic CD8+ T Cells. Novartis Foundation Symposium, 2008, 292, 130-140.	1.1	2
90	Adenosine Deamination Sustains Dendritic Cell Activation in Inflammation. Journal of Immunology, 2007. 179. 1884-1892.	0.8	121

#	Article	IF	CITATIONS
91	Exendin-4 Improves Reversal of Diabetes in NOD Mice Treated with Anti-CD3 Monoclonal Antibody by Enhancing Recovery of β-Cells. Endocrinology, 2007, 148, 5136-5144.	2.8	161
92	Transient Upregulation of Indoleamine 2,3-Dioxygenase in Dendritic Cells by Human Chorionic Gonadotropin Downregulates Autoimmune Diabetes. Diabetes, 2007, 56, 1686-1693.	0.6	67
93	CCL4 Protects From Type 1 Diabetes by Altering Islet Â-Cell-Targeted Inflammatory Responses. Diabetes, 2007, 56, 809-817.	0.6	34
94	Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nature Genetics, 2007, 39, 329-337.	21.4	333
95	TRPV1+ Sensory Neurons Control Î ² Cell Stress and Islet Inflammation in Autoimmune Diabetes. Cell, 2006, 127, 1123-1135.	28.9	308
96	T Cells and Autoimmunity. , 2006, , 59-82.		0
97	Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nature Immunology, 2006, 7, 83-92.	14.5	718
98	CD8+ T cells in autoimmunity. Current Opinion in Immunology, 2005, 17, 624-631.	5.5	121
99	Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide. Nature Medicine, 2005, 11, 645-652.	30.7	132
100	Cytotoxic lymphocytes, apoptosis, and autoimmunity. , 2005, , 188-218.		0
101	Islet-infiltrating B-Cells in Nonobese Diabetic Mice Predominantly Target Nervous System Elements. Diabetes, 2005, 54, 69-77.	0.6	42
102	Developmental control of CD8+ T cell–avidity maturation in autoimmune diabetes. Journal of Clinical Investigation, 2005, 115, 1879-1887.	8.2	96
103	Individual Nonobese Diabetic Mice Exhibit Unique Patterns of CD8+ T Cell Reactivity to Three Islet Antigens, Including the Newly Identified Widely Expressed Dystrophia Myotonica Kinase. Journal of Immunology, 2004, 173, 6727-6734.	0.8	109
104	Tracking the Recruitment of Diabetogenic CD8+ T-Cells to the Pancreas in Real Time. Diabetes, 2004, 53, 1459-1466.	0.6	107
105	Progression of spontaneous autoimmune diabetes is associated with a switch in the killing mechanism used by autoreactive CTL. International Immunology, 2004, 16, 1657-1662.	4.0	17
106	Suppressor of Cytokine Signaling-1 Overexpression Protects Pancreatic β Cells from CD8+ T Cell-Mediated Autoimmune Destruction. Journal of Immunology, 2004, 172, 5714-5721.	0.8	96
107	IL-1 Receptor Deficiency Slows Progression to Diabetes in the NOD Mouse. Diabetes, 2004, 53, 113-121.	0.6	192
108	NKG2D Blockade Prevents Autoimmune Diabetes in NOD Mice. Immunity, 2004, 20, 757-767.	14.3	272

PERE SANTAMARIA

#	Article	IF	CITATIONS
109	Effector lymphocytes in islet cell autoimmunity. Reviews in Endocrine and Metabolic Disorders, 2003, 4, 271-280.	5.7	12
110	Kinetic Evolution of a Diabetogenic CD8+ T Cell Response. Annals of the New York Academy of Sciences, 2003, 1005, 88-97.	3.8	12
111	CD40 Ligation Releases Immature Dendritic Cells from the Control of Regulatory CD4+CD25+ T Cells. Immunity, 2003, 19, 877-889.	14.3	259
112	Cross-Priming of Diabetogenic T Cells Dissociated from CTL-Induced Shedding of β Cell Autoantigens. Journal of Immunology, 2003, 171, 6900-6909.	0.8	53
113	Identification of the Î ² cell antigen targeted by a prevalent population of pathogenic CD8+T cells in autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8384-8388.	7.1	353
114	Cytokines and Chemokines in Autoimmune Disease: An Overview. Advances in Experimental Medicine and Biology, 2003, 520, 1-7.	1.6	32
115	Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. Journal of Clinical Investigation, 2003, 111, 217-223.	8.2	201
116	Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. Journal of Clinical Investigation, 2003, 111, 217-223.	8.2	108
117	In Situ β Cell Death Promotes Priming of Diabetogenic CD8 T Lymphocytes. Journal of Immunology, 2002, 168, 1466-1472.	0.8	96
118	T-Cell Tolerance by Dendritic Cells and Macrophages as a Mechanism for the Major Histocompatibility Complex-Linked Resistance to Autoimmune Diabetes. Diabetes, 2002, 51, 325-338.	0.6	23
119	CD154-Dependent Priming of Diabetogenic CD4+ T Cells Dissociated from Activation of Antigen-Presenting Cells. Immunity, 2002, 16, 719-732.	14.3	40
120	Autoreactive CD8 T Cells in Organ-Specific Autoimmunity. Immunity, 2002, 17, 1-6.	14.3	178
121	Effector lymphocytes in autoimmunity. Current Opinion in Immunology, 2001, 13, 663-669.	5.5	67
122	Expansion of the Antigenic Repertoire of a Single T Cell Receptor upon T Cell Activation. Journal of Immunology, 2001, 167, 655-666.	0.8	65
123	Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature, 2000, 406, 739-742.	27.8	318
124	IL-1α, IL-1β, and IFN-γ mark β cells for Fas-dependent destruction by diabetogenic CD4+ T lymphocytes. Journal of Clinical Investigation, 2000, 105, 459-468.	8.2	115
125	Perforin-independent β-cell destruction by diabetogenic CD8+ T lymphocytes in transgenic nonobese diabetic mice. Journal of Clinical Investigation, 1999, 103, 1201-1209.	8.2	107
126	Cellular and Molecular Mechanisms for the Initiation and Progression of Î ² Cell Destruction Resulting from the Collaboration Between Macrophages and T Cells. Autoimmunity, 1998, 27, 109-122.	2.6	140

#	ARTICLE	IF	CITATIONS
127	Spontaneous Autoimmune Diabetes in Monoclonal T Cell Nonobese Diabetic Mice. Journal of Experimental Medicine, 1997, 186, 1663-1676.	8.5	319
128	A Mechanism for the Major Histocompatibility Complex–linked Resistance to Autoimmunity. Journal of Experimental Medicine, 1997, 186, 1059-1075.	8.5	188