J Timothy Greenamyre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8841390/publications.pdf

Version: 2024-02-01

212 papers

27,877 citations

83 h-index 162

221 all docs

221 docs citations

times ranked

221

19847 citing authors

g-index

#	Article	IF	CITATIONS
1	Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nature Neuroscience, 2000, 3, 1301-1306.	7.1	3,216
2	Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nature Neuroscience, 2002, 5, 731-736.	7.1	925
3	Mechanism of Toxicity in Rotenone Models of Parkinson's Disease. Journal of Neuroscience, 2003, 23, 10756-10764.	1.7	887
4	A highly reproducible rotenone model of Parkinson's disease. Neurobiology of Disease, 2009, 34, 279-290.	2.1	601
5	Subcutaneous Rotenone Exposure Causes Highly Selective Dopaminergic Degeneration and α-Synuclein Aggregation. Experimental Neurology, 2003, 179, 9-16.	2.0	599
6	Alternative excitotoxic hypotheses. Neurology, 1992, 42, 733-733.	1.5	566
7	An <i>In Vitro</i> Model of Parkinson's Disease: Linking Mitochondrial Impairment to Altered α-Synuclein Metabolism and Oxidative Damage. Journal of Neuroscience, 2002, 22, 7006-7015.	1.7	547
8	Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nature Medicine, 1999, 5, 1194-1198.	15.2	516
9	Animal models of Parkinson's disease. BioEssays, 2002, 24, 308-318.	1.2	494
10	Excitatory amino acids and Alzheimer's disease. Neurobiology of Aging, 1989, 10, 593-602.	1.5	489
11	α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease. Science Translational Medicine, 2016, 8, 342ra78.	5. 8	432
12	BIOMEDICINE: Parkinson's-Divergent Causes, Convergent Mechanisms. Science, 2004, 304, 1120-1122.	6.0	391
13	NMDA receptor losses in putamen from patients with Huntington's disease. Science, 1988, 241, 981-983.	6.0	380
14	LRRK2 activation in idiopathic Parkinson's disease. Science Translational Medicine, 2018, 10, .	5.8	363
15	N-Terminal Mutant Huntingtin Associates with Mitochondria and Impairs Mitochondrial Trafficking. Journal of Neuroscience, 2008, 28, 2783-2792.	1.7	362
16	Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. Lancet, The, 2014, 384, 545-555.	6.3	336
17	The Role of Environmental Exposures in Neurodegeneration and Neurodegenerative Diseases. Toxicological Sciences, 2011, 124, 225-250.	1.4	334
18	Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in rat central nervous system. Journal of Neuroscience, 1984, 4, 2133-2144.	1.7	332

#	Article	IF	CITATIONS
19	Alterations in L-glutamate binding in Alzheimer's and Huntington's diseases. Science, 1985, 227, 1496-1499.	6.0	331
20	Glutamate dysfunction in Alzheimer's disease: an hypothesis. Trends in Neurosciences, 1987, 10, 65-68.	4.2	313
21	Intersecting pathways to neurodegeneration in Parkinson's disease: Effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin–proteasome system. Neurobiology of Disease, 2006, 22, 404-420.	2.1	313
22	PCR Based Determination of Mitochondrial DNA Copy Number in Multiple Species. Methods in Molecular Biology, 2015, 1241, 23-38.	0.4	307
23	Complex I and Parkinson's Disease. IUBMB Life, 2001, 52, 135-141.	1.5	305
24	Glutamate and Parkinson's disease. Molecular Neurobiology, 1996, 12, 73-94.	1.9	296
25	The Role of Glutamate in Neurotransmission and in Neurologic Disease. Archives of Neurology, 1986, 43, 1058-1063.	4.9	292
26	Selective microglial activation in the rat rotenone model of Parkinson's disease. Neuroscience Letters, 2003, 341, 87-90.	1.0	283
27	Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radical Biology and Medicine, 2013, 62, 111-120.	1.3	275
28	Dementia of the Alzheimer's Type: Changes in Hippocampal L-[3H]Glutamate Binding. Journal of Neurochemistry, 1987, 48, 543-551.	2.1	274
29	Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson's disease. Journal of Neurochemistry, 2007, 100, 070214184024016-???.	2.1	265
30	The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Annals of Neurology, 1991, 30, 717-723.	2.8	251
31	Dopaminergic Neurons Intrinsic to the Primate Striatum. Journal of Neuroscience, 1997, 17, 6761-6768.	1.7	244
32	Rotenone Model of Parkinson Disease. Journal of Biological Chemistry, 2005, 280, 42026-42035.	1.6	244
33	LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: Reversal by gene correction. Neurobiology of Disease, 2014, 62, 381-386.	2.1	235
34	Autoradiographic characterization of N-methyl-D-aspartate-, quisqualate- and kainate-sensitive glutamate binding sites. Journal of Pharmacology and Experimental Therapeutics, 1985, 233, 254-63.	1.3	235
35	Glutathione Depletion in PC12 Results in Selective Inhibition of Mitochondrial Complex I Activity. Journal of Biological Chemistry, 2000, 275, 26096-26101.	1.6	228
36	N-Methyl-d-Aspartate Antagonists in the Treatment of Parkinson's Disease. Archives of Neurology, 1991, 48, 977-981.	4.9	227

#	Article	IF	CITATIONS
37	Mitochondrial dysfunction in Parkinson's disease. Biochemical Society Symposia, 1999, 66, 85-97.	2.7	227
38	Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Molecular Brain Research, 2005, 134, 109-118.	2.5	227
39	Bioenergetics and glutamate excitotoxicity. Progress in Neurobiology, 1996, 48, 613-634.	2.8	225
40	Paraquat Neurotoxicity is Distinct from that of MPTP and Rotenone. Toxicological Sciences, 2005, 88, 193-201.	1.4	215
41	Inhibition of Succinate Dehydrogenase by Malonic Acid Produces an "Excitotoxic" Lesion in Rat Striatum. Journal of Neurochemistry, 1993, 61, 1151-1154.	2.1	210
42	The rotenone model of Parkinson's disease: genes, environment and mitochondria. Parkinsonism and Related Disorders, 2003, 9, 59-64.	1.1	207
43	Toxin Models of Mitochondrial Dysfunction in Parkinson's Disease. Antioxidants and Redox Signaling, 2012, 16, 920-934.	2.5	206
44	Chronic rotenone exposure reproduces Parkinson's disease gastrointestinal neuropathology. Neurobiology of Disease, 2009, 36, 96-102.	2.1	200
45	Ubiquitin–proteasome system and Parkinson's diseases. Experimental Neurology, 2005, 191, S17-S27.	2.0	198
46	Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology, 2019, 92, 329-337.	1.5	194
47	Role of External Pallidal Segment in Primate Parkinsonism: Comparison of the Effects of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinsonism and Lesions of the External Pallidal Segment. Journal of Neuroscience, 2004, 24, 6417-6426.	1.7	179
48	Rotenone, Deguelin, Their Metabolites, and the Rat Model of Parkinson's Disease. Chemical Research in Toxicology, 2004, 17, 1540-1548.	1.7	175
49	Neurotoxic in vivo models of Parkinson's disease. Progress in Brain Research, 2010, 184, 17-33.	0.9	164
50	A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson's disease. Neurobiology of Disease, 2009, 34, 417-431.	2.1	162
51	Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiology of Disease, 2005, 18, 19-31.	2.1	160
52	Mitochondrial Iron Metabolism and Its Role in Neurodegeneration. Journal of Alzheimer's Disease, 2010, 20, S551-S568.	1,2	159
53	Gene–environment interactions in Parkinson's disease: Specific evidence in humans and mammalian models. Neurobiology of Disease, 2013, 57, 38-46.	2.1	158
54	Glutamate transmission and toxicity in alzheimer's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1988, 12, 421-IN4.	2.5	155

#	Article	IF	CITATIONS
55	Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson's disease. Neurobiology of Disease, 2014, 70, 214-223.	2.1	155
56	Antiparkinsonian effects of remacemide hydrochloride, a glutamate antagonist, in rodent and primate models of Parkinson's disease. Annals of Neurology, 1994, 35, 655-661.	2.8	150
57	Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors. Molecular Pharmacology, 1998, 53, 974-80.	1.0	146
58	Ethyl-EPA in Huntington disease: A double-blind, randomized, placebo-controlled trial. Neurology, 2005, 65, 286-292.	1.5	143
59	shRNA targeting α-synuclein prevents neurodegeneration in a Parkinson's disease model. Journal of Clinical Investigation, 2015, 125, 2721-2735.	3.9	143
60	Post-translational modification of α-synuclein in Parkinson×3s disease. Brain Research, 2015, 1628, 247-253.	1.1	138
61	Peroxiredoxin-2 Protects against 6-Hydroxydopamine-Induced Dopaminergic Neurodegeneration via Attenuation of the Apoptosis Signal-Regulating Kinase (ASK1) Signaling Cascade. Journal of Neuroscience, 2011, 31, 247-261.	1.7	136
62	Regional Variations in the Pharmacology of NMDA Receptor Channel Blockers: Implications for Therapeutic Potential. Journal of Neurochemistry, 1995, 64, 614-623.	2.1	128
63	Glutamate-dopamine interactions in the basal ganglia: relationship to Parkinson's disease. Journal of Neural Transmission, 1993, 91, 255-269.	1.4	127
64	Lessons from the rotenone model of Parkinson's disease. Trends in Pharmacological Sciences, 2010, 31, 141-142.	4.0	127
65	Antiparkinsonian Actions of CP-101,606, an Antagonist of NR2B Subunit-Containing N-Methyl-d-Aspartate Receptors. Experimental Neurology, 2000, 163, 239-243.	2.0	124
66	High correlation between the localization of [3H]TCP binding and NMDA receptors. European Journal of Pharmacology, 1986, 123, 173-174.	1.7	120
67	Environment, Mitochondria, and Parkinson's Disease. Neuroscientist, 2002, 8, 192-197.	2.6	120
68	Polysynaptic regulation of glutamate receptors and mitochondrial enzyme activities in the basal ganglia of rats with unilateral dopamine depletion. Journal of Neuroscience, 1994, 14, 7192-7199.	1.7	118
69	In Vivo Labeling of Mitochondrial Complex I (NADH:UbiquinoneOxidoreductase) in Rat Brain Using [3H]Dihydrorotenone. Journal of Neurochemistry, 2008, 75, 2611-2621.	2.1	116
70	Environment, Mitochondria, and Parkinson's Disease. Neuroscientist, 2002, 8, 192-197.	2.6	116
71	Mechanistic Approaches to Parkinson's Disease Pathogenesis. Brain Pathology, 2002, 12, 499-510.	2.1	115
72	Obligatory Role for Complex I Inhibition in the Dopaminergic Neurotoxicity of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicological Sciences, 2007, 95, 196-204.	1.4	109

#	Article	IF	Citations
73	Visualization of NMDA Receptor-Induced Mitochondrial Calcium Accumulation in Striatal Neurons. Experimental Neurology, 1998, 149, 1-12.	2.0	108
74	Characterization of the Excitotoxic Potential of the Reversible Succinate Dehydrogenase Inhibitor Malonate. Journal of Neurochemistry, 1995, 64, 430-436.	2.1	107
75	A controlled trial of remacemide hydrochloride in Huntington's disease. Movement Disorders, 1996, 11, 273-277.	2.2	100
76	Blockade of Cannabinoid Type 1 Receptors Augments the Antiparkinsonian Action of Levodopa without Affecting Dyskinesias in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Treated Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 318-326.	1.3	97
77	[³ H]Dihydrorotenone Binding to NADH: Ubiquinone Reductase (Complex I) of the Electron Transport Chain: An Autoradiographic Study. Journal of Neuroscience, 1996, 16, 3807-3816.	1.7	95
78	In vitro effects of polyglutamine tracts on Ca2+-dependent depolarization of rat and human mitochondria: relevance to Huntington's disease. Archives of Biochemistry and Biophysics, 2003, 410, 1-6.	1.4	94
79	Protection by the NDI1 Gene against Neurodegeneration in a Rotenone Rat Model of Parkinson's Disease. PLoS ONE, 2008, 3, e1433.	1.1	94
80	Synthetic alpha-synuclein fibrils cause mitochondrial impairment and selective dopamine neurodegeneration in part via iNOS-mediated nitric oxide production. Cellular and Molecular Life Sciences, 2017, 74, 2851-2874.	2.4	94
81	Excitatory amino acid binding sites in the hippocampal region of Alzheimer's disease and other dementias Journal of Neurology, Neurosurgery and Psychiatry, 1990, 53, 314-320.	0.9	92
82	Synaptic localization of striatal NMDA, quisqualate and kainate receptors. Neuroscience Letters, 1989, 101, 133-137.	1.0	90
83	Ca2+-induced permeability transition in human lymphoblastoid cell mitochondria from normal and Huntington?s disease individuals. Molecular and Cellular Biochemistry, 2005, 269, 143-152.	1.4	88
84	Peroxidase Mechanism of Lipid-dependent Cross-linking of Synuclein with Cytochrome c. Journal of Biological Chemistry, 2009, 284, 15951-15969.	1.6	86
85	Interrater agreement in the assessment of motor manifestations of Huntington's disease. Movement Disorders, 2005, 20, 293-297.	2.2	83
86	Astrocyte-specific DJ-1 overexpression protects against rotenone-induced neurotoxicity in a rat model of Parkinson's disease. Neurobiology of Disease, 2018, 115, 101-114.	2.1	83
87	Autoradiographic localization of cerebellar excitatory amino acid binding sites in the mouse. Neuroscience, 1987, 22, 913-923.	1.1	82
88	Pilocapine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms. Neurobiology of Disease, 2011, 42, 482-495.	2.1	82
89	Melatonin treatment potentiates neurodegeneration in a rat rotenone Parkinson's disease model. Journal of Neuroscience Research, 2010, 88, 420-427.	1.3	81
90	Glutamatergic Influences on the Basal Ganglia. Clinical Neuropharmacology, 2001, 24, 65-70.	0.2	80

#	Article	IF	CITATIONS
91	Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson's disease. Neurobiology of Aging, 2014, 35, 1162-1176.	1.5	78
92	3-Nitropropionic acid exacerbates N-methyl-d-aspartate toxicity in striatal culture by multiple mechanisms. Neuroscience, 1998, 84, 503-510.	1.1	77
93	LRRK2 G2019S-induced mitochondrial DNA damage is LRRK2 kinase dependent and inhibition restores mtDNA integrity in Parkinson's disease. Human Molecular Genetics, 2017, 26, 4340-4351.	1.4	76
94	Excitotoxicity and Dopaminergic Dysfunction in the Acquired Immunodeficiency Syndrome Dementia Complex. Archives of Neurology, 1991, 48, 1281.	4.9	74
95	LRRK2 inhibition prevents endolysosomal deficits seen in human Parkinson's disease. Neurobiology of Disease, 2020, 134, 104626.	2.1	73
96	Randomized Controlled Trial of Ethyl-Eicosapentaenoic Acid in Huntington Disease. Archives of Neurology, 2008, 65, 1582-9.	4.9	71
97	Hypokinesia and Reduced Dopamine Levels in Zebrafish Lacking \hat{l}^2 - and \hat{l}^3 1-Synucleins. Journal of Biological Chemistry, 2012, 287, 2971-2983.	1.6	71
98	Single-Cell Redox Imaging Demonstrates a Distinctive Response of Dopaminergic Neurons to Oxidative Insults. Antioxidants and Redox Signaling, 2011, 15, 855-871.	2.5	70
99	RAD52 is required for RNA-templated recombination repair in post-mitotic neurons. Journal of Biological Chemistry, 2018, 293, 1353-1362.	1.6	69
100	Exacerbation of NMDA, AMPA, and l-Glutamate Excitotoxicity by the Succinate Dehydrogenase Inhibitor Malonate. Journal of Neurochemistry, 2002, 64, 2332-2338.	2.1	68
101	Subthalamic infusion of an NMDA antagonist prevents basal ganglia metabolic changes and nigral degeneration in a rodent model of Parkinson's disease. Annals of Neurology, 2001, 49, 525-529.	2.8	65
102	Gene–Environment Interactions in Parkinson's Disease: The Importance of Animal Modeling. Clinical Pharmacology and Therapeutics, 2010, 88, 467-474.	2.3	65
103	Glutamate recognition sites in human fetal brain. Neuroscience Letters, 1988, 84, 131-136.	1.0	63
104	Autophagy Protects Against Aminochrome-Induced Cell Death in Substantia Nigra-Derived Cell Line. Toxicological Sciences, 2011, 121, 376-388.	1.4	63
105	DJ-1 Expression Modulates Astrocyte-Mediated Protection Against Neuronal Oxidative Stress. Journal of Molecular Neuroscience, 2013, 49, 507-511.	1.1	63
106	The endogenous cofactors, thioctic acid and dihydrolipoic acid, are neuroprotective against NMDA and malonic acid lesions of striatum. Neuroscience Letters, 1994, 171, 17-20.	1.0	61
107	Expression of human E46K-mutated î±-synuclein in BAC-transgenic rats replicates early-stage Parkinson's disease features and enhances vulnerability to mitochondrial impairment. Experimental Neurology, 2013, 240, 44-56.	2.0	61
108	LC/MS analysis of cardiolipins in substantia nigra and plasma of rotenone-treated rats: Implication for mitochondrial dysfunction in Parkinson's disease. Free Radical Research, 2015, 49, 681-691.	1.5	60

#	Article	IF	CITATIONS
109	GluR1 Glutamate Receptor Subunit Is Regulated Differentially in the Primate Basal Ganglia Following Nigrostriatal Dopamine Denervation. Journal of Neurochemistry, 2000, 74, 1166-1174.	2.1	58
110	A randomized, controlled trial of remacemide for motor fluctuations in Parkinson's disease. Neurology, 2001, 56, 455-462.	1.5	58
111	Properties of Quisqualate-Sensitive L-[3H]Glutamate Binding Sites in Rat Brain as Determined by Quantitative Autoradiography. Journal of Neurochemistry, 1988, 51, 469-478.	2.1	57
112	Quantitative evaluation of the effects of mitochondrial permeability transition pore modifiers on accumulation of calcium phosphate: comparison of rat liver and brain mitochondria. Archives of Biochemistry and Biophysics, 2004, 424, 44-52.	1.4	56
113	Pseudotype-dependent lentiviral transduction of astrocytes or neurons in the rat substantia nigra. Experimental Neurology, 2011, 228, 41-52.	2.0	56
114	Subthalamic Ablation Reverses Changes in Basal Ganglia Oxidative Metabolism and Motor Response to Apomorphine Induced by Nigrostriatal Lesion in Rats. European Journal of Neuroscience, 1997, 9, 1407-1413.	1.2	55
115	LRRK2 and idiopathic Parkinson's disease. Trends in Neurosciences, 2022, 45, 224-236.	4.2	53
116	NeuN is not a reliable marker of dopamine neurons in rat substantia nigra. Neuroscience Letters, 2009, 464, 14-17.	1.0	52
117	Evidence for Compartmentalized Axonal Mitochondrial Biogenesis: Mitochondrial DNA Replication Increases in Distal Axons As an Early Response to Parkinson's Disease-Relevant Stress. Journal of Neuroscience, 2018, 38, 7505-7515.	1.7	51
118	The role of glutamate in the pathophysiology of Parkinson's disease. Functional Neurology, 1996, 11, 3-15.	1.3	51
119	Manipulation of Membrane Potential Modulates Malonate-Induced Striatal Excitotoxicity In Vivo. Journal of Neurochemistry, 2002, 66, 637-643.	2.1	49
120	Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1125-1136.	1.8	49
121	Quantitative autoradiography of L-[3H]glutamate binding to rat brain. Neuroscience Letters, 1983, 37, 155-160.	1.0	48
122	Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer. PLoS ONE, 2016, 11, e0155747.	1.1	48
123	Lead-induced changes in NMDA receptor complex binding: correlations with learning accuracy and with sensitivity to learning impairments caused by MK-801 and NMDA administration. Behavioural Brain Research, 1997, 85, 161-174.	1.2	45
124	Preventing Parkinson's Disease: An Environmental Agenda. Journal of Parkinson's Disease, 2022, 12, 45-68.	1.5	45
125	Thiol oxidation and altered NR2B/NMDA receptor functions in in vitro and in vivo pilocarpine models: Implications for epileptogenesis. Neurobiology of Disease, 2013, 49, 87-98.	2.1	43
126	Behavioral, neurochemical, and pathologic alterations in bacterial artificial chromosome transgenic G2019S leucine-rich repeated kinase 2 rats. Neurobiology of Aging, 2015, 36, 505-518.	1.5	42

#	Article	IF	CITATIONS
127	Prospects of glutamate antagonists in the therapy of Parkinson's disease. Fundamental and Clinical Pharmacology, 1998, 12, 4-12.	1.0	41
128	Quantitative study of mitochondrial complex I in platelets of parkinsonian patients. Movement Disorders, 1998, 13, 11-15.	2.2	41
129	Automated imaging system for fast quantitation of neurons, cell morphology and neurite morphometry in vivo and in vitro. Neurobiology of Disease, 2013, 54, 158-168.	2.1	41
130	Sex Differences in Rotenone Sensitivity Reflect the Male-to-Female Ratio in Human Parkinson's Disease Incidence. Toxicological Sciences, 2019, 170, 133-143.	1.4	41
131	Selective vulnerability of the CA1 region of hippocampus to the indirect excitotoxic effects of malonic acid. Neuroscience Letters, 1995, 192, 29-32.	1.0	39
132	Quantitative Autoradiography of Dihydrorotenone Binding to Complex I of the Electron Transport Chain. Journal of Neurochemistry, 1992, 59, 746-749.	2.1	38
133	Sprouting of dopaminergic fibers from spared mesencephalic dopamine neurons in the unilateral partial lesioned rat. Brain Research, 1995, 670, 197-204.	1.1	38
134	Long-term RNAi knockdown of \hat{l}_{\pm} -synuclein in the adult rat substantia nigra without neurodegeneration. Neurobiology of Disease, 2019, 125, 146-153.	2.1	38
135	Post-status epilepticus treatment with the cannabinoid agonist WIN 55,212-2 prevents chronic epileptic hippocampal damage in rats. Neurobiology of Disease, 2015, 73, 356-365.	2.1	37
136	Autonomic insufficiency in pupillary and cardiovascular systems in Parkinson's disease. Parkinsonism and Related Disorders, 2011, 17, 119-122.	1.1	36
137	Sodium-dependentd-aspartate â€~binding' is not a measure of presynaptic neuronal uptake sites in an autoradiographic assay. Brain Research, 1990, 511, 310-318.	1.1	34
138	Effect of subthalamic nucleus lesion on mitochondrial enzyme activity in rat basal ganglia. Brain Research, 1995, 669, 59-66.	1.1	32
139	Differential expression and ser897 phosphorylation of striatal N -methyl- d -aspartate receptor subunit NR1 in animal models of Parkinson's disease. Experimental Neurology, 2004, 187, 76-85.	2.0	32
140	New Frontiers in Parkinson's Disease: From Genetics to the Clinic. Journal of Neuroscience, 2018, 38, 9375-9382.	1.7	32
141	Neuronal bioenergetic defects, excitotoxicity and Alzheimer's disease: "Use it and lose it― Neurobiology of Aging, 1991, 12, 334-336.	1.5	31
142	Huntington's Disease â€" Making Connections. New England Journal of Medicine, 2007, 356, 518-520.	13.9	31
143	Editor's Highlight: Base Excision Repair Variants and Pesticide Exposure Increase Parkinson's Disease Risk. Toxicological Sciences, 2017, 158, 188-198.	1.4	31
144	Phenothiazine normalizes the NADH/NAD+ ratio, maintains mitochondrial integrity and protects the nigrostriatal dopamine system in a chronic rotenone model of Parkinson's disease. Redox Biology, 2019, 24, 101164.	3.9	31

#	Article	IF	CITATIONS
145	Regulation of dopamine receptor and neuropeptide expression in the basal ganglia of monkeys treated with MPTP. Experimental Neurology, 2004, 189, 393-403.	2.0	30
146	Protection against oxidant-induced apoptosis by mitochondrial thioredoxin in SH-SY5Y neuroblastoma cells. Toxicology and Applied Pharmacology, 2006, 216, 256-262.	1.3	30
147	A FRET-based method to study protein thiol oxidation in histological preparations. Free Radical Biology and Medicine, 2008, 45, 971-981.	1.3	30
148	Intrastriatal injections of the succinate dehydrogenase inhibitor, malonate, cause a rise in extracellular amino acids that is blocked by MK-801. Brain Research, 1995, 684, 221-224.	1.1	29
149	Acquired dysregulation of dopamine homeostasis reproduces features of Parkinson's disease. Npj Parkinson's Disease, 2020, 6, 34.	2.5	29
150	Trichloroethylene, a ubiquitous environmental contaminant in the risk for Parkinson's disease. Environmental Sciences: Processes and Impacts, 2020, 22, 543-554.	1.7	29
151	Coexistence of Huntington's disease and familial amyotrophic lateral sclerosis: case presentation. Acta Neuropathologica, 1996, 92, 421-427.	3.9	28
152	Acute Mitochondrial and Chronic Toxicological Effects of 1-Methyl-4-Phenylpyridinium in Human Neuroblastoma Cells. NeuroToxicology, 2002, 23, 569-580.	1.4	28
153	The industrial solvent trichloroethylene induces LRRK2 kinase activity and dopaminergic neurodegeneration in a rat model of Parkinson's disease. Neurobiology of Disease, 2021, 153, 105312.	2.1	28
154	Blockade of subthalamic glutamatergic activity corrects changes in neuronal metabolism and motor behavior in rats with nigrostriatal lesions. Neurological Sciences, 2001, 22, 49-50.	0.9	27
155	Neuron-selective changes in RNA transcripts related to energy metabolism in toxic models of parkinsonism in rodents. Neurobiology of Disease, 2010, 38, 476-481.	2.1	26
156	α-Synuclein amplifies cytoplasmic peroxide flux and oxidative stress provoked by mitochondrial inhibitors in CNS dopaminergic neurons in vivo. Redox Biology, 2020, 37, 101695.	3.9	26
157	Differential Expression of Glutamate Receptors by the Dopaminergic Neurons of the Primate Striatum. Experimental Neurology, 1999, 159, 401-408.	2.0	25
158	Immunocytochemical Characterization of the Mitochondrially Encoded ND1 Subunit of Complex I (NADH: Ubiquinone Oxidoreductase) in Rat Brain. Journal of Neurochemistry, 2000, 75, 383-392.	2.1	25
159	Oxidative Damage in Parkinson's Disease. Antioxidants and Redox Signaling, 2005, 7, 627-629.	2.5	24
160	Pink, parkin and the brain. Nature, 2006, 441, 1058-1058.	13.7	24
161	Mitochondrial DNA Damage as a Peripheral Biomarker for Mitochondrial Toxin Exposure in Rats. Toxicological Sciences, 2014, 142, 395-402.	1.4	23
162	Spectrum of tau pathologies in Huntington's disease. Laboratory Investigation, 2019, 99, 1068-1077.	1.7	23

#	Article	IF	Citations
163	Ca2+-Dependent Permeability Transition and Complex I Activity in Lymphoblast Mitochondria from Normal Individuals and Patients with Huntington's or Alzheimer's Disease. Annals of the New York Academy of Sciences, 1999, 893, 365-368.	1.8	22
164	Mitochondrial Complex I Reversible S-Nitrosation Improves Bioenergetics and Is Protective in Parkinson's Disease. Antioxidants and Redox Signaling, 2018, 28, 44-61.	2.5	21
165	Protection from α-Synuclein induced dopaminergic neurodegeneration by overexpression of the mitochondrial import receptor TOM20. Npj Parkinson's Disease, 2020, 6, 38.	2.5	21
166	Regional ontogeny of a unique glutamate recognition site in rat brain: An autoradiographic study. International Journal of Developmental Neuroscience, 1990, 8, 437-445.	0.7	20
167	Vesicular glutamate transporter modulates sex differences in dopamine neuron vulnerability to ageâ€related neurodegeneration. Aging Cell, 2021, 20, e13365.	3.0	20
168	ARL-15896, a NovelN-Methyl-D-aspartate Receptor Ion Channel Antagonist: Neuroprotection against Mitochondrial Metabolic Toxicity and Regional Pharmacology. Experimental Neurology, 1996, 137, 66-72.	2.0	19
169	Mouse ES cells overexpressing DNMT1 produce abnormal neurons with upregulated NMDA/NR1 subunit. Differentiation, 2011, 82, 9-17.	1.0	19
170	Response: Parkinson's disease, pesticides and mitochondrial dysfunction. Trends in Neurosciences, 2001, 24, 247.	4.2	18
171	Pesticides and Parkinson's Disease. Scientific World Journal, The, 2001, 1, 207-208.	0.8	18
172	Neurotransmitter receptors in Alzheimer disease. Cerebrovascular and Brain Metabolism Reviews, 1993, 5, 61-94.	2.0	18
173	NADPH oxidase 2 activity in Parkinson's disease. Neurobiology of Disease, 2022, 170, 105754.	2.1	18
174	Regional variations in the pharmacology of AMPA receptors as revealed by receptor autoradiography. Brain Research, 1994, 664, 202-206.	1.1	17
175	Pharmacological pallidotomy with glutamate antagonists?. Annals of Neurology, 1996, 39, 557-558.	2.8	17
176	Pupillary unrest correlates with arousal symptoms and motor signs in Parkinson disease. Movement Disorders, 2011, 26, 1344-1347.	2.2	17
177	VGLUT2 Is a Determinant of Dopamine Neuron Resilience in a Rotenone Model of Dopamine Neurodegeneration. Journal of Neuroscience, 2021, 41, 4937-4947.	1.7	17
178	Authors' response to commentaries. Neurobiology of Aging, 1989, 10, 618-620.	1.5	16
179	NMDA and AMPA Receptors in Transgenic Mice Expressing Human \hat{l}^2 -Amyloid Protein. Journal of Neurochemistry, 1993, 61, 2286-2289.	2.1	16
180	A Rapid and Sensitive Automated Imageâ€Based Approach for In Vitro and In Vivo Characterization of Cell Morphology and Quantification of Cell Number and Neurite Architecture. Current Protocols in Cytometry, 2014, 68, 12.33.1-22.	3.7	16

#	Article	IF	Citations
181	Autoradiographic study of mitochondrial complex I and glutamate receptors in the basal ganglia of rats after unilateral subthalamic lesion. Neuroscience Letters, 1995, 186, 99-102.	1.0	15
182	A study of cortical and hippocampal NMDA and PCP receptors following selective cortical and subcortical lesions. Brain Research, 1991, 538, 36-45.	1.1	14
183	Intrastriatal Neurotoxin Injections Reduce in Vitro and in Vivo Binding of Radiolabeled Rotenoids to Mitochondrial Complex I. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 265-272.	2.4	13
184	Prolongation of levodopa responses by glycineB antagonists in parkinsonian primates. Annals of Neurology, 2004, 56, 723-727.	2.8	13
185	Inhibition of autoradiographic MK-801 binding by an endogenous factor. Neuroscience Letters, 1994, 169, 105-108.	1.0	11
186	Assay of [3H] Dihydrorotenone Binding to Complex I in Intact Human Platelets. Analytical Biochemistry, 1995, 230, 16-19.	1.1	11
187	Parkinson's disease: animal models. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 83, 265-287.	1.0	11
188	Newly Revised Quantitative PCRâ€Based Assay for Mitochondrial and Nuclear DNA Damage. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2018, 76, e50.	1.1	11
189	Synthesis and evaluation of a new fluorine-18 labeled rotenoid as a potential PET probe of mitochondrial complex I activity. Journal of Labelled Compounds and Radiopharmaceuticals, 1999, 42, 1039-1051.	0.5	10
190	Sequential and concerted gene expression changes in a chronic in vitro model of parkinsonism. Neuroscience, 2008, 152, 198-207.	1.1	10
191	Transient muscarinic and glutamatergic stimulation of neural stem cells triggers acute and persistent changes in differentiation. Neurobiology of Disease, 2014, 70, 252-261.	2.1	10
192	Susceptibility of Adult Rats to Lead-induced Changes in NMDA Receptor Complex Function. Neurotoxicology and Teratology, 1997, 19, 517-530.	1.2	9
193	Fruit flies, bile acids, and Parkinson disease. Neurology, 2015, 85, 838-839.	1.5	9
194	Contamination of commercially available quisqualic acid by glutamate-like and aspartate-like substances. Journal of Neuroscience Methods, 1989, 27, 143-148.	1.3	8
195	Update on huntington's disease. Current Neurology and Neuroscience Reports, 2006, 6, 281-286.	2.0	7
196	What's wrong with mitochondria in Parkinson's disease?. Movement Disorders, 2018, 33, 1515-1517.	2.2	7
197	"Ottorino Rossi" Award 2000. New targets for therapy in Parkinson's disease: pathogenesis and pathophysiology. Functional Neurology, 2000, 15, 67-80.	1.3	5
198	Huntington's Disease: Getting Closer. American Journal of Psychiatry, 2007, 164, 1318-1318.	4.0	4

#	Article	IF	Citations
199	Regulation of complex I by Engrailed is complex too. Nature Neuroscience, 2011, 14, 1221-1222.	7.1	3
200	Response to Rotenone and Parkinson's Disease; Reduced Sensitivity in Females. Toxicological Sciences, 2019, 170, 563-563.	1.4	3
201	Rotenone as Preclinical Model Compound in Parkinson Disease. , 2014, , 995-1012.		3
202	Bioenergetics and excitotoxicity., 1996,, 125-142.		3
203	Chronic treatment with thioctic acid does not protect against malonate toxicity in vivo. Neuroscience Letters, 1995, 196, 125-127.	1.0	2
204	Spectrophotometric determination of refractive index increment for bacterial cells. Journal of Microbiological Methods, 1990, 11, 255-260.	0.7	1
205	N-Methyl-D-Aspartate Antagonists, Schizophrenia, and Neuroleptic Malignant Syndrome-Reply. Archives of Neurology, 1992, 49, 901-901.	4.9	1
206	Mitochondria, metabolic inhibitors and neurodegeneration., 2005,, 33-43.		0
207	Rotenone Rat and Other Neurotoxin Models of Parkinson Disease. , 2005, , 161-172.		O
208	Complex I Inhibition, Rotenone and Parkinson's Disease. , 2008, , 195-206.		0
209	Samay Jain, MD, June 2, 1974-September 8, 2016. Movement Disorders, 2016, 31, 1800-1801.	2.2	O
210	The Gordon Research Seminar & Conference on Parkinson's disease: state of the Science 200 years after James Parkinson's essay on the Shaking Palsy. Npj Parkinson's Disease, 2017, 3, .	2.5	0
211	Chronic Complex I Inhibition Reproduces Features of Parkinson's Disease. Advances in Behavioral Biology, 2002, , 271-276.	0.2	0
212	Glutamate Receptors and Glutamate Corticofugal Pathways. , 1986, , 355-365.		0