Markku Kulmala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8839477/publications.pdf

Version: 2024-02-01

1,285 papers

91,864 citations

131 h-index 227 g-index

1829 all docs

1829 docs citations

times ranked

1829

24601 citing authors

#	Article	IF	CITATIONS
1	Evolution of Organic Aerosols in the Atmosphere. Science, 2009, 326, 1525-1529.	12.6	3,374
2	Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science, 2004, 35, 143-176.	3.8	2,034
3	Flood or Drought: How Do Aerosols Affect Precipitation?. Science, 2008, 321, 1309-1313.	12.6	1,682
4	A large source of low-volatility secondary organic aerosol. Nature, 2014, 506, 476-479.	27.8	1,448
5	Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.	27.8	1,114
6	Direct Observations of Atmospheric Aerosol Nucleation. Science, 2013, 339, 943-946.	12.6	876
7	Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.	27.8	774
8	An amorphous solid state of biogenic secondary organic aerosol particles. Nature, 2010, 467, 824-827.	27.8	719
9	Atmospheric composition change – global and regional air quality. Atmospheric Environment, 2009, 43, 5268-5350.	4.1	714
10	Marine aerosol formation from biogenic iodine emissions. Nature, 2002, 417, 632-636.	27.8	705
11	The Role of Sulfuric Acid in Atmospheric Nucleation. Science, 2010, 327, 1243-1246.	12.6	694
12	Enhanced haze pollution by black carbon in megacities in China. Geophysical Research Letters, 2016, 43, 2873-2879.	4.0	590
13	Stable sulphate clusters as a source of new atmospheric particles. Nature, 2000, 404, 66-69.	27.8	584
14	A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry and Physics, 2010, 10, 1701-1737.	4.9	542
15	The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.	27.8	540
16	Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.	27.8	528
17	An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions. Journal of Geophysical Research, 2002, 107, AAC 3-1.	3.3	492
18	Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience, 2010, 3, 525-532.	12.9	486

#	Article	IF	CITATIONS
19	Ultrafine particles in cities. Environment International, 2014, 66, 1-10.	10.0	483
20	Toward Direct Measurement of Atmospheric Nucleation. Science, 2007, 318, 89-92.	12.6	478
21	ATMOSPHERIC SCIENCE: How Particles Nucleate and Grow. Science, 2003, 302, 1000-1001.	12.6	466
22	Cluster activation theory as an explanation of the linear dependence between formation rate of 3nm particles and sulphuric acid concentration. Atmospheric Chemistry and Physics, 2006, 6, 787-793.	4.9	466
23	A new atmospherically relevant oxidant of sulphur dioxide. Nature, 2012, 488, 193-196.	27.8	465
24	Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. Chemical Reviews, 2019, 119, 3472-3509.	47.7	460
25	Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science, 2014, 344, 717-721.	12.6	456
26	High Natural Aerosol Loading over Boreal Forests. Science, 2006, 312, 261-263.	12.6	447
27	Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmospheric Chemistry and Physics, 2006, 6, 2017-2038.	4.9	447
28	Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms. Atmospheric Chemistry and Physics, 2006, 6, 4079-4091.	4.9	444
29	A high-resolution mass spectrometer to measure atmospheric ion composition. Atmospheric Measurement Techniques, 2010, 3, 1039-1053.	3.1	436
30	Measurement of the nucleation of atmospheric aerosol particles. Nature Protocols, 2012, 7, 1651-1667.	12.0	435
31	Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia. Atmospheric Chemistry and Physics, 2008, 8, 4095-4103.	4.9	424
32	Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6634-6639.	7.1	415
33	Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 2018, 361, 278-281.	12.6	415
34	On the formation and growth of atmospheric nanoparticles. Atmospheric Research, 2008, 90, 132-150.	4.1	414
35	Evidence for the role of organics in aerosol particle formation under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6646-6651.	7.1	403
36	Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 432.	1.6	401

3

#	Article	IF	Citations
37	Contribution of particle formation to global cloud condensation nuclei concentrations. Geophysical Research Letters, 2008, 35, .	4.0	400
38	Atmospheric particles from organic vapours. Nature, 2002, 416, 497-498.	27.8	395
39	Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmospheric Chemistry and Physics, 2012, 12, 4117-4125.	4.9	393
40	Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmospheric Chemistry and Physics, 2011, 11, 3865-3878.	4.9	392
41	Parameterizations for sulfuric acid/water nucleation rates. Journal of Geophysical Research, 1998, 103, 8301-8307.	3.3	389
42	The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales. Atmospheric Chemistry and Physics, 2006, 6, 5631-5648.	4.9	364
43	An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmospheric Chemistry and Physics, 2010, 10, 10561-10605.	4.9	352
44	Ozone and fine particle in the western Yangtze River Delta: an overview of 1 yr data at the SORPES station. Atmospheric Chemistry and Physics, 2013, 13, 5813-5830.	4.9	352
45	The contribution of organics to atmospheric nanoparticle growth. Nature Geoscience, 2012, 5, 453-458.	12.9	350
46	Sulfuric acid and OH concentrations in a boreal forest site. Atmospheric Chemistry and Physics, 2009, 9, 7435-7448.	4.9	348
47	New particle formation in the free troposphere: A question of chemistry and timing. Science, 2016, 352, 1109-1112.	12.6	348
48	Analytical formulae connecting the "real―and the "apparent―nucleation rate and the nuclei number concentration for atmospheric nucleation events. Journal of Aerosol Science, 2002, 33, 609-622.	3.8	344
49	A new feedback mechanism linking forests, aerosols, and climate. Atmospheric Chemistry and Physics, 2004, 4, 557-562.	4.9	337
50	Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7123-7128.	7.1	337
51	Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and HyytiĀĀĀAtmospheric Chemistry and Physics, 2007, 7, 1899-1914.	4.9	329
52	Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles. Geophysical Research Letters, 2003, 30, .	4.0	325
53	On the formation, growth and composition of nucleation mode particles. Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 479.	1.6	324
54	Global observations of aerosol-cloud-precipitation-climate interactions. Reviews of Geophysics, 2014, 52, 750-808.	23.0	316

#	Article	IF	CITATIONS
55	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.	4.9	308
56	Atmospheric new particle formation and growth: review of field observations. Environmental Research Letters, 2018, 13, 103003.	5. 2	308
57	Ternary nucleation of H2SO4, NH3, and H2O in the atmosphere. Journal of Geophysical Research, 1999, 104, 26349-26353.	3.3	307
58	Observations of ultrafine aerosol particle formation and growth in boreal forest. Geophysical Research Letters, 1997, 24, 1219-1222.	4.0	300
59	Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17223-17228.	7.1	300
60	Global atmospheric particle formation from CERN CLOUD measurements. Science, 2016, 354, 1119-1124.	12.6	289
61	Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China. Atmospheric Chemistry and Physics, 2013, 13, 10545-10554.	4.9	286
62	Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmospheric Chemistry and Physics, 2012, 12, 12037-12059.	4.9	285
63	Enhanced air pollution via aerosol-boundary layer feedback in China. Scientific Reports, 2016, 6, 18998.	3.3	285
64	Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. National Science Review, 2020, 7, 1331-1339.	9.5	284
65	Particle Size Magnifier for Nano-CN Detection. Aerosol Science and Technology, 2011, 45, 533-542.	3.1	283
66	Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geoscience, 2013, 6, 438-442.	12.9	282
67	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	4.9	278
68	On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation. Atmospheric Chemistry and Physics, 2010, 10, 11223-11242.	4.9	262
69	New particle formation in Beijing, China: Statistical analysis of a 1 -year data set. Journal of Geophysical Research, $2007,112,.$	3.3	257
70	Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles. Geophysical Research Letters, 2010, 37, .	4.0	257
71	Temperature and light dependence of the VOC emissions of Scots pine. Atmospheric Chemistry and Physics, 2005, 5, 989-998.	4.9	255
72	Particulate matter pollution over China and the effects of control policies. Science of the Total Environment, 2017, 584-585, 426-447.	8.0	252

#	Article	IF	CITATIONS
73	Ambient Air Pollution Is Associated With Increased Risk of Hospital Cardiac Readmissions of Myocardial Infarction Survivors in Five European Cities. Circulation, 2005, 112, 3073-3079.	1.6	250
74	Urban aerosol number size distributions. Atmospheric Chemistry and Physics, 2004, 4, 391-411.	4.9	248
75	EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events. Atmospheric Chemistry and Physics, 2010, 10, 7907-7927.	4.9	248
76	Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water – a computational study. Atmospheric Chemistry and Physics, 2010, 10, 4961-4974.	4.9	245
77	Chemistry of Atmospheric Nucleation: On the Recent Advances on Precursor Characterization and Atmospheric Cluster Composition in Connection with Atmospheric New Particle Formation. Annual Review of Physical Chemistry, 2014, 65, 21-37.	10.8	242
78	Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature, 2016, 537, 532-534.	27.8	237
79	Parametrization of ternary nucleation rates for H2SO4-NH3-H2O vapors. Journal of Geophysical Research, 2002, 107, AAC 6-1.	3.3	235
80	Heterogeneous Nucleation Experiments Bridging the Scale from Molecular Ion Clusters to Nanoparticles. Science, 2008, 319, 1374-1377.	12.6	232
81	On the formation, growth and composition of nucleation mode particles. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 479-490.	1.6	231
82	Atmospheric ions and nucleation: a review of observations. Atmospheric Chemistry and Physics, 2011, 11, 767-798.	4.9	228
83	Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations. Atmospheric Chemistry and Physics, 2012, 12, 2345-2355.	4.9	226
84	Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air. Atmospheric Chemistry and Physics, 2012, 12, 5113-5127.	4.9	222
85	On the formation, growth and composition of nucleation mode particles. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 479-490.	1.6	221
86	Particle size characterization and emission rates during indoor activities in a house. Atmospheric Environment, 2006, 40, 4285-4307.	4.1	220
87	Number size distributions and seasonality of submicron particles in Europe 2008–2009. Atmospheric Chemistry and Physics, 2011, 11, 5505-5538.	4.9	214
88	Physical characterization of aerosol particles during nucleation events. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 344-358.	1.6	212
89	Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation. Atmospheric Chemistry and Physics, 2010, 10, 4775-4793.	4.9	212
90	Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR). Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 324.	1.6	209

#	Article	IF	Citations
91	Seasonal variation of mono- and sesquiterpene emission rates of Scots pine. Biogeosciences, 2006, 3, 93-101.	3.3	208
92	Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15019-15024.	7.1	208
93	Initial steps of aerosol growth. Atmospheric Chemistry and Physics, 2004, 4, 2553-2560.	4.9	207
94	Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers. Journal of Geophysical Research, 2002, 107, PAR 2-1.	3.3	205
95	On the growth of nucleation mode particles: source rates of condensable vapor in polluted and clean environments. Atmospheric Chemistry and Physics, 2005, 5, 409-416.	4.9	205
96	Chemical composition and mass closure of particulate matter at six urban sites in Europe. Atmospheric Environment, 2006, 40, 212-223.	4.1	203
97	The role of VOC oxidation products in continental new particle formation. Atmospheric Chemistry and Physics, 2008, 8, 2657-2665.	4.9	202
98	Urban air pollution, and asthma and COPD hospital emergency room visits. Thorax, 2008, 63, 635-641.	5.6	201
99	Particulate Air Pollution and Acute Cardiorespiratory Hospital Admissions and Mortality Among the Elderly. Epidemiology, 2009, 20, 143-153.	2.7	201
100	Causes and importance of new particle formation in the presentâ€day and preindustrial atmospheres. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8739-8760.	3.3	198
101	On the photochemical production of new particles in the coastal boundary layer. Geophysical Research Letters, 1999, 26, 1707-1710.	4.0	197
102	Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) $\hat{a} \in \hat{b}$ integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2009, 9, 2825-2841.	4.9	196
103	Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures. Chemical Reviews, 2015, 115, 4115-4156.	47.7	196
104	Direct observational evidence linking atmospheric aerosol formation and cloud droplet activation. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	195
105	Laboratory study on new particle formation from the reaction OH + SO ₂ : influence of experimental conditions, H ₂ o vapour, NH ₃ and the amine on the overall process. Atmospheric Chemistry and Physics, 2010, 10,	4.9	194
106	Binary nucleation of water–sulfuric acid system: Comparison of classical theories with different H2SO4 saturation vapor pressures. Journal of Chemical Physics, 1990, 93, 696-701.	3.0	189
107	Rapid Autoxidation Forms Highly Oxidized RO ₂ Radicals in the Atmosphere. Angewandte Chemie - International Edition, 2014, 53, 14596-14600.	13.8	186
108	Rapid Formation of Sulfuric Acid Particles at Near-Atmospheric Conditions. Science, 2005, 307, 698-700.	12.6	182

#	Article	IF	Citations
109	Nucleation and growth of new particles in Po Valley, Italy. Atmospheric Chemistry and Physics, 2007, 7, 355-376.	4.9	179
110	Technical Note: Quantitative long-term measurements of VOC concentrations by PTR-MS – measurement, calibration, and volume mixing ratio calculation methods. Atmospheric Chemistry and Physics, 2008, 8, 6681-6698.	4.9	179
111	Modification of the $K\tilde{A}\P$ hler Equation to Include Soluble Trace Gases and Slightly Soluble Substances. Journals of the Atmospheric Sciences, 1998, 55, 853-862.	1.7	178
112	Sulphuric acid closure and contribution to nucleation mode particle growth. Atmospheric Chemistry and Physics, 2005, 5, 863-878.	4.9	178
113	Associations of Fine and Ultrafine Particulate Air Pollution With Stroke Mortality in an Area of Low Air Pollution Levels. Stroke, 2007, 38, 918-922.	2.0	178
114	Hydroxyl radical-induced formation of highly oxidized organic compounds. Nature Communications, 2016, 7, 13677.	12.8	178
115	Analysis of the growth of nucleation mode particles observed in Boreal forest. Tellus, Series B: Chemical and Physical Meteorology, 1998, 50, 449-462.	1.6	177
116	Can chemical effects on cloud droplet number rival the first indirect effect?. Geophysical Research Letters, 2002, 29, 29-1-29-4.	4.0	176
117	Organic aerosol formation via sulphate cluster activation. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	175
118	Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophysical Research Letters, 2014, 41, 2644-2651.	4.0	175
119	The direct and indirect radiative effects of biogenic secondary organic aerosol. Atmospheric Chemistry and Physics, 2014, 14, 447-470.	4.9	175
120	Growth rates of nucleation mode particles in HyytiĀĀduring 2003â^'2009: variation with particle size, season, data analysis method and ambient conditions. Atmospheric Chemistry and Physics, 2011, 11, 12865-12886.	4.9	173
121	Estimating nucleation rates from apparent particle formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation. Journal of Aerosol Science, 2007, 38, 988-994.	3.8	172
122	ATMOSPHERIC SCIENCE: Reshaping the Theory of Cloud Formation. Science, 2001, 292, 2025-2026.	12.6	172
123	Composition and temporal behavior of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2010, 10, 8513-8530.	4.9	170
124	Nucleation events in the continental boundary layer: Influence of physical and meteorological parameters. Atmospheric Chemistry and Physics, 2002, 2, 1-16.	4.9	169
125	Observation of 2-methyltetrols and related photo-oxidation products of isoprene in boreal forest aerosols from HyytiÃÃPFinland. Atmospheric Chemistry and Physics, 2005, 5, 2761-2770.	4.9	169
126	Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 2020, 581, 184-189.	27.8	169

#	Article	IF	Citations
127	Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and Arctic environments in Finland. Atmospheric Environment, 2003, 37, 2629-2641.	4.1	167
128	A model for particle formation and growth in the atmosphere with molecular resolution in size. Atmospheric Chemistry and Physics, 2003, 3, 251-257.	4.9	167
129	A dedicated study of New Particle Formation and Fate in the Coastal Environment (PARFORCE): Overview of objectives and achievements. Journal of Geophysical Research, 2002, 107, PAR 1-1.	3.3	165
130	FORMATION OF SULPHURIC ACID AEROSOLS AND CLOUD CONDENSATION NUCLEI: AN EXPRESSION FOR SIGNIFICANT NUCLEATION AND MODEL COMPRARISON. Journal of Aerosol Science, 1999, 30, 1079-1094.	3.8	164
131	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	10.3	164
132	Meteorological dependence of size-fractionated number concentrations of urban aerosol particles. Atmospheric Environment, 2006, 40, 1427-1440.	4.1	160
133	Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events. Atmospheric Chemistry and Physics, 2011, 11, 9019-9036.	4.9	160
134	Measurements in a highly polluted Asian mega city: observations of aerosol number size distribution, modal parameters and nucleation events. Atmospheric Chemistry and Physics, 2005, 5, 57-66.	4.9	158
135	Effect of thinning on surface fluxes in a boreal forest. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	157
136	Sensitivity of aerosol concentrations and cloud properties to nucleation and secondary organic distribution in ECHAM5-HAM global circulation model. Atmospheric Chemistry and Physics, 2009, 9, 1747-1766.	4.9	153
137	An improved criterion for new particle formation in diverse atmospheric environments. Atmospheric Chemistry and Physics, 2010, 10, 8469-8480.	4.9	151
138	Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmospheric Environment, 2003, 37, 3605-3613.	4.1	150
139	Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer. Atmospheric Chemistry and Physics, 2006, 6, 315-327.	4.9	150
140	Indoor–outdoor relationships of particle number and mass in four European cities. Atmospheric Environment, 2008, 42, 156-169.	4.1	150
141	Air pollution control and decreasing new particle formation lead to strong climate warming. Atmospheric Chemistry and Physics, 2012, 12, 1515-1524.	4.9	150
142	Sub-10 nm particle growth by vapor condensation $\hat{a}\in$ effects of vapor molecule size and particle thermal speed. Atmospheric Chemistry and Physics, 2010, 10, 9773-9779.	4.9	149
143	Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmospheric Chemistry and Physics, 2014, 14, 4679-4713.	4.9	148
144	Strong atmospheric new particle formation in winter in urban Shanghai, China. Atmospheric Chemistry and Physics, 2015, 15, 1769-1781.	4.9	147

#	Article	IF	Citations
145	The condensation particle counter battery (CPCB): A new tool to investigate the activation properties of nanoparticles. Journal of Aerosol Science, 2007, 38, 289-304.	3.8	145
146	Atmospheric nucleation: highlights of the EUCAARI project and future directions. Atmospheric Chemistry and Physics, 2010, 10, 10829-10848.	4.9	144
147	Highly Oxidized Multifunctional Organic Compounds Observed in Tropospheric Particles: A Field and Laboratory Study. Environmental Science & Eamp; Technology, 2015, 49, 7754-7761.	10.0	143
148	Physical characterization of aerosol particles during nucleation events. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 344-358.	1.6	142
149	Analysis of the growth of nucleation mode particles observed in Boreal forest. Tellus, Series B: Chemical and Physical Meteorology, 2022, 50, 449.	1.6	140
150	Adsorptive uptake of water by semisolid secondary organic aerosols. Geophysical Research Letters, 2015, 42, 3063-3068.	4.0	139
151	Multicomponent aerosol dynamics model UHMA: model development and validation. Atmospheric Chemistry and Physics, 2004, 4, 757-771.	4.9	138
152	A review of measurement and modelling results of particle atmosphere–surface exchange. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 42.	1.6	138
153	The effect of atmospheric nitric acid vapor on cloud condensation nucleus activation. Journal of Geophysical Research, 1993, 98, 22949-22958.	3.3	137
154	Gas-aerosol relationships of H2SO4, MSA, and OH: Observations in the coastal marine boundary layer at Mace Head, Ireland. Journal of Geophysical Research, 2002, 107, PAR 5-1.	3.3	137
155	Indoor air measurement campaign in Helsinki, Finland 1999 – the effect of outdoor air pollution on indoor air. Atmospheric Environment, 2001, 35, 1465-1477.	4.1	133
156	Accretion Product Formation from Self―and Crossâ€Reactions of RO ₂ Radicals in the Atmosphere. Angewandte Chemie - International Edition, 2018, 57, 3820-3824.	13.8	133
157	Physical characterization of aerosol particles during nucleation events. Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 344.	1.6	131
158	Model studies on ion-induced nucleation in the atmosphere. Journal of Geophysical Research, 2002, 107, AAC 5-1.	3.3	131
159	Hydrocarbon fluxes above a Scots pine forest canopy: measurements and modeling. Atmospheric Chemistry and Physics, 2007, 7, 3361-3372.	4.9	131
160	New parameterization of sulfuric acidâ€ammoniaâ€water ternary nucleation rates at tropospheric conditions. Journal of Geophysical Research, 2007, 112, .	3.3	131
161	Aerosol size distribution measurements at four Nordic field stations: identification, analysis and trajectory analysis of new particle formation bursts. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 350-361.	1.6	131
162	Oxidation of SO ₂ by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations. Atmospheric Chemistry and Physics, 2013, 13, 3865-3879.	4.9	131

#	Article	IF	Citations
163	Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East. Reviews of Geophysics, 2022, 60, .	23.0	131
164	Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber. Atmospheric Chemistry and Physics, 2013, 13, 6101-6116.	4.9	129
165	Foliage surface ozone deposition: a role for surface moisture?. Biogeosciences, 2006, 3, 209-228.	3.3	128
166	Associations of traffic related air pollutants with hospitalisation for first acute myocardial infarction: the HEAPSS study. Occupational and Environmental Medicine, 2006, 63, 844-851.	2.8	128
167	Vertical aerosol particle fluxes measured by eddy covariance technique using condensational particle counter. Journal of Aerosol Science, 1998, 29, 157-171.	3.8	127
168	How significantly does coagulational scavenging limit atmospheric particle production?. Journal of Geophysical Research, 2001, 106, 24119-24125.	3.3	127
169	The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe. Atmospheric Chemistry and Physics, 2005, 5, 1773-1785.	4.9	127
170	OH Reactivity Measurements within a Boreal Forest: Evidence for Unknown Reactive Emissions. Environmental Science & Emp; Technology, 2010, 44, 6614-6620.	10.0	127
171	The role of relative humidity in continental new particle formation. Journal of Geophysical Research, 2011, 116, .	3.3	127
172	Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation. Atmospheric Chemistry and Physics, 2010, 10, 4253-4271.	4.9	126
173	A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environment International, 2021, 157, 106818.	10.0	126
174	A statistical proxy for sulphuric acid concentration. Atmospheric Chemistry and Physics, 2011, 11, 11319-11334.	4.9	124
175	One year boundary layer aerosol size distribution data from five nordic background stations. Atmospheric Chemistry and Physics, 2003, 3, 2183-2205.	4.9	123
176	Models for condensational growth and evaporation of binary aerosol particles. Journal of Aerosol Science, 1997, 28, 565-598.	3.8	122
177	Spatial variation of particle number and mass over four European cities. Atmospheric Environment, 2007, 41, 6622-6636.	4.1	122
178	Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12679-12694.	3.3	122
179	Coastal new particle formation: Environmental conditions and aerosol physicochemical characteristics during nucleation bursts. Journal of Geophysical Research, 2002, 107, PAR 12-1.	3.3	121
180	Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest. Atmospheric Chemistry and Physics, 2011, 11, 13269-13285.	4.9	121

#	Article	IF	CITATIONS
181	Polluted dust promotes new particle formation and growth. Scientific Reports, 2014, 4, 6634.	3.3	121
182	Street level versus rooftop concentrations of submicron aerosol particles and gaseous pollutants in an urban street canyon. Atmospheric Environment, 1999, 33, 1385-1397.	4.1	120
183	Ion production rate in a boreal forest based on ion, particle and radiation measurements. Atmospheric Chemistry and Physics, 2004, 4, 1933-1943.	4.9	120
184	Atmospheric gas-to-particle conversion: why NPF events are observed in megacities?. Faraday Discussions, 2017, 200, 271-288.	3.2	120
185	Spatial variation of aerosol number concentration in Helsinki city. Atmospheric Environment, 1999, 33, 553-565.	4.1	119
186	On the formation of sulphuric acid $\hat{a} \in \hat{a}$ amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation. Atmospheric Chemistry and Physics, 2012, 12, 9113-9133.	4.9	119
187	Kinetics of the unimolecular reaction of CH ₂ OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions. Physical Chemistry Chemical Physics, 2015, 17, 19862-19873.	2.8	119
188	Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species. Atmospheric Measurement Techniques, 2019, 12, 2403-2421.	3.1	119
189	Experiments on gas–liquid nucleation of sulfuric acid and water. Journal of Chemical Physics, 1997, 107, 920-926.	3.0	118
190	Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization. Atmospheric Chemistry and Physics, 2016, 16, 12715-12731.	4.9	118
191	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	7.1	118
192	Atmospheric new particle formation in China. Atmospheric Chemistry and Physics, 2019, 19, 115-138.	4.9	118
193	Effects of Fine and Ultrafine Particles on Cardiorespiratory Symptoms in Elderly Subjects with Coronary Heart Disease: The ULTRA Study. American Journal of Epidemiology, 2003, 157, 613-623.	3.4	116
194	Detecting charging state of ultra-fine particles: instrumental development and ambient measurements. Atmospheric Chemistry and Physics, 2007, 7, 1333-1345.	4.9	116
195	Clean the Air, Heat the Planet?. Science, 2009, 326, 672-673.	12.6	116
196	The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature Communications, 2016, 7, 11594.	12.8	116
197	ONE-YEAR DATA OF SUBMICRON SIZE MODES OF TROPOSPHERIC BACKGROUND AEROSOL IN SOUTHERN FINLAND. Journal of Aerosol Science, 2000, 31, 595-611.	3.8	115
198	Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest. Atmospheric Chemistry and Physics, 2008, 8, 129-139.	4.9	115

#	Article	IF	Citations
199	The potential for atmospheric mixing processes to enhance the binary nucleation rate. Journal of Geophysical Research, 1998, 103, 1381-1389.	3.3	114
200	Identification and classification of the formation of intermediate ions measured in boreal forest. Atmospheric Chemistry and Physics, 2007, 7, 201-210.	4.9	114
201	The contribution of sulfuric acid and non-volatile compounds on the growth of freshly formed atmospheric aerosols. Geophysical Research Letters, 2005, 32, .	4.0	113
202	In situ measurements of volatile organic compounds in a boreal forest. Atmospheric Chemistry and Physics, 2012, 12, 11665-11678.	4.9	113
203	Global analysis of continental boundary layer new particle formation based on long-term measurements. Atmospheric Chemistry and Physics, 2018, 18, 14737-14756.	4.9	113
204	Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station. Atmospheric Chemistry and Physics, 2015, 15, 12445-12464.	4.9	112
205	Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. Nature, 2016, 539, 416-419.	27.8	112
206	Fatty acids on continental sulfate aerosol particles. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	111
207	A density functional study on water-sulfuric acid-ammonia clusters and implications for atmospheric cluster formation. Journal of Geophysical Research, 2007, 112, .	3.3	111
208	Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010. Atmospheric Chemistry and Physics, 2012, 12, 8257-8270.	4.9	111
209	SALSA – a Sectional Aerosol module for Large Scale Applications. Atmospheric Chemistry and Physics, 2008, 8, 2469-2483.	4.9	110
210	Primary versus secondary contributions to particle number concentrations in the European boundary layer. Atmospheric Chemistry and Physics, 2011, 11, 12007-12036.	4.9	110
211	Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign. Atmospheric Chemistry and Physics, 2011, 11, 12369-12386.	4.9	110
212	Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other?. Environment International, 2019, 129, 118-135.	10.0	110
213	The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences. Atmospheric Chemistry and Physics, 2011, 11, 10599-10618.	4.9	108
214	Production, growth and properties of ultrafine atmospheric aerosol particles in an urban environment. Atmospheric Chemistry and Physics, 2011, 11, 1339-1353.	4.9	108
215	Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmospheric Chemistry and Physics, 2018, 18, 2853-2881.	4.9	108
216	An improved model for hydrate formation in sulfuric acid–water nucleation. Journal of Chemical Physics, 2002, 116, 218.	3.0	107

#	Article	IF	CITATIONS
217	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	7.1	107
218	Production of "potential―cloud condensation nuclei associated with atmospheric new-particle formation in northern Finland. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	106
219	Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environment International, 2020, 135, 105345.	10.0	106
220	Mass and Thermal Accommodation during Gas-Liquid Condensation of Water. Physical Review Letters, 2004, 93, 075701.	7.8	105
221	Indoor and outdoor particle size characterization at a family house in Espoo–Finland. Atmospheric Environment, 2005, 39, 3697-3709.	4.1	105
222	How do organic vapors contribute to new-particle formation?. Faraday Discussions, 2013, 165, 91.	3.2	105
223	Aerosol Particle Number Concentration Measurements in Five European Cities Using TSI-3022 Condensation Particle Counter over a Three-Year Period during Health Effects of Air Pollution on Susceptible Subpopulations. Journal of the Air and Waste Management Association, 2005, 55, 1064-1076.	1.9	104
224	Charged and total particle formation and growth rates during EUCAARI 2007 campaign in HyytiÃÞĀÞA Atmospheric Chemistry and Physics, 2009, 9, 4077-4089.	4.9	104
225	Kinetic nucleation and ions in boreal forest particle formation events. Atmospheric Chemistry and Physics, 2004, 4, 2353-2366.	4.9	103
226	Observations of turbulence-induced new particle formation in the residual layer. Atmospheric Chemistry and Physics, 2010, 10, 4319-4330.	4.9	102
227	Effects of Chemical Complexity on the Autoxidation Mechanisms of Endocyclic Alkene Ozonolysis Products: From Methylcyclohexenes toward Understanding \hat{l}_{\pm} -Pinene. Journal of Physical Chemistry A, 2015, 119, 4633-4650.	2.5	101
228	Can new particle formation occur in the clean marine boundary layer?. Journal of Geophysical Research, 2000, 105, 26531-26546.	3.3	100
229	Effects of continental boundary layer evolution, convection, turbulence and entrainment, on aerosol formation. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 441-461.	1.6	100
230	Measurements of ocean derived aerosol off the coast of California. Journal of Geophysical Research, 2012, 117, .	3.3	100
231	Atmospheric chemistry: China's choking cocktail. Nature, 2015, 526, 497-499.	27.8	100
232	Effect of ions on sulfuric acidâ€water binary particle formation: 2. Experimental data and comparison with QCâ€normalized classical nucleation theory. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1752-1775.	3.3	99
233	H2SO4 formation from the gas-phase reaction of stabilized Criegee Intermediates with SO2: Influence of water vapour content and temperature. Atmospheric Environment, 2014, 89, 603-612.	4.1	97
234	An improved model for ternary nucleation of sulfuric acid–ammonia–water. Journal of Chemical Physics, 2002, 116, 4221-4227.	3.0	96

#	Article	IF	Citations
235	Deposition rates on smooth surfaces and coagulation of aerosol particles inside a test chamber. Atmospheric Environment, 2009, 43, 905-914.	4.1	96
236	Results from the CERN pilot CLOUD experiment. Atmospheric Chemistry and Physics, 2010, 10, 1635-1647.	4.9	96
237	Influence of biomass burning plumes on HONO chemistry in eastern China. Atmospheric Chemistry and Physics, 2015, 15, 1147-1159.	4.9	96
238	Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid. Atmospheric Chemistry and Physics, 2007, 7, 211-222.	4.9	95
239	Hamp; studies of Hamp; studies of Hamp; st; SO samp; st; sub samp; st; 4 samp; st; sub samp; st; lt; sub samp; samp; st; lt; sub samp; st;	ıp;gt;2&ar 4.9	mp;lt;/sub&a 95
240	Atmospheric sub-3 nm particles at high altitudes. Atmospheric Chemistry and Physics, 2010, 10, 437-451.	4.9	95
241	Atmospheric Fate of Monoethanolamine: Enhancing New Particle Formation of Sulfuric Acid as an Important Removal Process. Environmental Science & Envir	10.0	95
242	Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China. Atmospheric Chemistry and Physics, 2009, 9, 5461-5474.	4.9	94
243	Reactivity of stabilized Criegee intermediates (sCls) from isoprene and monoterpene ozonolysis toward SO ₂ and organic acids. Atmospheric Chemistry and Physics, 2014, 14, 12143-12153.	4.9	94
244	Gas-Phase Ozonolysis of Cycloalkenes: Formation of Highly Oxidized RO ₂ Radicals and Their Reactions with NO, NO ₂ , SO ₂ , and Other RO ₂ Radicals. Journal of Physical Chemistry A, 2015, 119, 10336-10348.	2.5	94
245	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	12.6	94
246	Relationship and variations of aerosol number and PM10 mass concentrations in a highly polluted urban environment?New Delhi, India. Atmospheric Environment, 2004, 38, 425-433.	4.1	93
247	Measurements of cloud droplet activation of aerosol particles at a clean subarctic background site. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	93
248	Competing atmospheric reactions of CH ₂ OO with SO ₂ and water vapour. Physical Chemistry Chemical Physics, 2014, 16, 19130.	2.8	93
249	Atmospheric particle formation events at VÃ#iö measurement station in Finnish Lapland 1998-2002. Atmospheric Chemistry and Physics, 2004, 4, 2015-2023.	4.9	92
250	Ab Initio and Density Functional Theory Reinvestigation of Gas-Phase Sulfuric Acid Monohydrate and Ammonium Hydrogen Sulfate. Journal of Physical Chemistry A, 2006, 110, 7178-7188.	2.5	92
251	New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model. Atmospheric Chemistry and Physics, 2018, 18, 845-863.	4.9	92
252	Indoor air aerosol model: the effect of outdoor air, filtration and ventilation on indoor concentrations. Atmospheric Environment, 1999, 33, 2133-2144.	4.1	91

#	Article	IF	Citations
253	The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system. Nature Communications, 2019, 10, 4370.	12.8	91
254	Indoor Air Aerosol Model: Transport Indoors and Deposition of Fine and Coarse Particles. Aerosol Science and Technology, 1989, 11, 11-25.	3.1	90
255	Clouds without supersaturation. Nature, 1997, 388, 336-337.	27.8	90
256	Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST. Atmospheric Chemistry and Physics, 2005, 5, 373-384.	4.9	90
257	The role of ammonia in sulfuric acid ion induced nucleation. Atmospheric Chemistry and Physics, 2008, 8, 2859-2867.	4.9	90
258	Chemical composition of fine particles in fresh smoke plumes from boreal wild-land fires in Europe. Science of the Total Environment, 2010, 408, 2527-2542.	8.0	90
259	Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmospheric Chemistry and Physics, 2010, 10, 1885-1898.	4.9	89
260	Characteristics, sources and water-solubility of ambient submicron organic aerosol in springtime in Helsinki, Finland. Journal of Aerosol Science, 2013, 56, 61-77.	3.8	89
261	Molecular identification of organic vapors driving atmospheric nanoparticle growth. Nature Communications, 2019, 10, 4442.	12.8	89
262	Number size distributions and concentrations of the continental summer aerosols in Queen Maud Land, Antarctica. Journal of Geophysical Research, 2003, 108, .	3.3	87
263	A look at aerosol formation using data mining techniques. Atmospheric Chemistry and Physics, 2005, 5, 3345-3356.	4.9	87
264	Surface Tensions and Densities of Oxalic, Malonic, Succinic, Maleic, Malic, and Cis-Pinonic Acids. Journal of Chemical & Data, 2006, 51, 255-260.	1.9	87
265	Physicochemical properties and origin of organic groups detected in boreal forest using an aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2010, 10, 2063-2077.	4.9	87
266	Long term measurements of aerosol optical properties at a primary forest site in Amazonia. Atmospheric Chemistry and Physics, 2013, 13, 2391-2413.	4.9	87
267	Formation and growth of nucleated particles into cloud condensation nuclei: model–measurement comparison. Atmospheric Chemistry and Physics, 2013, 13, 7645-7663.	4.9	87
268	Basic characteristics of atmospheric particles, trace gases and meteorology in a relatively clean Southern African Savannah environment. Atmospheric Chemistry and Physics, 2008, 8, 4823-4839.	4.9	86
269	New particle formation events in semi-clean South African savannah. Atmospheric Chemistry and Physics, 2011, 11, 3333-3346.	4.9	86
270	Impact on short-lived climate forcers increases projected warming due to deforestation. Nature Communications, 2018, 9, 157.	12.8	86

#	Article	IF	Citations
271	The particle detection efficiency of the TSI-3007 condensation particle counter. Journal of Aerosol Science, 2002, 33, 1463-1469.	3.8	85
272	Results of the first air ion spectrometer calibration and intercomparison workshop. Atmospheric Chemistry and Physics, 2009, 9, 141-154.	4.9	85
273	Molecular Composition of Boreal Forest Aerosol from HyytiÃѬ҈¤Finland, Using Ultrahigh Resolution Mass Spectrometry. Environmental Science & Technology, 2013, 47, 4069-4079.	10.0	85
274	Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of Finland and Colorado. Atmospheric Chemistry and Physics, 2013, 13, 11987-12001.	4.9	85
275	Simulation tool for atmospheric aerosol nucleation bursts. Journal of Aerosol Science, 2005, 36, 173-196.	3.8	84
276	Connection of Sulfuric Acid to Atmospheric Nucleation in Boreal Forest. Environmental Science & Enviro	10.0	84
277	On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation. Atmospheric Chemistry and Physics, 2015, 15, 55-78.	4.9	84
278	Early snowmelt significantly enhances boreal springtime carbon uptake. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11081-11086.	7.1	84
279	Long-term analysis of clear-sky new particle formation events and nonevents in HyytiÃÞĀÞAtmospheric Chemistry and Physics, 2017, 17, 6227-6241.	4.9	84
280	New particle formation in the Front Range of the Colorado Rocky Mountains. Atmospheric Chemistry and Physics, 2008, 8, 1577-1590.	4.9	83
281	Day-time concentrations of biogenic volatile organic compounds in a boreal forest canopy and their relation to environmental and biological factors. Atmospheric Chemistry and Physics, 2009, 9, 5447-5459.	4.9	83
282	Nucleation studies in the Martian atmosphere. Journal of Geophysical Research, 2005, 110, .	3.3	82
283	Determination of isoprene and αâ€ſβâ€pinene oxidation products in boreal forest aerosols from HyytiÃÍؤ Finland: diel variations and possible link with particle formation events. Plant Biology, 2008, 10, 138-149.	3.8	81
284	Chemical composition, main sources and temporal variability of PM ₁ aerosols in southern African grassland. Atmospheric Chemistry and Physics, 2014, 14, 1909-1927.	4.9	81
285	Accretion Product Formation from Ozonolysis and OH Radical Reaction of α-Pinene: Mechanistic Insight and the Influence of Isoprene and Ethylene. Environmental Science & Envi	10.0	81
286	Estimation of line tension and contact angle from heterogeneous nucleation experimental data. Journal of Chemical Physics, 2007, 126, 094705.	3.0	80
287	Laboratory Verification of PH-CPC's Ability to Monitor Atmospheric Sub-3 nm Clusters. Aerosol Science and Technology, 2009, 43, 126-135.	3.1	80
288	Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols. Scientific Reports, 2016, 6, 35038.	3.3	80

#	Article	IF	Citations
289	Dilution and aerosol dynamics within a diesel car exhaust plumeâ€"CFD simulations of on-road measurement conditions. Atmospheric Environment, 2007, 41, 7440-7461.	4.1	79
290	New particle formation and growth at a remote, sub-tropical coastal location. Atmospheric Chemistry and Physics, 2009, 9, 7607-7621.	4.9	79
291	lon-induced sulfuric acid–ammonia nucleation drives particle formation in coastal Antarctica. Science Advances, 2018, 4, eaat9744.	10.3	79
292	Long-term measurements of volatile organic compounds highlight the importance of sesquiterpenes for the atmospheric chemistry of a boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 13839-13863.	4.9	79
293	Measurement of the molecular content of binary nuclei. II. Use of the nucleation rate surface for water–ethanol. Journal of Chemical Physics, 1994, 100, 6062-6072.	3.0	78
294	Commentary on cloud modelling and the mass accommodation coefficient of water. Atmospheric Chemistry and Physics, 2005, 5, 461-464.	4.9	78
295	Aerosol decadal trends – Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations. Atmospheric Chemistry and Physics, 2013, 13, 895-916.	4.9	78
296	Build a global Earth observatory. Nature, 2018, 553, 21-23.	27.8	78
297	Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing. Environmental Science & Environmental Science	10.0	78
298	Revised parametrization of the Dillmann-Meier theory of homogeneous nucleation. Physical Review E, 1994, 49, 5517-5524.	2.1	77
299	Secondary organics and atmospheric cloud condensation nuclei production. Journal of Geophysical Research, 2000, 105, 9255-9264.	3.3	77
300	Changes in background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis. Atmospheric Chemistry and Physics, 2006, 6, 5049-5066.	4.9	77
301	Characteristic features of air ions at Mace Head on the west coast of Ireland. Atmospheric Research, 2008, 90, 278-286.	4.1	77
302	Governing processes for reactive nitrogen compounds in the European atmosphere. Biogeosciences, 2012, 9, 4921-4954.	3.3	77
303	Theoretical consideration on sticking probabilities. Journal of Aerosol Science, 1996, 27, 869-882.	3.8	76
304	Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth. Atmospheric Chemistry and Physics, 2012, 12, 9427-9439.	4.9	76
305	AÂEuropean aerosol phenomenology – 6: scattering properties of atmospheric aerosol particles from 28ÂACTRIS sites. Atmospheric Chemistry and Physics, 2018, 18, 7877-7911.	4.9	76
306	An analytical expression for the rate of binary condensational particle growth. Proceedings of the Royal Society A, 1993, 441, 589-605.	0.9	75

#	Article	IF	Citations
307	Aerosol formation during PARFORCE: Ternary nucleation of H2SO4, NH3, and H2O. Journal of Geophysical Research, 2002, 107, PAR 15-1.	3.3	75
308	Condensation of water vapor: Experimental determination of mass and thermal accommodation coefficients. Journal of Geophysical Research, 2006, 111 , .	3.3	75
309	Long-term observation of air pollution-weather/climate interactions at the SORPES station: a review and outlook. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	6.0	75
310	Condensation in the continuum regime. Journal of Aerosol Science, 1991, 22, 337-346.	3.8	74
311	Vertical aerosol fluxes measured by the eddy covariance method and deposition of nucleation mode particles above a Scots pine forest in southern Finland. Journal of Geophysical Research, 2000, 105, 19905-19916.	3.3	74
312	Mass accommodation and uptake coefficients â€" a quantitative comparison. Journal of Aerosol Science, 2001, 32, 833-841.	3.8	74
313	Applicability of condensation particle counters to measure atmospheric clusters. Atmospheric Chemistry and Physics, 2008, 8, 4049-4060.	4.9	74
314	Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?. Faraday Discussions, 2021, 226, 334-347.	3.2	74
315	Observations of new particle formation and size distributions at two different heights and surroundings in subarctic area in northern Finland. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	73
316	Mass accommodation coefficient of water vapor on liquid water. Geophysical Research Letters, 2004, 31, .	4.0	73
317	Characterization of aerosol particle episodes in Finland caused by wildfires in Eastern Europe. Atmospheric Chemistry and Physics, 2005, 5, 2299-2310.	4.9	73
318	MALTE – model to predict new aerosol formation in the lower troposphere. Atmospheric Chemistry and Physics, 2006, 6, 4499-4517.	4.9	73
319	Observation of regional new particle formation in the urban atmosphere. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 509.	1.6	7 3
320	How biogenic terpenes govern the correlation between sulfuric acid concentrations and new particle formation. Journal of Geophysical Research, 2008, 113, .	3.3	73
321	Aerosol black carbon at five background measurement sites over Finland, a gateway to the Arctic. Atmospheric Environment, 2011, 45, 4042-4050.	4.1	7 3
322	BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2. Atmospheric Chemistry and Physics, 2012, 12, 10077-10096.	4.9	73
323	Station for Measuring Ecosystem-Atmosphere Relations: SMEAR. , 2013, , 471-487.		7 3
324	Sub-3 nm particle size and composition dependent response of a nano-CPC battery. Atmospheric Measurement Techniques, 2014, 7, 689-700.	3.1	73

#	Article	IF	Citations
325	Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013–2017. Environment International, 2020, 134, 105283.	10.0	73
326	The interdependence of evaporation and settling for airborne freely falling droplets. Journal of Aerosol Science, 1989, 20, 749-763.	3.8	72
327	Modelling Binary Homogeneous Nucleation of Waterâ-'Sulfuric Acid Vapours:Â Parameterisation for High Temperature Emissions. Environmental Science & Emperature Emissions.	10.0	72
328	Annual and interannual variation in boreal forest aerosol particle number and volume concentration and their connection to particle formation. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 495.	1.6	72
329	Seasonal cycle, size dependencies, and source analyses of aerosol optical properties at the SMEAR II measurement station in HyytiĀÞFinland. Atmospheric Chemistry and Physics, 2011, 11, 4445-4468.	4.9	72
330	An Instrumental Comparison of Mobility and Mass Measurements of Atmospheric Small Ions. Aerosol Science and Technology, 2011, 45, 522-532.	3.1	72
331	Experimental Observation of Strongly Bound Dimers of Sulfuric Acid: Application to Nucleation in the Atmosphere. Physical Review Letters, 2011, 106, 228302.	7.8	72
332	Ozone deposition into a boreal forest over a decade of observations: evaluating deposition partitioning and driving variables. Atmospheric Chemistry and Physics, 2012, 12, 12165-12182.	4.9	72
333	Aerosols and nucleation in eastern China: first insights from the new SORPES-NJU station. Atmospheric Chemistry and Physics, 2014, 14, 2169-2183.	4.9	72
334	Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,377.	3.3	71
335	Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of & amp;lt;i>α-pinene. Atmospheric Chemistry and Physics, 2016, 16, 6495-6509.	4.9	71
336	Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth. Geophysical Research Letters, 2017, 44, 2958-2966.	4.0	71
337	Measurements of sub-3†nm particles using a particle size magnifier in different environments: from clean mountain top to polluted megacities. Atmospheric Chemistry and Physics, 2017, 17, 2163-2187.	4.9	71
338	Night-time formation and occurrence of new particles associated with orographic clouds. Atmospheric Environment, 1997, 31, 2545-2559.	4.1	70
339	Fluxes of carbon dioxide and water vapour over Scots pine forest and clearing. Agricultural and Forest Meteorology, 2002, 111, 187-202.	4.8	70
340	Chemical composition of boundary layer aerosol over the Atlantic Ocean and at an Antarctic site. Atmospheric Chemistry and Physics, 2006, 6, 3407-3421.	4.9	70
341	Characterization of new particle formation events at a background site in Southern Sweden: relation to air mass history. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 330.	1.6	70
342	Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements. Environmental Science & Environmental	10.0	70

#	Article	IF	CITATIONS
343	Remarks on Ion Generation for CPC Detection Efficiency Studies in Sub-3-nm Size Range. Aerosol Science and Technology, 2013, 47, 556-563.	3.1	70
344	Molecular composition of biogenic secondary organic aerosols using ultrahigh-resolution mass spectrometry: comparing laboratory and field studies. Atmospheric Chemistry and Physics, 2014, 14, 2155-2167.	4.9	70
345	Sulfuric acid–amine nucleation in urban Beijing. Atmospheric Chemistry and Physics, 2021, 21, 2457-2468.	4.9	70
346	Differing Mechanisms of New Particle Formation at Two Arctic Sites. Geophysical Research Letters, 2021, 48, e2020GL091334.	4.0	70
347	Sulfate aerosol formation in the Arctic boundary layer. Journal of Geophysical Research, 1998, 103, 8309-8321.	3.3	69
348	The effect of H ₂ SO ₄ – amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid. Atmospheric Chemistry and Physics, 2011, 11, 3007-3019.	4.9	69
349	Modelling atmospheric OH-reactivity in a boreal forest ecosystem. Atmospheric Chemistry and Physics, 2011, 11, 9709-9719.	4.9	69
350	The analysis of size-segregated cloud condensation nuclei counter (CCNC) data and its implications for cloud droplet activation. Atmospheric Chemistry and Physics, 2013, 13, 10285-10301.	4.9	69
351	New foliage growth is a significant, unaccounted source for volatiles in boreal evergreen forests. Biogeosciences, 2014, 11, 1331-1344.	3.3	69
352	Mass yields of secondary organic aerosols from the oxidation of \hat{l}_{\pm} -pinene and real plant emissions. Atmospheric Chemistry and Physics, 2011, 11, 1367-1378.	4.9	68
353	Molecular understanding of new-particle formation from <i>α</i> -pinene between â^'50 and +25 °C. Atmospheric Chemistry and Physics, 2020, 20, 9183-9207.	4.9	68
354	Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash. Agricultural and Forest Meteorology, 2014, 188, 33-44.	4.8	67
355	Effects of continental boundary layer evolution, convection, turbulence and entrainment, on aerosol formation. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 441-461.	1.6	67
356	Significance of Ammonia in Growth of Atmospheric Nanoclusters. Journal of Physical Chemistry A, 2007, 111, 10671-10674.	2.5	66
357	Horizontal homogeneity and vertical extent of new particle formation events. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 362-371.	1.6	66
358	Size distributions, sources and source areas of water-soluble organic carbon in urban background air. Atmospheric Chemistry and Physics, 2008, 8, 5635-5647.	4.9	66
359	An air quality assessment in the industrialised western Bushveld Igneous Complex, South Africa. South African Journal of Science, 2012, 108, .	0.7	66
360	The role of highly oxygenated moleculesÂ(HOMs) in determining the composition of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2017, 17, 13819-13831.	4.9	66

#	Article	IF	CITATIONS
361	Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds. Environmental Science & Environmental Scie	10.0	66
362	Parameterization for Atmospheric New-Particle Formation: Application to a System Involving Sulfuric Acid and Condensable Water-Soluble Organic Vapors. Aerosol Science and Technology, 2004, 38, 1001-1008.	3.1	65
363	Characterization and source identification of a fine particle episode in Finland. Atmospheric Environment, 2004, 38, 5003-5012.	4.1	65
364	On Operation of the Ultra-Fine Water-Based CPC TSI 3786 and Comparison with Other TSI Models (TSI) Tj ETQq(0 0 0 rgBT 3.1	Oyerlock 10
365	New particle formation events measured on board the ATR-42 aircraft during the EUCAARI campaign. Atmospheric Chemistry and Physics, 2010, 10, 6721-6735.	4.9	65
366	Toward Massive Scale Air Quality Monitoring. IEEE Communications Magazine, 2020, 58, 54-59.	6.1	65
367	A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Measurement Techniques, 2020, 13, 4353-4392.	3.1	65
368	Measurements of ozone removal by Scots pine shoots: calibration of a stomatal uptake model including the non-stomatal component. Atmospheric Environment, 2004, 38, 2387-2398.	4.1	64
369	Identification of organic compounds in atmospheric aerosol particles by on-line supercritical fluid extraction–liquid chromatography–gas chromatography–mass spectrometry. Journal of Chromatography A, 2004, 1022, 151-159.	3.7	64
370	Sub-micron atmospheric aerosols in the surroundings of Marseille and Athens: physical characterization and new particle formation. Atmospheric Chemistry and Physics, 2007, 7, 2705-2720.	4.9	64
371	New particle formation from the oxidation of direct emissions of pine seedlings. Atmospheric Chemistry and Physics, 2009, 9, 8121-8137.	4.9	64
372	Time span and spatial scale of regional new particle formation events over Finland and Southern Sweden. Atmospheric Chemistry and Physics, 2009, 9, 4699-4716.	4.9	64
373	Observing wind, aerosol particles, cloud and precipitation: Finland's new ground-based remote-sensing network. Atmospheric Measurement Techniques, 2014, 7, 1351-1375.	3.1	64
374	Observations of biogenic ion-induced cluster formation in the atmosphere. Science Advances, 2018, 4, eaar 5218.	10.3	64
375	Secondary organic aerosol formed by condensing anthropogenic vapours over China's megacities. Nature Geoscience, 2022, 15, 255-261.	12.9	64
376	Formation and growth of indoor air aerosol particles as a result of d-limonene oxidation. Atmospheric Environment, 2006, 40, 7882-7892.	4.1	63
377	Long-range transport episodes of fine particles in southern Finland during 1999–2007. Atmospheric Environment, 2009, 43, 1255-1264.	4.1	63
378	Performance of diethylene glycol-based particle counters in the sub-3 nm size range. Atmospheric Measurement Techniques, 2013, 6, 1793-1804.	3.1	63

#	Article	IF	CITATIONS
379	Intelligent Calibration and Virtual Sensing for Integrated Low-Cost Air Quality Sensors. IEEE Sensors Journal, 2020, 20, 13638-13652.	4.7	63
380	On the theories of type 1 polar stratospheric cloud formation. Journal of Geophysical Research, 1995, 100, 11275.	3.3	62
381	Characterization of organic compounds in aerosol particles from a coniferous forest by GC–MS. Chemosphere, 2006, 64, 1185-1195.	8.2	62
382	Estimating the NH <sub>:l₂SO<sub 2007,="" 2765-2773.<="" 7,="" and="" atmospheric="" chemical="" chemistry="" clusters="" conditions="" in="" methods.="" nucleating="" of="" physics,="" quantum="" ratio="" td="" using=""><td>>4& 4:9</td><td>.amp;lt;/sub&</td></sub></sub>	>4& 4:9	.amp;lt;/sub&
383	Indoor Aerosol Modeling: Basic Principles and Practical Applications. Water, Air and Soil Pollution, 2008, 8, 23-34.	0.8	62
384	South African EUCAARI measurements: seasonal variation of trace gases and aerosol optical properties. Atmospheric Chemistry and Physics, 2012, 12, 1847-1864.	4.9	62
385	MEGAPOLI: concept of multi-scale modelling of megacity impact on air quality and climate. Advances in Science and Research, 2010, 4, 115-120.	1.0	62
386	Modelling of the influence of aerosol processes for the dispersion of vehicular exhaust plumes in street environment. Atmospheric Environment, 2003, 37, 339-351.	4.1	61
387	Nucleation events in the continental boundary layer: Long-term statistical analyses of aerosol relevant characteristics. Journal of Geophysical Research, 2003, 108, .	3.3	61
388	Relaxed Eddy Accumulation System for Size-Resolved Aerosol Particle Flux Measurements. Journal of Atmospheric and Oceanic Technology, 2004, 21, 933-943.	1.3	61
389	The Finokalia Aerosol Measurement Experiment – 2008 (FAME-08): an overview. Atmospheric Chemistry and Physics, 2010, 10, 6793-6806.	4.9	61
390	Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview. Atmospheric Chemistry and Physics, 2010, 10, 8413-8435.	4.9	61
391	Modeling regional deposited dose of submicron aerosol particles. Science of the Total Environment, 2013, 458-460, 140-149.	8.0	61
392	Quantifying the impact of synoptic circulation patterns on ozone variability in northern China from April to October 2013–2017. Atmospheric Chemistry and Physics, 2019, 19, 14477-14492.	4.9	61
393	Size-dependent influence of NO _x on the growth rates of organic aerosol particles. Science Advances, 2020, 6, eaay4945.	10.3	61
394	Adipic and Malonic Acid Aqueous Solutions:Â Surface Tensions and Saturation Vapor Pressures. Journal of Physical Chemistry A, 2007, 111, 12995-13002.	2.5	60
395	Regional effect on urban atmospheric nucleation. Atmospheric Chemistry and Physics, 2016, 16, 8715-8728.	4.9	60
396	Dynamics of atmospheric nucleation mode particles: a timescale analysis. Tellus, Series B: Chemical and Physical Meteorology, 2004, 56, 135-146.	1.6	59

#	Article	IF	Citations
397	Analysis of atmospheric neutral and charged molecular clusters in boreal forest using pulse-height CPC. Atmospheric Chemistry and Physics, 2009, 9, 4177-4184.	4.9	59
398	Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model. Geoscientific Model Development, 2012, 5, 845-868.	3.6	59
399	Continuous VOC flux measurements on boreal forest floor. Plant and Soil, 2013, 369, 241-256.	3.7	59
400	Nucleation probability in binary heterogeneous nucleation of water–n-propanol vapor mixtures on insoluble and soluble nanoparticles. Physical Review E, 2003, 67, 021605.	2.1	58
401	Factors of air ion balance in a coniferous forest according to measurements in HyytiÃѬ҈Finland. Atmospheric Chemistry and Physics, 2006, 6, 3377-3390.	4.9	58
402	Properties of aerosol signature size distributions in the urban environment as derived by cluster analysis. Atmospheric Environment, 2012, 61, 350-360.	4.1	58
403	A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network. Atmospheric Chemistry and Physics, 2015, 15, 12211-12229.	4.9	58
404	Overview of measurements and current instrumentation for 1–10Ânm aerosol particle number size distributions. Journal of Aerosol Science, 2020, 148, 105584.	3.8	58
405	Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.	4.9	58
406	Non-volatile residuals of newly formed atmospheric particles in the boreal forest. Atmospheric Chemistry and Physics, 2007, 7, 677-684.	4.9	57
407	Simulations of atmospheric OH, O ₃ and NO ₃ reactivities within and above the boreal forest. Atmospheric Chemistry and Physics, 2015, 15, 3909-3932.	4.9	57
408	Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric Chemistry and Physics, 2016, 16, 14421-14461.	4.9	57
409	An explicit cluster model for binary nuclei in water–alcohol systems. Journal of Chemical Physics, 1991, 95, 6745-6748.	3.0	56
410	Modelling the formation of H2SO4–H2O particles in rural, urban and marine conditions. Atmospheric Research, 1998, 46, 321-347.	4.1	56
411	Hygroscopic and CCN properties of aerosol particles in boreal forests. Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 359.	1.6	56
412	Overview of the field measurement campaign in HyytiÃÞĀÞAugust 2001 in the framework of the EU project OSOA. Atmospheric Chemistry and Physics, 2004, 4, 657-678.	4.9	56
413	Detection Efficiency of a Water-Based TSI Condensation Particle Counter 3785. Aerosol Science and Technology, 2006, 40, 1090-1097.	3.1	56
414	Analysis of one year of Ion-DMPS data from the SMEAR II station, Finland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 318.	1.6	56

#	Article	IF	CITATIONS
415	Airborne measurements of nucleation mode particles II: boreal forest nucleation events. Atmospheric Chemistry and Physics, 2009, 9, 937-944.	4.9	56
416	Applying the Condensation Particle Counter Battery (CPCB) to study the water-affinity of freshly-formed 2–9 nm particles in boreal forest. Atmospheric Chemistry and Physics, 2009, 9, 3317-3330.	4.9	56
417	Annual particle flux observations over a heterogeneous urban area. Atmospheric Chemistry and Physics, 2009, 9, 7847-7856.	4.9	56
418	Temporal variations of O3 and NOx in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Atmospheric Environment, 2014, 94, 205-214.	4.1	56
419	Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmospheric Chemistry and Physics, 2018, 18, 65-79.	4.9	56
420	Emission Rates Due to Indoor Activities: Indoor Aerosol Model Development, Evaluation, and Applications. Aerosol Science and Technology, 2005, 39, 1111-1127.	3.1	55
421	Atmospheric new particle formation: real and apparent growth of neutral and charged particles. Atmospheric Chemistry and Physics, 2011, 11, 4939-4955.	4.9	55
422	On the diurnal cycle of urban aerosols, black carbon and the occurrence of new particle formation events in springtime São Paulo, Brazil. Atmospheric Chemistry and Physics, 2012, 12, 11733-11751.	4.9	55
423	Observation of viscosity transition in & t; > ±& t; >-pinene secondary organic aerosol. Atmospheric Chemistry and Physics, 2016, 16, 4423-4438.	4.9	55
424	Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR). Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 324-343.	1.6	55
425	Hygroscopicity, CCN and volatility properties of submicron atmospheric aerosol in a boreal forest environment during the summer of 2010. Atmospheric Chemistry and Physics, 2014, 14, 4733-4748.	4.9	54
426	The ADV/ASV AATSR aerosol retrieval algorithm: current status and presentation of a full-mission AOD dataset. International Journal of Digital Earth, 2016, 9, 545-561.	3.9	54
427	Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment. Big Earth Data, 2020, 4, 295-321.	4.4	54
428	Analysis of particulate polycyclic aromatic hydrocarbons by on-line coupled supercritical fluid extraction–liquid chromatography–gas chromatography–mass spectrometry. Atmospheric Environment, 2002, 36, 2985-2995.	4.1	53
429	Biogenic and biomass burning organic aerosol in a boreal forest at HyytiÃÞFinland, during HUMPPA-COPEC 2010. Atmospheric Chemistry and Physics, 2013, 13, 12233-12256.	4.9	53
430	Model for acid-base chemistry in nanoparticle growth (MABNAG). Atmospheric Chemistry and Physics, 2013, 13, 12507-12524.	4.9	53
431	The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing Newâ€Particle Formation in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091944.	4.0	53
432	Aerosol-boundary-layer-monsoon interactions amplify semi-direct effect of biomass smoke on low cloud formation in Southeast Asia. Nature Communications, 2021, 12, 6416.	12.8	53

#	Article	IF	CITATIONS
433	Mode resolved density of atmospheric aerosol particles. Atmospheric Chemistry and Physics, 2008, 8, 5327-5337.	4.9	52
434	Atmospheric new particle formation as a source of CCN in the eastern Mediterranean marine boundary layer. Atmospheric Chemistry and Physics, 2015, 15, 9203-9215.	4.9	52
435	On the interpretation of the loading correction of the aethalometer. Atmospheric Measurement Techniques, 2015, 8, 4415-4427.	3.1	52
436	Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development. ACS Earth and Space Chemistry, 2019, 3, 873-883.	2.7	52
437	Variation of size-segregated particle number concentrations in wintertime Beijing. Atmospheric Chemistry and Physics, 2020, 20, 1201-1216.	4.9	52
438	Modelling the formation of organic particles in the atmosphere. Atmospheric Chemistry and Physics, 2004, 4, 1071-1083.	4.9	51
439	Preparation of \hat{l}^2 -caryophyllene oxidation products and their determination in ambient aerosol samples. Analytical and Bioanalytical Chemistry, 2008, 390, 913-919.	3.7	51
440	Observations on nocturnal growth of atmospheric clusters. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 365.	1.6	51
441	VOC measurements within a boreal forest during spring 2005: on the occurrence of elevated monoterpene concentrations during night time intense particle concentration events. Atmospheric Chemistry and Physics, 2009, 9, 8331-8350.	4.9	51
442	High time-resolution chemical characterization of the water-soluble fraction of ambient aerosols with PILS-TOC-IC and AMS. Atmospheric Measurement Techniques, 2010, 3, 1063-1074.	3.1	51
443	Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy. Atmospheric Chemistry and Physics, 2012, 12, 941-959.	4.9	51
444	Surfactant effects in global simulations of cloud droplet activation. Geophysical Research Letters, 2012, 39, .	4.0	51
445	Gas-phase alkylamines in a boreal Scots pine forest air. Atmospheric Environment, 2013, 80, 369-377.	4.1	51
446	Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters. Environmental Science & Technology, 2014, 48, 13675-13684.	10.0	51
447	Binary heterogeneous nucleation of a water-sulphuric acid system: The effect of hydrate interaction. Journal of Aerosol Science, 1991, 22, 823-830.	3.8	50
448	Deep convective clouds as aerosol production engines: Role of insoluble organics. Journal of Geophysical Research, 2006, 111 , .	3.3	50
449	Particle fluxes over forests: Analyses of flux methods and functional dependencies. Journal of Geophysical Research, 2007, 112, .	3.3	50
450	Ambient Air Pollution and Daily Mortality Among Survivors of Myocardial Infarction. Epidemiology, 2009, 20, 110-118.	2.7	50

#	Article	IF	CITATIONS
451	New particle formation at a remote site in the eastern Mediterranean. Journal of Geophysical Research, 2012, 117, .	3.3	50
452	Antarctic new particle formation from continental biogenic precursors. Atmospheric Chemistry and Physics, 2013, 13, 3527-3546.	4.9	50
453	Genotype and spatial structure shape pathogen dispersal and disease dynamics at small spatial scales. Ecology, 2014, 95, 703-714.	3.2	50
454	The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.	4.9	50
455	Direct effect of aerosols on solar radiation and gross primary production in boreal and hemiboreal forests. Atmospheric Chemistry and Physics, 2018, 18, 17863-17881.	4.9	50
456	Condensational Growth and Evaporation in the Transition Regime. Aerosol Science and Technology, 1993, 19, 381-388.	3.1	49
457	An improvement of the method for calibrating measurements of photosynthetic CO2flux. Plant, Cell and Environment, 1999, 22, 1297-1301.	5.7	49
458	Interaction between SO2 and submicron atmospheric particles. Atmospheric Research, 2000, 54, 41-57.	4.1	49
459	Determination of organic acids in aerosol particles from a coniferous forest by liquid chromatography-mass spectrometry. Journal of Separation Science, 2005, 28, 337-346.	2.5	49
460	Measurements of optical properties of atmospheric aerosols in Northern Finland. Atmospheric Chemistry and Physics, 2006, 6, 1155-1164.	4.9	49
461	Measurements of aerosol particle dry deposition velocity using the relaxed eddy accumulation technique. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 381-386.	1.6	49
462	Modeling Dry Deposition of Aerosol Particles onto Rough Surfaces. Aerosol Science and Technology, 2012, 46, 44-59.	3.1	49
463	Anatomical regulation of ice nucleation and cavitation helps trees to survive freezing and drought stress. Scientific Reports, 2013, 3, 2031.	3.3	49
464	Introduction: The Pan-Eurasian Experiment (PEEX) $\hat{a}\in$ " multidisciplinary, multiscale and multicomponent research and capacity-building initiative. Atmospheric Chemistry and Physics, 2015, 15, 13085-13096.	4.9	49
465	Formation and growth of sub-3-nm aerosol particles in experimental chambers. Nature Protocols, 2020, 15, 1013-1040.	12.0	49
466	Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric Chemistry and Physics, 2020, 20, 11809-11821.	4.9	49
467	Mass transfer from a dropâ€"II. Theoretical analysis of temperature dependent mass flux correlation. International Journal of Heat and Mass Transfer, 1995, 38, 1705-1708.	4.8	48
468	Ternary nucleation. Journal of Aerosol Science, 1999, 30, 131-138.	3.8	48

#	Article	IF	CITATIONS
469	Heterogeneous nucleation as a potential sulphate-coating mechanism of atmospheric mineral dust particles and implications of coated dust on new particle formation. Journal of Geophysical Research, 2003, 108, .	3.3	48
470	Aerosol particle formation events and analysis of high growth rates observed above a subarctic wetland–forest mosaic. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 353.	1.6	48
471	Factors influencing the contribution of ion-induced nucleation in a boreal forest, Finland. Atmospheric Chemistry and Physics, 2010, 10, 3743-3757.	4.9	48
472	The Helsinki Testbed: A Mesoscale Measurement, Research, and Service Platform. Bulletin of the American Meteorological Society, 2011, 92, 325-342.	3.3	48
473	Acidic reaction products of monoterpenes and sesquiterpenes in atmospheric fine particles in a boreal forest. Atmospheric Chemistry and Physics, 2014, 14, 7883-7893.	4.9	48
474	Ambient aromatic hydrocarbon measurements at Welgegund, South Africa. Atmospheric Chemistry and Physics, 2014, 14, 7075-7089.	4.9	48
475	Enhancement of atmospheric H& t;sub>2& t;/sub>5O& t;sub>4& t;/sub> / H& t;sub>2& t;/sub>O nucleation: organic oxidation products versus amines. Atmospheric Chemistry and Physics, 2014, 14, 751-764.	4.9	48
476	Simulations on the effect of sulphuric acid formation on atmospheric aerosol concentrations. Atmospheric Environment, 1995, 29, 377-382.	4.1	47
477	Comparative study of nucleation mode aerosol particles and intermediate air ions formation events at three sites. Journal of Geophysical Research, 2004, 109, .	3.3	47
478	Airborne measurements of nucleation mode particles I: coastal nucleation and growth rates. Atmospheric Chemistry and Physics, 2007, 7, 1491-1501.	4.9	47
479	Variation and balance of positive air ion concentrations in a boreal forest. Atmospheric Chemistry and Physics, 2008, 8, 655-675.	4.9	47
480	Characterisation of corona-generated ions used in a Neutral cluster and Air Ion Spectrometer (NAIS). Atmospheric Measurement Techniques, 2011, 4, 2767-2776.	3.1	47
481	Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets. Atmospheric Chemistry and Physics, 2016, 16, 1693-1712.	4.9	47
482	Comprehensive modelling study on observed new particle formation at the SORPES station in Nanjing, China. Atmospheric Chemistry and Physics, 2016, 16, 2477-2492.	4.9	47
483	Ternary nucleation of inorganic acids, ammonia, and water. Journal of Chemical Physics, 2002, 117, 8418-8425.	3.0	46
484	Number size distributions and concentrations of marine aerosols: Observations during a cruise between the English Channel and the coast of Antarctica. Journal of Geophysical Research, 2002, 107, AAC 6-1.	3.3	46
485	Aerosol characteristics of air masses in northern Europe: Influences of location, transport, sinks, and sources. Journal of Geophysical Research, 2005, 110 , .	3.3	46
486	Chemical size distributions of boundary layer aerosol over the Atlantic Ocean and at an Antarctic site. Journal of Geophysical Research, $2006,111,$	3.3	46

#	Article	IF	Citations
487	Observations of nighttime new particle formation in the troposphere. Journal of Geophysical Research, 2008, 113, .	3.3	46
488	Characterisation of sub-micron particle number concentrations and formation events in the western Bushveld Igneous Complex, South Africa. Atmospheric Chemistry and Physics, 2012, 12, 3951-3967.	4.9	46
489	Seasonal cycle and modal structure of particle number size distribution at Dome C, Antarctica. Atmospheric Chemistry and Physics, 2013, 13, 7473-7487.	4.9	46
490	Experimental investigation of ion–ion recombination under atmospheric conditions. Atmospheric Chemistry and Physics, 2015, 15, 7203-7216.	4.9	46
491	A proxy for atmospheric daytime gaseous sulfuric acid concentration in urban Beijing. Atmospheric Chemistry and Physics, 2019, 19, 1971-1983.	4.9	46
492	Terpenes and their oxidation products in the French Landes forest: insights from Vocus PTR-TOF measurements. Atmospheric Chemistry and Physics, 2020, 20, 1941-1959.	4.9	46
493	Charging state of atmospheric nanoparticles during the nucleation burst events. Atmospheric Research, 2006, 82, 536-546.	4.1	45
494	The role of sulphates and organic vapours in growth of newly formed particles in a eucalypt forest. Atmospheric Chemistry and Physics, 2010, 10, 2919-2926.	4.9	45
495	Homogeneous nucleation of sulfuric acid and water mixture: experimental setup and first results. Atmospheric Chemistry and Physics, 2010, 10, 2631-2641.	4.9	45
496	Long-term volatility measurements of submicron atmospheric aerosol in HyytiÃÞĀÞFinland. Atmospheric Chemistry and Physics, 2012, 12, 10771-10786.	4.9	45
497	New insights into nocturnal nucleation. Atmospheric Chemistry and Physics, 2012, 12, 4297-4312.	4.9	45
498	Heterogeneous Nucleation onto lons and Neutralized Ions: Insights into Sign-Preference. Journal of Physical Chemistry C, 2016, 120, 7444-7450.	3.1	45
499	Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations. Atmospheric Chemistry and Physics, 2017, 17, 5623-5641.	4.9	45
500	Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. Environmental Science & Environmenta	10.0	45
501	ACE-2 HILLCLOUD. An overview of the ACE-2 ground-based cloud experiment. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 750-778.	1.6	44
502	Interpretation of aerosol particle fluxes over a pine forest: Dry deposition and random errors. Journal of Geophysical Research, 2003, 108, .	3.3	44
503	Aerosol particles in the developing world; a comparison between New Delhi in India and Beijing in China. Water, Air, and Soil Pollution, 2006, 173, 5-20.	2.4	44
504	On the representativeness of coastal aerosol studies to open ocean studies: Mace Head $\hat{a}\in$ " a case study. Atmospheric Chemistry and Physics, 2009, 9, 9635-9646.	4.9	44

#	Article	IF	CITATIONS
505	Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions. Atmospheric Chemistry and Physics, 2011, 11, 5277-5287.	4.9	44
506	Evaluation of accuracy in measurements of VOC emissions with dynamic chamber system. Atmospheric Environment, 2012, 62, 344-351.	4.1	44
507	Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth. Journal of Geophysical Research, 2012, 117, .	3.3	44
508	Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MS ⁿ) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study. Atmospheric Measurement Techniques, 2013, 6, 431-443.	3.1	44
509	Long-term observations of aerosol size distributions in semi-clean and polluted savannah in South Africa. Atmospheric Chemistry and Physics, 2013, 13, 1751-1770.	4.9	44
510	Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Scientific Data, 2017, 4, 170003.	5.3	44
511	Modification of the Dillmann–Meier theory of homogeneous nucleation. Journal of Chemical Physics, 1993, 99, 764-765.	3.0	43
512	Supercooled cirrus cloud formation modified by nitric acid pollution of the upper troposphere. Geophysical Research Letters, 1997, 24, 3009-3012.	4.0	43
513	Ultraviolet light and leaf emission of NOx. Nature, 2003, 422, 134-134.	27.8	43
514	Modal structure and spatial?temporal variations of urban and suburban aerosols in Helsinki?Finland. Atmospheric Environment, 2005, , .	4.1	43
515	New particle formation in air mass transported between two measurement sites in Northern Finland. Atmospheric Chemistry and Physics, 2006, 6, 2811-2824.	4.9	43
516	Observations of Nano-CN in the Nocturnal Boreal Forest. Aerosol Science and Technology, 2011, 45, 499-509.	3.1	43
517	Estimating the contribution of organic acids to northern hemispheric continental organic aerosol. Geophysical Research Letters, 2015, 42, 6084-6090.	4.0	43
518	How to reliably detect molecular clusters and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS). Atmospheric Measurement Techniques, 2016, 9, 3577-3605.	3.1	43
519	On secondary new particle formation in China. Frontiers of Environmental Science and Engineering, $2016,10,1.$	6.0	43
520	Aerosol production and growth in the upper free troposphere. Journal of Geophysical Research, 2000, 105, 24751-24762.	3.3	42
521	Mid-latitude North-Atlantic aerosol characteristics in clean and polluted air. Atmospheric Research, 2001, 58, 167-185.	4.1	42
522	Analysis of particle formation bursts observed in Finland. Journal of Aerosol Science, 2001, 32, 217-236.	3.8	42

#	Article	IF	Citations
523	Methodology for direct field measurements of ozone flux to foliage with shoot chambers. Atmospheric Environment, 2002, 36, 19-29.	4.1	42
524	Stable Ammonium Bisulfate Clusters in the Atmosphere. Physical Review Letters, 2004, 93, 148501.	7.8	42
525	Technical Note: The heterogeneous Zeldovich factor. Atmospheric Chemistry and Physics, 2007, 7, 309-313.	4.9	42
526	Thermodynamic Properties of Malonic, Succinic, and Glutaric Acids:Â Evaporation Rates and Saturation Vapor Pressures. Environmental Science & Environm	10.0	42
527	Nanoparticles in boreal forest and coastal environment: a comparison of observations and implications of the nucleation mechanism. Atmospheric Chemistry and Physics, 2010, 10, 7009-7016.	4.9	42
528	Major contribution of neutral clusters to new particle formation at the interface between the boundary layer and the free troposphere. Atmospheric Chemistry and Physics, 2015, 15, 3413-3428.	4.9	42
529	Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes. Atmospheric Chemistry and Physics, 2019, 19, 2015-2061.	4.9	42
530	Sources and sinks driving sulfuric acid concentrations in contrasting environments: implications on proxy calculations. Atmospheric Chemistry and Physics, 2020, 20, 11747-11766.	4.9	42
531	Airborne aerosol measurements in the tropopause region and the dependence of new particle formation on preexisting particle number concentration. Journal of Geophysical Research, 1998, 103, 31255-31263.	3.3	41
532	Homogeneous nucleation of n-pentanol in a laminar flow diffusion chamber. Journal of Chemical Physics, 2001, 114, 10031-10038.	3.0	41
533	Temporal variations in black carbon concentrations with different time scales in Helsinki during 1996–2005. Atmospheric Chemistry and Physics, 2008, 8, 1017-1027.	4.9	41
534	SO ₂ oxidation products other than H ₂ SO ₄ as a trigger of new particle formation. Part 2: Comparison of ambient and laboratory measurements, and atmospheric implications. Atmospheric Chemistry and Physics, 2008, 8, 7255-7264.	4.9	41
535	Organic Constituents on the Surfaces of Aerosol Particles from Southern Finland, Amazonia, and California Studied by Vibrational Sum Frequency Generation. Journal of Physical Chemistry A, 2012, 116, 8271-8290.	2.5	41
536	Variations in tropospheric submicron particle size distributions across the European continent 2008 \hat{a} e"2009. Atmospheric Chemistry and Physics, 2014, 14, 4327-4348.	4.9	41
537	Air pollution in eastern Lapland : challenge for an environmental measurement station Silva Fennica, 1994, 28, .	1.3	41
538	Field measurements of hygroscopic properties and state of mixing of nucleation mode particles. Atmospheric Chemistry and Physics, 2002, 2, 55-66.	4.9	40
539	Analysis of measurement techniques to determine dry deposition velocities of aerosol particles with diameters less than 100 nm. Journal of Aerosol Science, 2003, 34, 747-764.	3.8	40
540	Binary homogeneous nucleation in water–succinic acid and water–glutaric acid systems. Journal of Chemical Physics, 2004, 120, 282-291.	3.0	40

#	Article	IF	Citations
541	Charging state of the atmospheric nucleation mode: Implications for separating neutral and ionâ€induced nucleation. Journal of Geophysical Research, 2007, 112, .	3.3	40
542	Classifying previously undefined days from eleven years of aerosol-particle-size distribution data from the SMEAR II station, HyytiÂMPFinland. Atmospheric Chemistry and Physics, 2009, 9, 667-676.	4.9	40
543	Activity pattern of a selected group of school occupants and their family members in Helsinki — Finland. Science of the Total Environment, 2012, 425, 289-292.	8.0	40
544	Boundary layer nucleation as a source of new CCN in savannah environment. Atmospheric Chemistry and Physics, 2013, 13, 1957-1972.	4.9	40
545	Comparative study of ultrafine atmospheric aerosol within a city. Atmospheric Environment, 2014, 92, 154-161.	4.1	40
546	Estimates of global dew collection potential on artificial surfaces. Hydrology and Earth System Sciences, 2015, 19, 601-613.	4.9	40
547	Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols. Nature Geoscience, 2021, 14, 4-9.	12.9	40
548	Binary heterogeneous nucleation at a non-uniform surface. Journal of Aerosol Science, 1992, 23, 457-466.	3.8	39
549	On the cluster compositions in the classical binary nucleation theory. Journal of Chemical Physics, 1993, 99, 6832-6835.	3.0	39
550	The investigations of aerosol particle formation in urban background area of Helsinki. Atmospheric Research, 1996, 41, 281-298.	4.1	39
551	Evaporation of ventilated water droplet: connection between heat and mass transfer. Journal of Aerosol Science, 2001, 32, 739-748.	3.8	39
552	Estimating time series of aerosol particle number concentrations in the five HEAPSS cities on the basis of measured air pollution and meteorological variables. Atmospheric Environment, 2005, 39, 2261-2273.	4.1	39
553	Observations of new particle formation in enhanced UV irradiance zones near cumulus clouds. Atmospheric Chemistry and Physics, 2015, 15, 11701-11711.	4.9	39
554	Novel insights on new particle formation derived from a pan-european observing system. Scientific Reports, 2018, 8, 1482.	3.3	39
555	Dimers in nucleating vapors. Physical Review E, 1998, 58, 3157-3167.	2.1	38
556	Hygroscopic and CCN properties of aerosol particles in boreal forests. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 359-379.	1.6	38
557	Modeling New Particle Formation During Air Pollution Episodes: Impacts on Aerosol and Cloud Condensation Nuclei. Aerosol Science and Technology, 2006, 40, 557-572.	3.1	38
558	Waterfalls as sources of small charged aerosol particles. Atmospheric Chemistry and Physics, 2007, 7, 2271-2275.	4.9	38

#	Article	IF	Citations
559	SO ₂ oxidation products other than H ₂ SO ₄ as a trigger of new particle formation. Part 1: Laboratory investigations. Atmospheric Chemistry and Physics, 2008, 8, 6365-6374.	4.9	38
560	Trajectory analysis of atmospheric transport of fine particles, SO ₂ nO ₃ to the SMEAR II station in Finland in 1996–2008. Atmospheric Chemistry and Physics, 2013, 13, 2153-2164.	4.9	38
561	The significance of land-atmosphere interactions in the Earth systemâ€"iLEAPS achievements and perspectives. Anthropocene, 2015, 12, 69-84.	3.3	38
562	The driving factors of new particle formation and growth in the polluted boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.	4.9	38
563	Climate Feedbacks Linking the Increasing Atmospheric CO2 Concentration, BVOC Emissions, Aerosols and Clouds in Forest Ecosystems. Tree Physiology, 2013, , 489-508.	2.5	38
564	Significance of the organic aerosol driven climate feedback in the boreal area. Nature Communications, 2021, 12, 5637.	12.8	38
565	Nucleation burst in a coagulating system. Physical Review E, 2000, 62, 4932-4939.	2.1	37
566	Death of nucleation and Aitken mode particles: observations at extreme atmospheric conditions and their theoretical explanation. Journal of Aerosol Science, 2004, 35, 781-787.	3.8	37
567	New aerosol particle formation in different synoptic situations at HyytiÃÞĀÞSouthern Finland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 485.	1.6	37
568	High-Resolution Mobility and Mass Spectrometry of Negative Ions Produced in a ²⁴¹ Am Aerosol Charger. Aerosol Science and Technology, 2014, 48, 261-270.	3.1	37
569	Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol. Atmospheric Chemistry and Physics, 2015, 15, 12989-13001.	4.9	37
570	Sizing of neutral sub 3nm tungsten oxide clusters using Airmodus Particle Size Magnifier. Journal of Aerosol Science, 2015, 87, 53-62.	3.8	37
571	Increased inorganic aerosol fraction contributes to air pollution and haze in China. Atmospheric Chemistry and Physics, 2019, 19, 5881-5888.	4.9	37
572	The promotion effect of nitrous acid on aerosol formation in wintertime in Beijing: the possible contribution of traffic-related emissions. Atmospheric Chemistry and Physics, 2020, 20, 13023-13040.	4.9	37
573	Air pollution exposure monitoring using portable low-cost air quality sensors. Smart Health, 2022, 23, 100241.	3.2	37
574	Matrix factorization methods for analysing diffusion battery data. Journal of Aerosol Science, 1991, 22, S273-S276.	3.8	36
575	A method for determining thermophysical properties of organic material in aqueous solutions: Succinic acid. Atmospheric Research, 2006, 82, 579-590.	4.1	36
576	Negatively charged nanoparticles produced by splashing of water. Atmospheric Chemistry and Physics, 2009, 9, 357-367.	4.9	36

#	Article	IF	CITATIONS
577	Growth rates during coastal and marine new particle formation in western Ireland. Journal of Geophysical Research, 2010, 115, .	3.3	36
578	Trends in new particle formation in eastern Lapland, Finland: effect of decreasing sulfur emissions from Kola Peninsula. Atmospheric Chemistry and Physics, 2014, 14, 4383-4396.	4.9	36
579	Terpenoid and carbonyl emissions from Norway spruce in Finland during the growing season. Atmospheric Chemistry and Physics, 2017, 17, 3357-3370.	4.9	36
580	Rapid formation of intense haze episodes via aerosol–boundary layer feedback in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 45-53.	4.9	36
581	Size-segregated particle number and mass concentrations from different emission sources in urban Beijing. Atmospheric Chemistry and Physics, 2020, 20, 12721-12740.	4.9	36
582	The effect of hygroscopicity on cloud droplet formation. Tellus, Series B: Chemical and Physical Meteorology, 1996, 48, 347-360.	1.6	35
583	On the condensational growth of a multicomponent droplet. Journal of Aerosol Science, 1997, 28, 553-564.	3.8	35
584	Effect of condensation rate enhancement factor on 3-nm (diameter) particle formation in binary ion-induced and homogeneous nucleation. Journal of Geophysical Research, 2003, 108, .	3.3	35
585	Characterisation of organic compounds in aerosol particles from a Finnish forest by on-line coupled supercritical fluid extraction?liquid chromatography?gas chromatography?mass spectrometry. Analytical and Bioanalytical Chemistry, 2004, 378, 1982-1990.	3.7	35
586	Relation of air mass history to nucleation events in Po Valley, Italy, using back trajectories analysis. Atmospheric Chemistry and Physics, 2007, 7, 839-853.	4.9	35
587	Relevance of ion-induced nucleation of sulfuric acid and water in the lower troposphere over the boreal forest at northern latitudes. Atmospheric Research, 2008, 90, 151-158.	4.1	35
588	Nitrogen processes in the atmosphere. , 2011, , 177-208.		35
589	Development and evaluation of the aerosol dynamics and gas phase chemistry model ADCHEM. Atmospheric Chemistry and Physics, 2011, 11, 5867-5896.	4.9	35
590	Rethinking the application of the first nucleation theorem to particle formation. Journal of Chemical Physics, 2012, 136, 094107.	3.0	35
591	Operation of the Airmodus All nano Condensation Nucleus Counter at various inlet pressures and various operation temperatures, and design of a new inlet system. Atmospheric Measurement Techniques, 2016, 9, 2977-2988.	3.1	35
592	Conceptual design of a measurement network of the global change. Atmospheric Chemistry and Physics, 2016, 16, 1017-1028.	4.9	35
593	Refined classification and characterization of atmospheric new-particle formation events using air ions. Atmospheric Chemistry and Physics, 2018, 18, 17883-17893.	4.9	35
594	Extended hydrates interaction model: Hydrate formation and the energetics of binary homogeneous nucleation. Journal of Chemical Physics, 1991, 94, 7411-7413.	3.0	34

#	Article	IF	Citations
595	The effect of saturation fluctuations on droplet growth. Journal of Aerosol Science, 1997, 28, 1395-1409.	3.8	34
596	A model prediction of the yield of cloud condensation nuclei from coastal nucleation events. Journal of Geophysical Research, 2002, 107, PAR 3-1.	3.3	34
597	Flux-matching theory of particle charging. Physical Review E, 2004, 70, 046413.	2.1	34
598	Upward fluxes of particles over forests: when, where, why? Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, 372-380.	1.6	34
599	The natural aerosol over Northern Europe and its relation to anthropogenic emissions—implications of important climate feedbacks. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 473.	1.6	34
600	Intercomparison of air ion spectrometers: an evaluation of results in varying conditions. Atmospheric Measurement Techniques, 2011, 4, 805-822.	3.1	34
601	Effect of ions on sulfuric acidâ€water binary particle formation: 1. Theory for kinetic―and nucleation―ype particle formation and atmospheric implications. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1736-1751.	3.3	34
602	Vertical characterization of highly oxygenated molecules (HOMs) below and above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 17437-17450.	4.9	34
603	Unprecedented Ambient Sulfur Trioxide (SO ₃) Detection: Possible Formation Mechanism and Atmospheric Implications. Environmental Science and Technology Letters, 2020, 7, 809-818.	8.7	34
604	Acid–Base Clusters during Atmospheric New Particle Formation in Urban Beijing. Environmental Science & Environmental Scienc	10.0	34
605	Homogeneous nucleation in a laminar flow diffusion chamber: The operation principles and possibilities for quantitative rate measurements. Journal of Chemical Physics, 1996, 105, 7683-7695.	3.0	33
606	A monodisperse aerosol dynamics module, a promising candidate for use in long-range transport models: Box model tests. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	33
607	Dynamics of atmospheric nucleation mode particles: a timescale analysis. Tellus, Series B: Chemical and Physical Meteorology, 2022, 56, 135.	1.6	33
608	Effects of SO ₂ oxidation on ambient aerosol growth in water and ethanol vapours. Atmospheric Chemistry and Physics, 2005, 5, 767-779.	4.9	33
609	Continental impact on marine boundary layer coarse particles over the Atlantic Ocean between Europe and Antarctica. Atmospheric Research, 2005, 75, 301-321.	4.1	33
610	Computational Study of the Reaction between Biogenic Stabilized Criegee Intermediates and Sulfuric Acid. Journal of Physical Chemistry A, 2007, 111, 3394-3401.	2.5	33
611	Measurements of the relation between aerosol properties and microphysics and chemistry of low level liquid water clouds in Northern Finland. Atmospheric Chemistry and Physics, 2008, 8, 6925-6938.	4.9	33
612	Long-term aerosol particle flux observations part I: Uncertainties and time-average statistics. Atmospheric Environment, 2009, 43, 3431-3439.	4.1	33

#	Article	IF	CITATIONS
613	Comparing simulated and experimental molecular cluster distributions. Faraday Discussions, 2013, 165, 75.	3.2	33
614	Evolution of particle composition in CLOUD nucleation experiments. Atmospheric Chemistry and Physics, 2013, 13, 5587-5600.	4.9	33
615	The role of H& t;sub>2& t;/sub>SO& t;sub>4& t;/sub>-NH& t;sub&ar anion clusters in ion-induced aerosol nucleation mechanisms in the boreal forest. Atmospheric Chemistry and Physics. 2018. 18. 13231-13243.	np;gt;3&a 4:9	mp;lt;/sub&
616	Aerosol optical properties at SORPES in Nanjing, east China. Atmospheric Chemistry and Physics, 2018, 18, 5265-5292.	4.9	33
617	Transportable Aerosol Characterization Trailer with Trace Gas Chemistry: Design, Instruments and Verification. Aerosol and Air Quality Research, 2013, 13, 421-435.	2.1	33
618	Homogeneous nucleation in a laminar flow diffusion chamber: The effect of temperature and carrier gas on dibutyl phthalate vapor nucleation rate at high supersaturations. Journal of Chemical Physics, 1996, 105, 7696-7704.	3.0	32
619	Experimental study of sticking probabilities for condensation of nitric acid â€" water vapor mixtures. Journal of Aerosol Science, 2001, 32, 913-932.	3.8	32
620	Simulation of atmospheric nucleation mode: A comparison of nucleation models and size distribution representations. Journal of Geophysical Research, 2003, 108, .	3.3	32
621	Fine particle number and mass concentration measurements in urban Indian households. Science of the Total Environment, 2005, 347, 131-147.	8.0	32
622	Soil Nitrites Influence Atmospheric Chemistry. Science, 2011, 333, 1586-1587.	12.6	32
623	Nitrogen-Containing Low Volatile Compounds from Pinonaldehyde-Dimethylamine Reaction in the Atmosphere: A Laboratory and Field Study. Environmental Science & Dechnology, 2016, 50, 4693-4700.	10.0	32
624	Can Highly Oxidized Organics Contribute to Atmospheric New Particle Formation?. Journal of Physical Chemistry A, 2016, 120, 1452-1458.	2.5	32
625	Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between Ⱂ50 °C and +25 °C. Environmental Science & Environmen	10.0	32
626	Mitigation Impact of Different Harvest Scenarios of Finnish Forests That Account for Albedo, Aerosols, and Trade-Offs of Carbon Sequestration and Avoided Emissions. Frontiers in Forests and Global Change, 2020, 3, .	2.3	32
627	Contribution of Atmospheric Oxygenated Organic Compounds to Particle Growth in an Urban Environment. Environmental Science & Environment. Environmental Science & Environmenta	10.0	32
628	Is nucleation capable of explaining observed aerosol integral number increase during southerly transport over Scandinavia?. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 129-140.	1.6	31
629	The first estimates of global nucleation mode aerosol concentrations based on satellite measurements. Atmospheric Chemistry and Physics, 2011, 11, 10791-10801.	4.9	31
630	Carbonaceous aerosol at a forested and an urban background sites in Southern Finland. Atmospheric Environment, 2011, 45, 1394-1401.	4.1	31

#	Article	IF	Citations
631	Aliphatic and aromatic amines in atmospheric aerosol particles: Comparison of three ionization techniques in liquid chromatography-mass spectrometry and method development. Talanta, 2012, 97, 55-62.	5.5	31
632	The high charge fraction of flame-generated particles in the size range below 3 nm measured by enhanced particle detectors. Combustion and Flame, 2017, 176, 72-80.	5.2	31
633	Comprehensive analysis of particle growth rates from nucleation mode to cloud condensation nuclei in boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 12085-12103.	4.9	31
634	Field measurements of biogenic volatile organic compounds in the atmosphere using solid-phase microextraction Arrow. Atmospheric Measurement Techniques, 2018, 11, 881-893.	3.1	31
635	The seasonal cycle of ice-nucleating particles linked to the abundance of biogenic aerosol in boreal forests. Atmospheric Chemistry and Physics, 2021, 21, 3899-3918.	4.9	31
636	Hygroscopic and CCN properties of aerosol particles in boreal forests. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 359-379.	1.6	31
637	Seasonality of the particle number concentration and size distribution: a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Chemistry and Physics, 2021, 21, 17185-17223.	4.9	31
638	Homogeneous heteromolecular nucleation of sulphuric acid and water vapours in stratospheric conditions: a theoretical study of the effect of hydrate interaction. Journal of Aerosol Science, 1991, 22, 779-787.	3.8	30
639	Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR). Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 324-343.	1.6	30
640	Strange Predictions by Binary Heterogeneous Nucleation Theory Compared with a Quantitative Experimentâ€. Journal of Physical Chemistry B, 2001, 105, 11800-11808.	2.6	30
641	Charging of aerosol particles in the near free-molecule regime. European Physical Journal D, 2004, 29, 345-355.	1.3	30
642	Compensation point of NOx exchange: Net result of NOx consumption and production. Agricultural and Forest Meteorology, 2009, 149, 1073-1081.	4.8	30
643	Aerosol particle dry deposition to canopy and forest floor measured by twoâ€layer eddy covariance system. Journal of Geophysical Research, 2009, 114, .	3.3	30
644	Roadside aerosol study using hygroscopic, organic and volatility TDMAs: Characterization and mixing state. Atmospheric Environment, 2010, 44, 976-986.	4.1	30
645	Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy. Atmospheric Chemistry and Physics, 2011, 11, 10317-10329.	4.9	30
646	Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport. Biogeosciences, 2014, 11, 5425-5443.	3.3	30
647	Measurements of biogenic volatile organic compounds at a grazed savannah grassland agricultural landscape in South Africa. Atmospheric Chemistry and Physics, 2016, 16, 15665-15688.	4.9	30
648	Vertical and horizontal distribution of regional new particle formation events in Madrid. Atmospheric Chemistry and Physics, 2018, 18, 16601-16618.	4.9	30

#	Article	IF	Citations
649	Formation and growth of atmospheric nanoparticles in the eastern Mediterranean: results from long-term measurements and process simulations. Atmospheric Chemistry and Physics, 2019, 19, 2671-2686.	4.9	30
650	The effect of atmospheric waves on aerosol nucleation and size distribution. Journal of Geophysical Research, 2000, 105, 19917-19926.	3.3	29
651	Vertical fluxes and micrometeorology during aerosol particle formation events. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 394-405.	1.6	29
652	Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring. Atmospheric Chemistry and Physics, 2007, 7, 1869-1878.	4.9	29
653	lodine dioxide nucleation simulations in coastal and remote marine environments. Journal of Geophysical Research, 2009, 114 , .	3.3	29
654	Sub-3Ânm Particle Detection with Commercial TSI 3772 and Airmodus A20 Fine Condensation Particle Counters. Aerosol Science and Technology, 2015, 49, 674-681.	3.1	29
655	Sulphuric acid and aerosol particle production in the vicinity of an oil refinery. Atmospheric Environment, 2015, 119, 156-166.	4.1	29
656	Simple proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site. Atmospheric Chemistry and Physics, 2016, 16, 13291-13307.	4.9	29
657	Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. Atmospheric Chemistry and Physics, 2016, 16, 293-304.	4.9	29
658	Solar eclipse demonstrating the importance of photochemistry in new particle formation. Scientific Reports, 2017, 7, 45707.	3.3	29
659	Amines in boreal forest air at SMEAR II station in Finland. Atmospheric Chemistry and Physics, 2018, 18, 6367-6380.	4.9	29
660	Modelling studies of HOMs and their contributions to new particle formation and growth: comparison of boreal forest in Finland and a polluted environment in China. Atmospheric Chemistry and Physics, 2018, 18, 11779-11791.	4.9	29
661	New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea. Atmospheric Chemistry and Physics, 2019, 19, 14339-14364.	4.9	29
662	Condensational growth at large vapour concentration: Limits of applicability of the mason equation. Journal of Aerosol Science, 1989, 20, 1023-1026.	3.8	28
663	Evaluation and modeling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki – Part II: Aerosol measurements within the SAPPHIRE project. Atmospheric Chemistry and Physics, 2007, 7, 4081-4094.	4.9	28
664	An investigation into the aerosol dispersion effect through the activation process in marine stratus clouds. Journal of Geophysical Research, 2007, 112, .	3.3	28
665	In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry. Atmospheric Chemistry and Physics, 2013, 13, 10933-10950.	4.9	28
666	In situ formation and spatial variability of particle number concentration in a European megacity. Atmospheric Chemistry and Physics, 2015, 15, 10219-10237.	4.9	28

#	Article	IF	CITATIONS
667	Exposure to ultrafine particles and respiratory hospitalisations in five European cities. European Respiratory Journal, 2016, 48, 674-682.	6.7	28
668	Responses of gaseous sulfuric acid and particulate sulfate to reduced SO2 concentration: A perspective from long-term measurements in Beijing. Science of the Total Environment, 2020, 721, 137700.	8.0	28
669	Size-resolved particle number emissions in Beijing determined from measured particle size distributions. Atmospheric Chemistry and Physics, 2020, 20, 11329-11348.	4.9	28
670	MODELLING I/O RATIOS OF FINE AEROSOLS. Journal of Aerosol Science, 2001, 32, 749-750.	3.8	28
671	2–10 μm sized hot particles in chernobyl fallout to Finland. Journal of Aerosol Science, 1987, 18, 693-696.	3.8	27
672	Isolation and Characterization of Hot Particles from Chernobyl Fallout in Southwestern Finland. Health Physics, 1989, 57, 975-984.	0.5	27
673	UV-induced NOy emissions from Scots pine: Could they originate from photolysis of deposited HNO3?. Atmospheric Environment, 2006, 40, 6201-6213.	4.1	27
674	Two-component heterogeneous nucleation kinetics and an application to Mars. Journal of Chemical Physics, 2007, 127, 134710.	3.0	27
675	Ambient sesquiterpene concentration and its link to air ion measurements. Atmospheric Chemistry and Physics, 2007, 7, 2893-2916.	4.9	27
676	Reevaluating the contribution of sulfuric acid and the origin of organic compounds in atmospheric nanoparticle growth. Geophysical Research Letters, 2015, 42, 10,486.	4.0	27
677	Thermodynamics of the formation of sulfuric acid dimers in the binary (H ₂ 5O ₄ –H <sub&and (h<sub="" ternary="">23O₄–H<sub>aemp;lt;sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub&< td=""><td>4.9</td><td>27</td></sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub<sub&<></sub></sub&and>	4.9	27
678	Technical note: New particle formation event forecasts during PEGASOS–Zeppelin Northern mission 2013 in HyytiÃIÃ, Finland. Atmospheric Chemistry and Physics, 2015, 15, 12385-12396.	4.9	27
679	Temporal variation of VOC fluxes measured with PTR-TOF above a boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 815-832.	4.9	27
680	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	1.6	27
681	Homogeneous nucleation: reduction of binary nucleation to homomolecular nucleation. Journal of Aerosol Science, 1991, 22, S97-S100.	3.8	26
682	Formation of respirable particles during ski waxing. Journal of Aerosol Science, 1996, 27, 339-344.	3.8	26
683	Reduction of Enthalpy of Fusion and Anomalies during Phase Transitions in Finely Divided Water. Physical Review Letters, 1998, 81, 1042-1045.	7.8	26
684	Heterogeneous multicomponent nucleation theorems for the analysis of nanoclusters. Journal of Chemical Physics, 2007, 126, 174707.	3.0	26

#	Article	IF	CITATIONS
685	Solid-phase extraction of organic compounds in atmospheric aerosol particles collected with the particle-into-liquid sampler and analysis by liquid chromatography–mass spectrometry. Talanta, 2010, 80, 1170-1176.	5.5	26
686	Quantitative Characterization of Critical Nanoclusters Nucleated on Large Single Molecules. Physical Review Letters, 2012, 108, 085701.	7.8	26
687	Multiple daytime nucleation events in semi-clean savannah and industrial environments in South Africa: analysis based on observations. Atmospheric Chemistry and Physics, 2013, 13, 5523-5532.	4.9	26
688	Wintertime Aerosol Chemistry in Sub-Arctic Urban Air. Aerosol Science and Technology, 2014, 48, 313-323.	3.1	26
689	Field measurements of biogenic volatile organic compounds in the atmosphere by dynamic solid-phase microextraction and portable gas chromatography-mass spectrometry. Atmospheric Environment, 2015, 115, 214-222.	4.1	26
690	Seasonal influences on surface ozone variability in continental South Africa and implications for air quality. Atmospheric Chemistry and Physics, 2018, 18, 15491-15514.	4.9	26
691	Multi-year statistical and modeling analysis of submicrometer aerosol number size distributions at a rain forest site in Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 10255-10274.	4.9	26
692	Ground-based observation of clusters and nucleation-mode particles in the Amazon. Atmospheric Chemistry and Physics, 2018, 18, 13245-13264.	4.9	26
693	Ion Mobility-Mass Spectrometry of Iodine Pentoxide–Iodic Acid Hybrid Cluster Anions in Dry and Humidified Atmospheres. Journal of Physical Chemistry Letters, 2019, 10, 1935-1941.	4.6	26
694	Long-term sub-micrometer aerosol chemical composition in the boreal forest: inter- and intra-annual variability. Atmospheric Chemistry and Physics, 2020, 20, 3151-3180.	4.9	26
695	Influence of photochemical loss of volatile organic compounds on understanding ozone formation mechanism. Atmospheric Chemistry and Physics, 2022, 22, 4841-4851.	4.9	26
696	Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 2022, 605, 483-489.	27.8	26
697	Comparisons of uncoupled, film theoretical and exact solutions for binary droplet evaporation and condensation. Physica A: Statistical Mechanics and Its Applications, 1993, 192, 107-123.	2.6	25
698	NMR Study of Phase Transitions in Pure Water and Binary H2O/HNO3Films Adsorbed on Surface of Pyrogenic Silica. Journal of Colloid and Interface Science, 1996, 177, 79-87.	9.4	25
699	Upper tropospheric SO2conversion into sulfuric acid aerosols and cloud condensation nuclei. Journal of Geophysical Research, 2000, 105, 1459-1469.	3.3	25
700	The part of the solar spectrum with the highest influence on the formation of SOA in the continental boundary layer. Atmospheric Chemistry and Physics, 2002, 2, 375-386.	4.9	25
701	Comparison of the experimental mobility equivalent diameter for small cluster ions with theoretical particle diameter corrected by effect of vapour polarity. Chemical Physics Letters, 2003, 382, 6-11.	2.6	25
702	A new parametrization for ambient particle formation over coniferous forests and its potential implications for the future. Atmospheric Chemistry and Physics, 2009, 9, 8079-8090.	4.9	25

#	Article	IF	Citations
703	Aerosol dynamics simulations on the connection of sulphuric acid and new particle formation. Atmospheric Chemistry and Physics, 2009, 9, 2933-2947.	4.9	25
704	Long-term aerosol particle flux observations. Part II: Particle size statistics and deposition velocities. Atmospheric Environment, 2011, 45, 3794-3805.	4.1	25
705	Night-time enhanced atmospheric ion concentrations in the marine boundary layer. Atmospheric Chemistry and Physics, 2012, 12, 3627-3638.	4.9	25
706	Semi-empirical parameterization of size-dependent atmospheric nanoparticle growth in continental environments. Atmospheric Chemistry and Physics, 2013, 13, 7665-7682.	4.9	25
707	Estimating the contribution of ion–ion recombination to sub-2 nm cluster concentrations from atmospheric measurements. Atmospheric Chemistry and Physics, 2013, 13, 11391-11401.	4.9	25
708	High concentrations of sub-3nm clusters and frequent new particle formation observed in the Po Valley, Italy, during the PEGASOS 2012 campaign. Atmospheric Chemistry and Physics, 2016, 16, 1919-1935.	4.9	25
709	Chemical Characterization of Gas- and Particle-Phase Products from the Ozonolysis of α-Pinene in the Presence of Dimethylamine. Environmental Science & Environmental Science	10.0	25
710	Atmospheric new particle formation at the research station Melpitz, Germany: connection with gaseous precursors and meteorological parameters. Atmospheric Chemistry and Physics, 2018, 18, 1835-1861.	4.9	25
711	Direct field evidence of autocatalytic iodine release from atmospheric aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
712	Influence of biogenic emissions from boreal forests on aerosol–cloud interactions. Nature Geoscience, 2022, 15, 42-47.	12.9	25
713	Construction and test of laminar flow diffusion chamber: homogeneous nucleation of DBP and n-hexanol. Journal of Aerosol Science, 1994, 25, 23-32.	3.8	24
714	Changes in cloud properties due to NOxemissions. Geophysical Research Letters, 1995, 22, 239-242.	4.0	24
715	How important is nucleation in regional/global modelling?. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	24
716	Using a moving measurement platform for determining the chemical composition of atmospheric aerosols between Moscow and Vladivostok. Atmospheric Chemistry and Physics, 2007, 7, 4793-4805.	4.9	24
717	Comparison of quartz and Teflon filters for simultaneous collection of size-separated ultrafine aerosol particles and gas-phase zero samples. Analytical and Bioanalytical Chemistry, 2011, 400, 3527-3535.	3.7	24
718	Black carbon concentration and deposition estimations in Finland by the regional aerosol–climate model REMO-HAM. Atmospheric Chemistry and Physics, 2013, 13, 4033-4055.	4.9	24
719	Chemical characterization of atmospheric ions at the high altitude research station Jungfraujoch (Switzerland). Atmospheric Chemistry and Physics, 2017, 17, 2613-2629.	4.9	24
720	Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX). Atmospheric Chemistry and Physics, 2019, 19, 1941-1970.	4.9	24

#	Article	IF	CITATIONS
721	Atmospheric reactivity and oxidation capacity during summer at a suburban site between Beijing and Tianjin. Atmospheric Chemistry and Physics, 2020, 20, 8181-8200.	4.9	24
722	Ammonium nitrate promotes sulfate formation through uptake kinetic regime. Atmospheric Chemistry and Physics, 2021, 21, 13269-13286.	4.9	24
723	Development of particle size and composition distributions with a novel aerosol dynamics model. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 491-509.	1.6	24
724	Particle Size Distribution and Gas-Particle Partition of Polycyclic Aromatic Hydrocarbons in Helsinki Urban Area. Journal of Atmospheric Chemistry, 2004, 47, 223-241.	3.2	23
725	Dynamical atmospheric cluster model. Atmospheric Research, 2010, 98, 201-206.	4.1	23
726	Highly Oxidized Second-Generation Products from the Gas-Phase Reaction of OH Radicals with Isoprene. Journal of Physical Chemistry A, 2016, 120, 10150-10159.	2.5	23
727	Resolving anthropogenic aerosol pollution types $\hat{a} \in \text{``deconvolution and exploratory classification of pollution events. Atmospheric Chemistry and Physics, 2017, 17, 3165-3197.}$	4.9	23
728	A 3D study on the amplification of regional haze and particle growth by local emissions. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	23
729	Atmospheric organic vapors in two European pine forests measured by a Vocus PTR-TOF: insights into monoterpene and sesquiterpene oxidation processes. Atmospheric Chemistry and Physics, 2021, 21, 4123-4147.	4.9	23
730	Vertical fluxes and micrometeorology during aerosol particle formation events. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 394-405.	1.6	23
731	Local Air Pollution versus Short–range Transported Dust Episodes: A Comparative Study for Submicron Particle Number Concentration. Aerosol and Air Quality Research, 2011, 11, 109-119.	2.1	23
732	Amplified role of potential HONO sources in O ₃ formation in North China Plain during autumn haze aggravating processes. Atmospheric Chemistry and Physics, 2022, 22, 3275-3302.	4.9	23
733	The self-consistency correction to homogeneous nucleation: Extension to binary systems. Journal of Aerosol Science, 1992, 23, 309-312.	3.8	22
734	Source-enhanced condensation in monocomponent disperse systems. Physical Review E, 1995, 52, 1658-1668.	2.1	22
735	Development of particle size and composition distributions with a novel aerosol dynamics model. Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 491.	1.6	22
736	Study of finely divided aqueous systems as an aid to understanding the formation mechanism of polar stratospheric clouds: Case of HNO3/H2O and H2SO4/H2O systems. Journal of Geophysical Research, 2003, 108, .	3.3	22
737	Homogeneous nucleation of n-nonane and n-propanol mixtures: A comparison of classical nucleation theory and experiments. Journal of Chemical Physics, 2005, 123, 244502.	3.0	22
738	Effective real refractive index of dry aerosols in the Antarctic boundary layer. Geophysical Research Letters, 2006, 33, .	4.0	22

#	Article	IF	Citations
739	Nucleation Simulations Using the Fluid Dynamics Software FLUENT with the Fine Particle Model FPM. Journal of Physical Chemistry A, 2006, 110, 12448-12455.	2.5	22
740	A Computational Fluid Dynamics Approach to Nucleation in the Waterâ ⁻ 'Sulfuric Acid System. Journal of Physical Chemistry A, 2010, 114, 8033-8042.	2.5	22
741	Analysis of particle size distribution changes between three measurement sites in northern Scandinavia. Atmospheric Chemistry and Physics, 2013, 13, 11887-11903.	4.9	22
742	SMEAR Estonia: Perspectives of a large-scale forest ecosystem – atmosphere research infrastructure. Forestry Studies, 2015, 63, 56-84.	0.2	22
743	A theoretical study of binary homogenous nucleation of water-ammonium chloride particles in the atmosphere. Journal of Aerosol Science, 1997, 28, 901-917.	3.8	21
744	Variations of cloud droplet concentrations and the optical properties of clouds due to changing hygroscopicity: A model study. Journal of Geophysical Research, 1998, 103, 16183-16195.	3.3	21
745	Singular self-preserving regimes of coagulation processes. Physical Review E, 2002, 65, 041604.	2.1	21
746	The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium. Journal of Chemical Physics, 2006, 124, 224304.	3.0	21
747	Effect of particle phase oligomer formation on aerosol growth. Atmospheric Environment, 2007, 41, 1768-1776.	4.1	21
748	Effects of seed particle size and composition on heterogeneous nucleation of n-nonane. Atmospheric Research, 2008, 90, 187-194.	4.1	21
749	Determination of organic compounds from wood combustion aerosol nanoparticles by different gas chromatographic systems and by aerosol mass spectrometry. Journal of Chromatography A, 2010, 1217, 151-159.	3.7	21
750	The role of cluster energy nonaccommodation in atmospheric sulfuric acid nucleation. Journal of Chemical Physics, 2010, 132, 024304.	3.0	21
751	A complete methodology for the reliable collection, sample preparation, separation and determination of organic compounds in ultrafine 30 nm, 40 nm and 50 nm atmospheric aerosol particles. Analytical Methods, 2011, 3, 2501.	2.7	21
752	Estimating seasonal variations in cloud droplet number concentration over the boreal forest from satellite observations. Atmospheric Chemistry and Physics, 2011, 11, 7701-7713.	4.9	21
753	Interest Representation and Social Policy Making: Russian Veterans' Organisations as Brokers between the State and Society. Europe-Asia Studies, 2016, 68, 138-163.	0.5	21
754	Spatial, temporal and source contribution assessments of black carbon over the northern interior of South Africa. Atmospheric Chemistry and Physics, 2017, 17, 6177-6196.	4.9	21
755	Measurement–model comparison of stabilized Criegee intermediateÂand highly oxygenated molecule productionÂinÂtheÂCLOUDÂchamber. Atmospheric Chemistry and Physics, 2018, 18, 2363-2380.	4.9	21
756	Exploring non-linear associations between atmospheric new-particle formation and ambient variables: a mutual information approach. Atmospheric Chemistry and Physics, 2018, 18, 12699-12714.	4.9	21

#	Article	IF	Citations
757	Evaluation of white-box versus black-box machine learning models in estimating ambient black carbon concentration. Journal of Aerosol Science, 2021, 152, 105694.	3.8	21
758	Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China. Science of the Total Environment, 2021, 753, 142207.	8.0	21
759	Aerosol particle formation in the upper residual layer. Atmospheric Chemistry and Physics, 2021, 21, 7901-7915.	4.9	21
760	Climatic Factors Influencing the Anthrax Outbreak of 2016 in Siberia, Russia. EcoHealth, 2021, 18, 217-228.	2.0	21
761	Evolution of organic carbon during COVID-19 lockdown period: Possible contribution of nocturnal chemistry. Science of the Total Environment, 2022, 808, 152191.	8.0	21
762	A Semiphenomenological Model for Stomatal Gas Transport. Journal of Theoretical Biology, 1994, 171, 291-301.	1.7	20
763	The effect of hygroscopicity on cloud droplet formation. Tellus, Series B: Chemical and Physical Meteorology, 2022, 48, 347.	1.6	20
764	Determination of homogeneous nucleation rates from laminar-flow diffusion chamber data. Journal of Aerosol Science, 1998, 29, 899-911.	3.8	20
765	The Turnbull correlation and the freezing of stratospheric aerosol droplets. Journal of Geophysical Research, 1998, 103, 10875-10884.	3.3	20
766	Vertical fluxes and micrometeorology during aerosol particle formation events. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 394-405.	1.6	20
767	Homogeneous nucleation rates of higher n-alcohols measured in a laminar flow diffusion chamber. Journal of Chemical Physics, 2004, 120, 11621-11633.	3.0	20
768	Particle-into-liquid sampler on-line coupled with solid-phase extraction-liquid chromatography–mass spectrometry for the determination of organic acids in atmospheric aerosols. Journal of Chromatography A, 2010, 1217, 5427-5433.	3.7	20
769	Evaporation of ternary inorganic/organic aqueous droplets: Sodium chloride, succinic acid and water. Journal of Aerosol Science, 2010, 41, 760-770.	3.8	20
770	Characterization of organic compounds in 10- to 50-nm aerosol particles in boreal forest with laser desorption-ionization aerosol mass spectrometer and comparison with other techniques. Atmospheric Environment, 2011, 45, 3711-3719.	4.1	20
771	Chemical composition, impact from biomass burning, and mass closure for PM _{2.5} and PM ₁₀ aerosols at HyytiÃIĀPFinland, in summer 2007. X-Ray Spectrometry, 2011, 40, 168-171.	1.4	20
772	Identification and quantification of particle growth channels during new particle formation. Atmospheric Chemistry and Physics, 2013, 13, 10215-10225.	4.9	20
773	Size-resolved characterisation of organic compounds in atmospheric aerosols collected at Welgegund, South Africa. Journal of Atmospheric Chemistry, 2015, 72, 43-64.	3.2	20
774	Observation of incipient particle formation during flame synthesis by tandem differential mobility analysis-mass spectrometry (DMA-MS). Proceedings of the Combustion Institute, 2017, 36, 745-752.	3.9	20

#	Article	IF	Citations
775	Laboratory verification of a new high flow differential mobility particle sizer, and field measurements in HyytiÄMPJournal of Aerosol Science, 2018, 124, 1-9.	3.8	20
776	Over a 10-year record of aerosol optical properties at SMEAR II. Atmospheric Chemistry and Physics, 2019, 19, 11363-11382.	4.9	20
777	Vertical profiles of sub-3 nm particles over the boreal forest. Atmospheric Chemistry and Physics, 2019, 19, 4127-4138.	4.9	20
778	Toward Building a Physical Proxy for Gas-Phase Sulfuric Acid Concentration Based on Its Budget Analysis in Polluted Yangtze River Delta, East China. Environmental Science & Eamp; Technology, 2021, 55, 6665-6676.	10.0	20
779	Aerosol Particle Formation Events at Two Siberian Stations. , 2007, , 840-844.		20
780	Formation of Low-Temperature Cirrus from H2SO4/H2O Aerosol Droplets. Journal of Physical Chemistry A, 2006, 110, 12541-12542.	2.5	19
781	Concentrations and fluxes of aerosol particles during the LAPBIAT measurement campaign at V��i�� field station. Atmospheric Chemistry and Physics, 2007, 7, 3683-3700.	4.9	19
782	Continuous measurements of aerosol properties at the Baltic Sea. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 728-741.	1.6	19
783	Micrometeorological Observations of a Microburst in Southern Finland. Boundary-Layer Meteorology, 2007, 125, 343-359.	2.3	19
784	The regional aerosol-climate model REMO-HAM. Geoscientific Model Development, 2012, 5, 1323-1339.	3.6	19
785	A numerical comparison of different methods for determining the particle formation rate. Atmospheric Chemistry and Physics, 2012, 12, 2289-2295.	4.9	19
786	A long-term satellite study of aerosol effects on convective clouds in Nordic background air. Atmospheric Chemistry and Physics, 2014, 14, 2203-2217.	4.9	19
787	Modelling the contribution of biogenic volatile organic compounds to new particle formation in the J $ ilde{A}^{1}$ 4lich plant atmosphere chamber. Atmospheric Chemistry and Physics, 2015, 15, 10777-10798.	4.9	19
788	Variability of air ion concentrations in urban Paris. Atmospheric Chemistry and Physics, 2015, 15, 13717-13737.	4.9	19
789	Street-level Practice of Russia's Social Policymaking in Saint Petersburg: Federalism, Informal Politics, and Domestic Violence. Journal of Social Policy, 2016, 45, 287-304.	1.1	19
790	Wintertime hygroscopicity and volatility of ambient urban aerosol particles. Atmospheric Chemistry and Physics, 2018, 18, 4533-4548.	4.9	19
791	New particle formation, growth and apparent shrinkage at a rural background site in western Saudi Arabia. Atmospheric Chemistry and Physics, 2019, 19, 10537-10555.	4.9	19
792	Indoor Model Simulation for COVID-19 Transport and Exposure. International Journal of Environmental Research and Public Health, 2021, 18, 2927.	2.6	19

#	Article	IF	CITATIONS
793	An indicator for sulfuric acid–amine nucleation in atmospheric environments. Aerosol Science and Technology, 2021, 55, 1059-1069.	3.1	19
794	Towards understanding the characteristics of new particle formation in the Eastern Mediterranean. Atmospheric Chemistry and Physics, 2021, 21, 9223-9251.	4.9	19
795	PAN EURASIAN EXPERIMENT (PEEX) - A RESEARCH INITIATIVE MEETING THE GRAND CHALLENGES OF THE CHANGING ENVIRONMENT OF THE NORTHERN PAN-EURASIAN ARCTIC-BOREAL AREAS. Geography, Environment, Sustainability, 2014, 7, 13-48.	1.3	19
796	Insufficient Condensable Organic Vapors Lead to Slow Growth of New Particles in an Urban Environment. Environmental Science &	10.0	19
797	CCN activation and cloud processing in sectional aerosol models with low size resolution. Atmospheric Chemistry and Physics, 2005, 5, 2561-2570.	4.9	18
798	Nanometer Particle Detection by the Condensation Particle Counter UF-02proto. Aerosol Science and Technology, 2008, 42, 521-527.	3.1	18
799	Parameterization of ion-induced nucleation rates based on ambient observations. Atmospheric Chemistry and Physics, 2011, 11, 3393-3402.	4.9	18
800	Temperature influence on the natural aerosol budget over boreal forests. Atmospheric Chemistry and Physics, 2014, 14, 8295-8308.	4.9	18
801	lon – particle interactions during particle formation and growth at a coniferous forest site in central Europe. Atmospheric Chemistry and Physics, 2014, 14, 10547-10563.	4.9	18
802	Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment. Atmospheric Chemistry and Physics, 2015, 15, 11999-12009.	4.9	18
803	On the use of a satellite remote-sensing-based approach for determining aerosol direct radiative effect over land: a case study over China. Atmospheric Chemistry and Physics, 2015, 15, 505-518.	4.9	18
804	Evidence of New Particle Formation Within Etna and Stromboli Volcanic Plumes and Its Parameterization From Airborne In Situ Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5650-5668.	3.3	18
805	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	3.1	18
806	A review of measurement and modelling results of particle atmosphere–surface exchange. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, .	1.6	18
807	Binary nucleation kinetics: A matrix method. Journal of Chemical Physics, 1994, 101, 9997-10002.	3.0	17
808	Variations and vertical profiles of trace gas and aerosol concentrations and CO2 exchange in Eastern Lapland. Atmospheric Environment, 1997, 31, 3351-3362.	4.1	17
809	Aerosol silica as a possible candidate for the heterogeneous formation of nitric acid hydrates in the stratosphere. Geophysical Research Letters, 1999, 26, 1433-1436.	4.0	17
810	Capillary electrophoretic separation of dicarboxylic acids in atmospheric aerosol particles. Journal of Chromatography A, 2003, 990, 133-141.	3.7	17

#	Article	IF	CITATIONS
811	A kinetic theory of particle charging in the free-molecule regime. Journal of Aerosol Science, 2005, 36, 1069-1088.	3.8	17
812	Analysis and evaluation of selected PM10 pollution episodes in the Helsinki Metropolitan Area in 2002. Atmospheric Environment, 2008, 42, 3992-4005.	4.1	17
813	Parameterization of cloud droplet activation using a simplified treatment of the aerosol number size distribution. Journal of Geophysical Research, 2008, 113, .	3.3	17
814	Atmospheric nucleation and initial steps of particle growth: Numerical comparison of different theories and hypotheses. Atmospheric Research, 2010, 98, 229-236.	4.1	17
815	Differences in aerosol absorption \tilde{A} ngstr \tilde{A} ¶m exponents between correction algorithms for a particle soot absorption photometer measured on the South African Highveld. Atmospheric Measurement Techniques, 2014, 7, 4285-4298.	3.1	17
816	Prescribed burning of logging slash in the boreal forest of Finland: emissions and effects on meteorological quantities and soil properties. Atmospheric Chemistry and Physics, 2014, 14, 4473-4502.	4.9	17
817	Elemental composition and clustering behaviour of \hat{l} ±-pinene oxidation products for different oxidation conditions. Atmospheric Chemistry and Physics, 2015, 15, 4145-4159.	4.9	17
818	Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3036-3049.	3.3	17
819	137Cs distributions in soil and trees in forest ecosystems after the radioactive fallout – Comparison study between southern Finland and Fukushima, Japan. Journal of Environmental Radioactivity, 2016, 161, 73-81.	1.7	17
820	Future vegetation–climate interactions in Eastern Siberia: an assessment of the competing effects of CO ₂ and secondary organic aerosols. Atmospheric Chemistry and Physics, 2016, 16, 5243-5262.	4.9	17
821	Atmospheric aerosols local–regional discrimination for a semi-urban area in India. Atmospheric Research, 2016, 168, 13-23.	4.1	17
822	Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new particle formation periods. Atmospheric Chemistry and Physics, 2018, 18, 17705-17716.	4.9	17
823	Formation of nighttime sulfuric acid from the ozonolysis of alkenes in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 5499-5511.	4.9	17
824	The contribution of new particle formation and subsequent growth to haze formation. Environmental Science Atmospheres, 2022, 2, 352-361.	2.4	17
825	Kinetics of particle growthin supersaturated binary vapor mixtures. Journal of Aerosol Science, 1991, 22, S51-S54.	3.8	16
826	Rigorous treatment of time-dependent trace gas uptake by droplets including bulk diffusion and surface accommodation. Journal of Aerosol Science, 2001, 32, 843-860.	3.8	16
827	Soluble-Insoluble Transition in Binary Heterogeneous Nucleation. Physical Review Letters, 2001, 87, 225703.	7.8	16
828	Some air electricity phenomena caused by waterfalls: Correlative study of the spectra. Atmospheric Research, 2009, 91, 229-237.	4.1	16

#	Article	IF	Citations
829	Composition of negative air ions as a function of ion age and selected trace gases: Mass- and mobility distribution. Journal of Aerosol Science, 2011, 42, 820-838.	3.8	16
830	Total sulfate vs. sulfuric acid monomer concenterations in nucleation studies. Atmospheric Chemistry and Physics, 2015, 15, 3429-3443.	4.9	16
831	Growth of atmospheric clusters involving cluster–cluster collisions: comparison of different growth rate methods. Atmospheric Chemistry and Physics, 2016, 16, 5545-5560.	4.9	16
832	Input-Adaptive Proxy for Black Carbon as a Virtual Sensor. Sensors, 2020, 20, 182.	3.8	16
833	The impact of the atmospheric turbulence-development tendency on new particle formation: a common finding on three continents. National Science Review, 2021, 8, nwaa157.	9.5	16
834	Fire and vegetation dynamics in northwest Siberia during the last 60Âyears based on high-resolution remote sensing. Biogeosciences, 2021, 18, 207-228.	3.3	16
835	Chemistry of new particle formation and growth events during wintertime in suburban area of Beijing: Insights from highly polluted atmosphere. Atmospheric Research, 2021, 255, 105553.	4.1	16
836	Associations between sources of particle number and mortality in four European cities. Environment International, 2021, 155, 106662.	10.0	16
837	An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate. Atmospheric Measurement Techniques, 2020, 13, 6325-6341.	3.1	16
838	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & Environmental Sci	10.0	16
839	Particle emission from gasoline powered vehicles: Emission, deposition and re-emission under different traffic density situations. Journal of Aerosol Science, 1986, 17, 973-983.	3.8	15
840	Condensation and evaporation of water vapor in mixed aerosols of liquid droplets and ice: numerical comparison of growth rate expressions. Journal of Aerosol Science, 2001, 32, 351-374.	3.8	15
841	Modal characteristics of particulate matter in urban atmospheric aerosols. Microchemical Journal, 2002, 73, 19-26.	4.5	15
842	Contribution of mixing in the ABL to new particle formation based on observations. Atmospheric Chemistry and Physics, 2007, 7, 4781-4792.	4.9	15
843	Experiments on the Temperature Dependence of Heterogeneous Nucleation on Nanometerâ€Sized NaCl and Ag Particles. ChemPhysChem, 2010, 11, 3874-3882.	2.1	15
844	Comprehensive two-dimensional gas chromatography, a valuable technique for screening and semiquantitation of different chemical compounds in ultrafine 30 nm and 50 nm aerosol particles. Journal of Environmental Monitoring, 2011, 13, 2994.	2.1	15
845	Contribution from biogenic organic compounds to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate needleleaf forest. Atmospheric Chemistry and Physics, 2015, 15, 8643-8656.	4.9	15
846	Characterization of satellite-based proxies for estimating nucleation mode particles over South Africa. Atmospheric Chemistry and Physics, 2015, 15, 4983-4996.	4.9	15

#	Article	IF	CITATIONS
847	Potential of needle trap microextraction–portable gas chromatography–mass spectrometry for measurement of atmospheric volatile compounds. Atmospheric Measurement Techniques, 2016, 9, 3661-3671.	3.1	15
848	Observations and modelling of ground temperature evolution in the discontinuous permafrost zone in Nadym, northâ€west Siberia. Permafrost and Periglacial Processes, 2020, 31, 264-280.	3.4	15
849	Opinion: Gigacity– a source of problems or the new way to sustainable development. Atmospheric Chemistry and Physics, 2021, 21, 8313-8322.	4.9	15
850	Transit pollution exposure monitoring using low-cost wearable sensors. Transportation Research, Part D: Transport and Environment, 2021, 98, 102981.	6.8	15
851	Binary droplet evaporation in the presence of an inert gas: An exact solution of the Maxwell-Stefan equations. International Communications in Heat and Mass Transfer, 1991, 18, 117-126.	5.6	14
852	The homogeneous equilibrium approximation in models of aerosol cloud dispersion. Atmospheric Environment, 1994, 28, 2763-2776.	4.1	14
853	A model for NOx–O3–terpene chemistry in chamber measurements of plant gas exchange. Atmospheric Environment, 1999, 33, 2145-2156.	4.1	14
854	Nucleation rate and vapor concentration estimations using a least squares aerosol dynamics method. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	14
855	Marine aerosols and iodine emissions (Reply). Nature, 2005, 433, E13-E14.	27.8	14
856	Large methane releases lead to strong aerosol forcing and reduced cloudiness. Atmospheric Chemistry and Physics, 2011, 11, 6961-6969.	4.9	14
857	Anthropogenic aerosols may have increased upper tropospheric humidity in the 20th century. Atmospheric Chemistry and Physics, 2011, 11, 4577-4586.	4.9	14
858	In-situ observations of Eyjafjallajökull ash particles by hot-air balloon. Atmospheric Environment, 2012, 48, 104-112.	4.1	14
859	Carbon clusters in 50nm urban air aerosol particles quantified by laser desorption–ionization aerosol mass spectrometer. International Journal of Mass Spectrometry, 2014, 358, 17-24.	1.5	14
860	A new high-transmission inlet for the Caltech nano-RDMA for size distribution measurements of sub-3â€nm ions at ambient concentrations. Atmospheric Measurement Techniques, 2016, 9, 2709-2720.	3.1	14
861	How do air ions reflect variations in ionising radiation in the lower atmosphere in a boreal forest?. Atmospheric Chemistry and Physics, 2016, 16, 14297-14315.	4.9	14
862	Cluster formation mechanisms of titanium dioxide during combustion synthesis: Observation with an APi-TOF. Aerosol Science and Technology, 2017, 51, 1071-1081.	3.1	14
863	Estimates of the organic aerosol volatility in a boreal forest using two independent methods. Atmospheric Chemistry and Physics, 2017, 17, 4387-4399.	4.9	14
864	Characterization of three new condensation particle counters for sub-3†nm particle detection during the Helsinki CPC workshop: the ADI versatile water CPC, TSI 3777 nano enhancer and boosted TSI 3010. Atmospheric Measurement Techniques, 2017, 10, 2271-2281.	3.1	14

#	Article	IF	CITATIONS
865	Simulation of the size-composition distribution of atmospheric nanoparticles over Europe. Atmospheric Chemistry and Physics, 2018, 18, 13639-13654.	4.9	14
866	Effects of forests on particle number concentrations in near-road environments across three geographic regions. Environmental Pollution, 2020, 266, 115294.	7.5	14
867	Investigating the effectiveness of condensation sink based on heterogeneous nucleation theory. Journal of Aerosol Science, 2020, 149, 105613.	3.8	14
868	Characterization of Urban New Particle Formation in Amman—Jordan. Atmosphere, 2020, 11, 79.	2.3	14
869	Long-term measurement of sub-3 nm particles and their precursor gases in the boreal forest. Atmospheric Chemistry and Physics, 2021, 21, 695-715.	4.9	14
870	Eight years of sub-micrometre organic aerosol composition data from the boreal forest characterized using a machine-learning approach. Atmospheric Chemistry and Physics, 2021, 21, 10081-10109.	4.9	14
871	Nucleation events on the Väiö environmental measurement station. Journal of Aerosol Science, 1995, 26, S411-S412.	3.8	13
872	Nucleation Controlled Formation and Growth of Disperse Particles. Physical Review Letters, 1998, 81, 5165-5168.	7.8	13
873	A chemistry-transport model simulation of middle atmospheric ozone from 1980 to 2019 using coupled chemistry GCM winds and temperatures. Atmospheric Chemistry and Physics, 2007, 7, 2165-2181.	4.9	13
874	A study of the indirect aerosol effect on subarctic marine liquid low-level clouds using MODIS cloud data and ground-based aerosol measurements. Atmospheric Research, 2012, 116, 56-66.	4.1	13
875	Assessment of atmospheric trace metals in the western Bushveld Igneous Complex, South Africa. South African Journal of Science, 2014, 110, 1-11.	0.7	13
876	Predicting atmospheric particle formation days by Bayesian classification of the time series features. Tellus, Series B: Chemical and Physical Meteorology, 2022, 70, 1530031.	1.6	13
877	Comparison of surface foil materials and dew collectors location in an arid area: a one-year field experiment in Kenya. Agricultural and Forest Meteorology, 2019, 276-277, 107613.	4.8	13
878	Constructing a data-driven receptor model for organic and inorganic aerosol – a synthesis analysis of eight mass spectrometric data sets from a boreal forest site. Atmospheric Chemistry and Physics, 2019, 19, 3645-3672.	4.9	13
879	Rapid conversion of isoprene photooxidation products in terrestrial plants. Communications Earth & Environment, 2020, 1, 44.	6.8	13
880	Cluster Analysis of Submicron Particle Number Size Distributions at the SORPES Station in the Yangtze River Delta of East China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034004.	3.3	13
881	Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers. Atmospheric Measurement Techniques, 2021, 14, 4187-4202.	3.1	13
882	Evaporation and Condensational Growth of Liquid Droplets in Nonisothermal Gas Mixtures. Aerosol Science and Technology, 2003, 37, 315-324.	3.1	12

#	Article	IF	CITATIONS
883	Three-body collisions as a particle formation mechanism in silver nanoparticle synthesis. Journal of Colloid and Interface Science, 2004, 274, 526-530.	9.4	12
884	Overview of the biosphere-aerosol-cloud-climate interactions (BACCI) studies. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, 300-317.	1.6	12
885	The homogeneous nucleation of 1-pentanol in a laminar flow diffusion chamber: The effect of pressure and kind of carrier gas. Journal of Chemical Physics, 2008, 128, 134312.	3.0	12
886	Computational investigation of the possible role of some intermediate products of SO2 oxidation in sulfuric acid–water nucleation. Atmospheric Research, 2009, 91, 47-52.	4.1	12
887	Analysis of nucleation events in the European boundary layer using the regional aerosol–climate model REMO-HAM with a solar radiation-driven OH-proxy. Atmospheric Chemistry and Physics, 2014, 14, 11711-11729.	4.9	12
888	Real-Time Detection of Arsenic Cations from Ambient Air in Boreal Forest and Lake Environments. Environmental Science and Technology Letters, 2016, 3, 42-46.	8.7	12
889	First measurements of the number size distribution of $1\hat{a}\in 2\hat{A}$ nm aerosol particles released from manufacturing processes in a cleanroom environment. Aerosol Science and Technology, 2017, 51, 685-693.	3.1	12
890	Features in air ions measured by an air ion spectrometer (AIS) at DomeÂC. Atmospheric Chemistry and Physics, 2017, 17, 13783-13800.	4.9	12
891	Advancing global aerosol simulations with size-segregated anthropogenic particle number emissions. Atmospheric Chemistry and Physics, 2018, 18, 10039-10054.	4.9	12
892	Urban Aerosol Particle Size Characterization in Eastern Mediterranean Conditions. Atmosphere, 2019, 10, 710.	2.3	12
893	Measurement report: Molecular composition and volatility of gaseous organic compounds in a boreal forest – from volatile organic compounds to highly oxygenated organic molecules. Atmospheric Chemistry and Physics, 2021, 21, 8961-8977.	4.9	12
894	Atmospheric gaseous hydrochloric and hydrobromic acid in urban Beijing, China: detection, source identification and potential atmospheric impacts. Atmospheric Chemistry and Physics, 2021, 21, 11437-11452.	4.9	12
895	An enhanced integrated approach to knowledgeable high-resolution environmental quality assessment. Environmental Science and Policy, 2021, 122, 1-13.	4.9	12
896	Emerging Investigator Series: COVID-19 lockdown effects on aerosol particle size distributions in northern Italy. Environmental Science Atmospheres, 2021, 1, 214-227.	2.4	12
897	Chemical composition of nanoparticles from & amp;lt;l& amp;gt;l±& amp;lt;l& amp;gt;-pinene nucleation and the influence of isoprene and relative humidity at low temperature. Atmospheric Chemistry and Physics, 2021, 21, 17099-17114.	4.9	12
898	Indoor surface accumulation of radioactive particles after chernobyl fallout. Journal of Aerosol Science, 1988, 19, 1359-1361.	3.8	11
899	Behaviour of ¹³⁷ Cs from Chernobyl fallout in a Scots pine canopy in southern Finland. Canadian Journal of Forest Research, 1994, 24, 1210-1215.	1.7	11
900	The molecular approach to heterogeneous nucleation. Journal of Chemical Physics, 2005, 122, 114709.	3.0	11

#	Article	IF	CITATIONS
901	Comparison between the classical theory predictions and molecular simulation results for heterogeneous nucleation of argon. Journal of Chemical Physics, 2006, 125, 164712.	3.0	11
902	Growth of nucleation mode particles: Source rates of condensable vapour in a smog chamber. Atmospheric Environment, 2008, 42, 7405-7411.	4.1	11
903	Acceleration of raindrop formation due to the tangling-clustering instability in a turbulent stratified atmosphere. Physical Review E, 2015, 92, 013012.	2.1	11
904	Technical Note: Using DEG-CPCs at upper tropospheric temperatures. Atmospheric Chemistry and Physics, 2015, 15, 7547-7555.	4.9	11
905	Chemical investigation and quality of urban dew collections with dust precipitates. Environmental Science and Pollution Research, 2017, 24, 12312-12318.	5.3	11
906	Evaporation of sulfate aerosols at low relative humidity. Atmospheric Chemistry and Physics, 2017, 17, 8923-8938.	4.9	11
907	Exploring the potential of nano-Köhler theory to describe the growth of atmospheric molecular clusters by organic vapors using cluster kinetics simulations. Atmospheric Chemistry and Physics, 2018, 18, 13733-13754.	4.9	11
908	Low-cost Air Quality Sensing Process: Validation by Indoor-Outdoor Measurements. , 2020, , .		11
909	Transmission via aerosols: Plausible differences among emerging coronaviruses. Aerosol Science and Technology, 2020, 54, 865-868.	3.1	11
910	Research agenda for the Russian Far East and utilization of multi-platform comprehensive environmental observations. International Journal of Digital Earth, 2021, 14, 311-337.	3.9	11
911	PAN-EURASIAN EXPERIMENT (PEEX) PROGRAM: AN OVERVIEW OF THE FIRST 5 YEARS IN OPERATION AND FUTURE PROSPECTS. Geography, Environment, Sustainability, 2018, 11, 6-19.	1.3	11
912	Assessment of particle size magnifier inversion methods to obtain the particle size distribution from atmospheric measurements. Atmospheric Measurement Techniques, 2020, 13, 4885-4898.	3.1	11
913	The standard operating procedure for Airmodus Particle Size Magnifier and nano-Condensation Nucleus Counter. Journal of Aerosol Science, 2022, 159, 105896.	3.8	11
914	New particle formation event detection with Mask R-CNN. Atmospheric Chemistry and Physics, 2022, 22, 1293-1309.	4.9	11
915	Chernobyl fallout in Finland: Hot areas. Journal of Aerosol Science, 1988, 19, 1363-1366.	3.8	10
916	An analytical expression for the rate of binary condensational particle growth: Comparison with numerical results. Journal of Aerosol Science, 1992, 23, 133-136.	3.8	10
917	Effect of Acids on Water Vapor Uptake by Pyrogenic Silica. Journal of Colloid and Interface Science, 1997, 191, 95-101.	9.4	10
918	FOREIGN AEROSOL IN NUCLEATING VAPOUR. Journal of Aerosol Science, 2000, 31, 651-672.	3.8	10

#	Article	IF	Citations
919	Test of the applicability of Kulmala's analytical expression for the mass flux of growing droplets in highly supersaturated systems: growth of homogeneously nucleated water droplets. Journal of Aerosol Science, 2002, 33, 391-399.	3.8	10
920	On particle formation prediction in continental boreal forest using micrometeorological parameters. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	10
921	Analytic and numerical calculations of the formation of a sulphuric acid aerosol in the upper troposphere. Journal of Aerosol Science, 2006, 37, 1717-1729.	3.8	10
922	Technical Note: Measuring condensation sink and ion sink of atmospheric aerosols with the electrical low pressure impactor (ELPI). Atmospheric Chemistry and Physics, 2010, 10, 1361-1368.	4.9	10
923	Modelling Ag-particle activation and growth in a TSI WCPC model 3785. Atmospheric Measurement Techniques, 2010, 3, 273-281.	3.1	10
924	Special Issue on Aerosol Measurements in the 1 nm Range. Aerosol Science and Technology, 2011, 45, i-i.	3.1	10
925	Aerosol charging state at an urban site: new analytical approach and implications for ion-induced nucleation. Atmospheric Chemistry and Physics, 2012, 12, 4647-4666.	4.9	10
926	Brightening of the global cloud field by nitric acid and the associated radiative forcing. Atmospheric Chemistry and Physics, 2012, 12, 7625-7633.	4.9	10
927	Influence of the sampling site, the season of the year, the particle size and the number of nucleation events on the chemical composition of atmospheric ultrafine and total suspended particles. Atmospheric Environment, 2012, 49, 60-68.	4.1	10
928	Solution coating around ice particles of incipient cirrus clouds. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2439-E2439.	7.1	10
929	Characterising Particulate Organic Nitrogen at A Savannah-Grassland Region in South Africa. Atmosphere, 2019, 10, 492.	2.3	10
930	Estimating cloud condensation nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization. Atmospheric Chemistry and Physics, 2019, 19, 15483-15502.	4.9	10
931	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.	2.4	10
932	Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed by aerosol–chemistry–radiation–boundary layer interaction. Atmospheric Chemistry and Physics, 2021, 21, 12173-12187.	4.9	10
933	Quiet New Particle Formation in the Atmosphere. Frontiers in Environmental Science, $0,10,.$	3.3	10
934	Highly oxygenated organic molecules with high unsaturation formed upon photochemical aging of soot. CheM, 2022, 8, 2688-2699.	11.7	10
935	Dry and wet deposition of chernobyl aerosols in Southern Finland. Journal of Aerosol Science, 1987, 18, 939-942.	3.8	9
936	Experimental and numerical analysis of stomatal absorption of sulphur dioxide and transpiration by pine needles. Atmospheric Environment, 1995, 29, 825-836.	4.1	9

#	Article	IF	CITATIONS
937	Formation of ammonium chloride particles from hydrogen chloride and ammonia in the atmosphere. Journal of Aerosol Science, 1995, 26, S463-S464.	3.8	9
938	Initiation of rain by turbulence-induced condensational growth of cloud droplets. Geophysical Research Letters, 2005, 32, .	4.0	9
939	Theoretical and Experimental Study on Phase Transitions and Mass Fluxes of Supersaturated Water Vapor onto Different Insoluble Flat Surfaces. Langmuir, 2006, 22, 10061-10065.	3.5	9
940	Impact of H& It; sub& It; sub& gt; SO& It; sub& gt; 4& It; sub& gt; H& It; sub&acoating and ice crystal size on radiative properties of sub-visible cirrus. Atmospheric Chemistry and Physics, 2006, 6, 4659-4667.	mp;gt;2&a	mp;lt;/sub&aı
941	Correction to "New parameterization of sulfuric acidâ€ammoniaâ€water ternary nucleation rates at tropospheric conditions†Journal of Geophysical Research, 2009, 114, .	3.3	9
942	Corrigendum to "The role of ammonia in sulfuric acid ion induced nucleation" published in Atmos. Chem. Phys., 8, 2859–2867, 2008. Atmospheric Chemistry and Physics, 2009, 9, 7431-7434.	4.9	9
943	Aerosol indirect effects on continental low-level clouds over Sweden and Finland. Atmospheric Chemistry and Physics, 2014, 14, 12167-12179.	4.9	9
944	A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations. Atmospheric Chemistry and Physics, 2016, 16, 1955-1970.	4.9	9
945	Observations of ozone depletion events in a Finnish boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 49-63.	4.9	9
946	A simple model for the time evolution of the condensation sink in the atmosphere for intermediate Knudsen numbers. Atmospheric Chemistry and Physics, 2018, 18, 2431-2442.	4.9	9
947	Impacts of coagulation on the appearance time method for new particle growth rate evaluation and their corrections. Atmospheric Chemistry and Physics, 2021, 21, 2287-2304.	4.9	9
948	The SALTENA Experiment: Comprehensive Observations of Aerosol Sources, Formation, and Processes in the South American Andes. Bulletin of the American Meteorological Society, 2022, 103, E212-E229.	3.3	9
949	Zeppelin-led study on the onset of new particle formation in the planetary boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 12649-12663.	4.9	9
950	Towards a concentration closure of sub-6 nm aerosol particles and sub-3 nm atmospheric clusters. Journal of Aerosol Science, 2022, 159, 105878.	3.8	9
951	Combining instrument inversions for sub-10 nm aerosol number size-distribution measurements. Journal of Aerosol Science, 2022, 159, 105862.	3.8	9
952	Simulating The Formation of Acid Aerosols. , 1990, , 95-110.		9
953	GROUND-BASED STATION NETWORK IN ARCTIC AND SUBARCTIC EURASIA: AN OVERVIEW. Geography, Environment, Sustainability, 2016, 9, 75-88.	1.3	9
954	Roll vortices induce new particle formation bursts in the planetary boundary layer. Atmospheric Chemistry and Physics, 2020, 20, 11841-11854.	4.9	9

#	Article	IF	CITATIONS
955	Wintertime subarctic new particle formation from Kola Peninsula sulfur emissions. Atmospheric Chemistry and Physics, 2021, 21, 17559-17576.	4.9	9
956	Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective. Atmospheric Chemistry and Physics, 2022, 22, 4413-4469.	4.9	9
957	Improving the current air quality index with new particulate indicators using a robust statistical approach. Science of the Total Environment, 2022, 844, 157099.	8.0	9
958	Pine bark PIXE analysis. Nuclear Instruments & Methods in Physics Research B, 1987, 22, 473-475.	1.4	8
959	Helmholtz free energy of a cluster on the coherent substrate: Monte Carlo calculations. Journal of Chemical Physics, 1995, 102, 6858-6864.	3.0	8
960	Model simulation of the amount of soluble mass during cloud droplet formation. Atmospheric Environment, 1996, 30, 1773-1785.	4.1	8
961	Study of finely divided aqueous systems as an aid to understanding the surface chemistry of polar stratospheric clouds: Case of HCl/H2O and HNO3/HCl/H2O systems. Journal of Geophysical Research, 2003, 108, .	3.3	8
962	Re-evaluation of the Pressure Effect for Nucleation in Laminar Flow Diffusion Chamber Experiments with Fluent and the Fine Particle Model. Journal of Physical Chemistry A, 2009, 113, 1434-1439.	2.5	8
963	Homogeneous vs. heterogeneous nucleation in water-dicarboxylic acid systems. Atmospheric Chemistry and Physics, 2009, 9, 1873-1881.	4.9	8
964	Using measurements of the aerosol charging state in determination of the particle growth rate and the proportion of ion-induced nucleation. Atmospheric Chemistry and Physics, 2013, 13, 463-486.	4.9	8
965	Effects of different correction algorithms on absorption coefficient – a comparison of three optical absorption photometers at a boreal forest site. Atmospheric Measurement Techniques, 2021, 14, 6419-6441.	3.1	8
966	Influence of organic aerosol molecular composition on particle absorptive properties in autumn Beijing. Atmospheric Chemistry and Physics, 2022, 22, 1251-1269.	4.9	8
967	Survival of newly formed particles in haze conditions. Environmental Science Atmospheres, 2022, 2, 491-499.	2.4	8
968	Estimation of sulfuric acid concentration using ambient ion composition and concentration data obtained with atmospheric pressure interface time-of-flight ion mass spectrometer. Atmospheric Measurement Techniques, 2022, 15, 1957-1965.	3.1	8
969	Nontarget Screening Exhibits a Seasonal Cycle of PM _{2.5} Organic Aerosol Composition in Beijing. Environmental Science & Environmental Scienc	10.0	8
970	Opinion: Insights into updating Ambient Air Quality Directive 2008/50/EC. Atmospheric Chemistry and Physics, 2022, 22, 4801-4808.	4.9	8
971	Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests. Communications Earth & Environment, 2022, 3, .	6.8	8
972	Measurement report: Atmospheric new particle formation in a coastal agricultural site explained with binPMF analysis of nitrate CI-APi-TOF spectra. Atmospheric Chemistry and Physics, 2022, 22, 8097-8115.	4.9	8

#	Article	IF	CITATIONS
973	Numerical simulation of binary nucleation of hydrogen iodide and water vapours. Journal of Aerosol Science, 1991, 22, 149-157.	3.8	7
974	A model for mass and heat transfer in an aerosol cloud. Journal of Hazardous Materials, 1994, 38, 293-311.	12.4	7
975	Aerosol formation in diffusive boundary layer: Binary homogeneous nucleation of ammonia and water vapours. Journal of Aerosol Science, 1995, 26, 547-558.	3.8	7
976	Evaluation of homogeneous droplet formation inside UCPC (TSI model 3025). Journal of Aerosol Science, 1995, 26, 1003-1008.	3.8	7
977	Effect of Electrolyte Diffusion on the Growth of NaCl Particles by Water Vapour Condensation. Journal of Physical Chemistry A, 2003, 107, 346-350.	2.5	7
978	Size diffusion for the growth of newly nucleated aerosol. Journal of Aerosol Science, 2004, 35, 1439-1451.	3.8	7
979	Atmospheric variability and binary homogeneous nucleation: A parametrisation and conditions required for a significant effect. Atmospheric Research, 2006, 82, 503-513.	4.1	7
980	Correction to modelling of the influence of aerosol processes for the dispersion of vehicular exhaust plumes in street environment. Atmospheric Environment, 2006, 40, 311-314.	4.1	7
981	Experimental observation of two-photon photoelectric effect from silver aerosol nanoparticles. New Journal of Physics, 2007, 9, 368-368.	2.9	7
982	Newâ€particle formation in connection with a nocturnal lowâ€level jet: Observations and modeling results. Geophysical Research Letters, 2007, 34, .	4.0	7
983	Cold oceans enhance terrestrial new-particle formation in near-coastal forests. Atmospheric Chemistry and Physics, 2009, 9, 8639-8650.	4.9	7
984	Performance of four-parameter analytical models of atmospheric aerosol particle size distribution. Journal of Aerosol Science, 2014, 77, 145-157.	3.8	7
985	Observational evidence for aerosols increasing upper tropospheric humidity. Atmospheric Chemistry and Physics, 2016, 16, 14331-14342.	4.9	7
986	The versatile size analyzing nuclei counter (vSANC). Aerosol Science and Technology, 2016, 50, 947-958.	3.1	7
987	Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles. Atmospheric Chemistry and Physics, 2017, 17, 3659-3672.	4.9	7
988	Soil concentrations and soil–atmosphere exchange of alkylamines in a boreal Scots pine forest. Biogeosciences, 2017, 14, 1075-1091.	3.3	7
989	The initial stages of multicomponent particle formation during the gas phase combustion synthesis of mixed SiO2/TiO2. Aerosol Science and Technology, 2018, 52, 277-286.	3.1	7
990	Combining airborne in situ and ground-based lidar measurements for attribution of aerosol layers. Atmospheric Chemistry and Physics, 2018, 18, 10575-10591.	4.9	7

#	Article	IF	CITATIONS
991	Comparing plastic foils for dew collection: Preparatory laboratory-scale method and field experiment in Kenya. Biosystems Engineering, 2020, 196, 145-158.	4.3	7
992	Modeling Long-Term Temporal Variation of Dew Formation in Jordan and Its Link to Climate Change. Water (Switzerland), 2020, 12, 2186.	2.7	7
993	Condensation sink of atmospheric vapors: the effect of vapor properties and the resulting uncertainties. Environmental Science Atmospheres, 2021, 1, 543-557.	2.4	7
994	Trends of Planetary Boundary Layer Height Over Urban Cities of China From 1980–2018. Frontiers in Environmental Science, 2021, 9, .	3.3	7
995	Hot-air Balloon Measurements of Vertical Variation of Boundary Layer New Particle Formation. , 2007, , 698-701.		7
996	A New Type of Quartz Smog Chamber: Design and Characterization. Environmental Science & Emp; Technology, 2022, 56, 2181-2190.	10.0	7
997	Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest. Atmospheric Chemistry and Physics, 2022, 22, 2569-2584.	4.9	7
998	Measurement report: New particle formation characteristics at an urban and a mountain station in northern China. Atmospheric Chemistry and Physics, 2021, 21, 17885-17906.	4.9	7
999	Formation of acid aerosols: field and laboratory measurements. Journal of Aerosol Science, 1987, 18, 829-831.	3.8	6
1000	Analysis of the bark of scots pine as a method of studying environmental changes. Water, Air, and Soil Pollution, 1987, 32, 445.	2.4	6
1001	Latitudinal and longitudinal distribution of the chernobyl fallout in finland and deposition characteristics. Journal of Aerosol Science, 1988, 19, 1191-1194.	3.8	6
1002	Monte Carlo Calculation of Ice Cluster Energy on the Substrate with a Similar Structure. Journal of Colloid and Interface Science, 1994, 166, 286-293.	9.4	6
1003	Hygroscopicity of pre-existing particle distribution and formation of cloud droplets: a model study. Atmospheric Research, 1996, 41, 249-266.	4.1	6
1004	Biogenic aerosol formation in the boreal forest. Journal of Aerosol Science, 2000, 31, 598-599.	3.8	6
1005	Kinetics of nucleation controlled formation and condensational growth of disperse particles. Physical Review E, 2001, 63, 061109.	2.1	6
1006	Condensation/evaporation of insoluble organic vapor as functions of source rate and saturation vapor pressure. Journal of Geophysical Research, 2002, 107, ACH 1-1-ACH 1-9.	3.3	6
1007	The Silk Road agenda of the Pan-Eurasian Experiment (PEEX) program. Big Earth Data, 2018, 2, 8-35.	4.4	6
1008	The effect of urban morphological characteristics on the spatial variation of PM _{2.5} air quality in downtown Nanjing. Environmental Science Atmospheres, 2021, 1, 481-497.	2.4	6

#	Article	IF	Citations
1009	Influence of vegetation on occurrence and time distributions of regional new aerosol particle formation and growth. Atmospheric Chemistry and Physics, 2021, 21, 2861-2880.	4.9	6
1010	Atmospheric and ecosystem big data providing key contributions in reaching United Nations' Sustainable Development Goals. Big Earth Data, 2021, 5, 277-305.	4.4	6
1011	Added Value of Vaisala AQT530 Sensors as a Part of a Sensor Network for Comprehensive Air Quality Monitoring. Frontiers in Environmental Science, 2021, 9, .	3.3	6
1012	Aqueous-phase reactive species formed by fine particulate matter from remote forests and polluted urban air. Atmospheric Chemistry and Physics, 2021, 21, 10439-10455.	4.9	6
1013	Characterization of new particle formation events at a background site in Southern Sweden: relation to air mass history. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, .	1.6	6
1014	Upward fluxes of particles over forests: when, where, why?. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, .	1.6	6
1015	Clouds over HyytiÃÞĀÞFinland: an algorithm to classify clouds based on solar radiation and cloud base height measurements. Atmospheric Measurement Techniques, 2020, 13, 5595-5619.	3.1	6
1016	Modelling the influence of biotic plant stress on atmospheric aerosol particle processes throughout a growing season. Atmospheric Chemistry and Physics, 2021, 21, 17389-17431.	4.9	6
1017	Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing. Environmental Science Atmospheres, 2022, 2, 146-164.	2.4	6
1018	First eddy covariance flux measurements of semi-volatile organic compounds with the PTR3-TOF-MS. Atmospheric Measurement Techniques, 2021, 14, 8019-8039.	3.1	6
1019	Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish subarctic boreal forest. Atmospheric Chemistry and Physics, 2022, 22, 2237-2254.	4.9	6
1020	Influence of Aerosol Chemical Composition on Condensation Sink Efficiency and New Particle Formation in Beijing. Environmental Science and Technology Letters, 2022, 9, 375-382.	8.7	6
1021	An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom. Atmospheric Chemistry and Physics, 2022, 22, 6365-6391.	4.9	6
1022	Deposition of indoor aerosols as determined by PIXE analysis. Nuclear Instruments & Methods in Physics Research B, 1987, 22, 337-339.	1.4	5
1023	Condensation and evaporation of binary droplets with internal mass transfer. Journal of Aerosol Science, 1990, 21, S7-S10.	3.8	5
1024	Activation and growth of cloud condensation nuclei by binary nucleation and condensation processes. Journal of Aerosol Science, 1992, 23, 113-116.	3.8	5
1025	Small ion mobilities during particle formation from irradiated SO2 in humid air. Journal of Aerosol Science, 1995, 26, S333-S334.	3.8	5
1026	Source enhanced condensation of a single-component vapor in the transition regime. Journal of Aerosol Science, 1996, 27, 853-867.	3.8	5

#	Article	IF	Citations
1027	Organic contribution to sub-micron aerosol evolution over a boreal forestâ€"a case study. Physical Chemistry Chemical Physics, 1999, 1, 5511-5516.	2.8	5
1028	Applicability and limitations of the capillarity approximation for modeling heterogeneous nucleation in binary vapor mixtures. Journal of Aerosol Science, 1999, 30, S35-S36.	3.8	5
1029	PARFORCE: Objectives and achievements. Journal of Aerosol Science, 2000, 31, 596-597.	3.8	5
1030	Development and application of a new analytical method to estimate the condensable vapor concentration in the atmosphere. Journal of Geophysical Research, 2005, 110, .	3.3	5
1031	Unary and Binary Heterogeneous Nucleation of Organic Vapors on Monodisperse WO _x Seed Particles with Diameters Down to 1.4 nm. Aerosol Science and Technology, 2011, 45, 493-498.	3.1	5
1032	Liquid chromatography–dopantâ€assisted atmospheric pressure photoionization–mass spectrometry: Application to the analysis of aldehydes in atmospheric aerosol particles. Journal of Separation Science, 2013, 36, 164-172.	2.5	5
1033	Changes in concentration of nitrogen-containing compounds in 10nm particles of boreal forest atmosphere at snowmelt. Journal of Aerosol Science, 2014, 70, 1-10.	3.8	5
1034	Images and properties of individual nucleated particles. Atmospheric Environment, 2015, 123, 166-170.	4.1	5
1035	Production of neutral molecular clusters by controlled neutralization of mobility standards. Aerosol Science and Technology, 2017, 51, 946-955.	3.1	5
1036	Annual cycle of Scots pine photosynthesis. Atmospheric Chemistry and Physics, 2017, 17, 15045-15053.	4.9	5
1037	Size-resolved characteristics of inorganic ionic species in atmospheric aerosols at a regional background site on the South African Highveld. Journal of Atmospheric Chemistry, 2018, 75, 285-304.	3.2	5
1038	Spatial and Temporal Investigation of Dew Potential based on Long-Term Model Simulations in Iran. Water (Switzerland), 2019, 11, 2463.	2.7	5
1039	Statistical analysis of factors driving surface ozone variability over continental South Africa. Journal of Integrative Environmental Sciences, 2020, 17, 1-28.	2.5	5
1040	Evaporation Rates and Saturation Vapour Pressures of C3–C6 Dicarboxylic Acids. , 2007, , 920-923.		5
1041	Biogenic Sesquiterpenes and Atmospheric New Particle Formation: A Boreal Forest Site Investigation. , 2007, , 344-349.		5
1042	Air Ion Measurements During a Cruise from Europe to Antarctica., 2007,, 368-372.		5
1043	Cryosphere: a kingdom of anomalies and diversity. Atmospheric Chemistry and Physics, 2018, 18, 6535-6542.	4.9	5
1044	ATMOSPHERIC PARTICLE PRODUCTION IS LIMITED BY COAGULATIONAL SCAVENGING. Journal of Aerosol Science, 2001, 32, 1087-1088.	3.8	5

#	Article	IF	Citations
1045	Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere. Atmospheric Chemistry and Physics, 2022, 22, 8547-8577.	4.9	5
1046	Evaporation of polydisperse ethanol aerosols in humid environment. International Journal of Heat and Mass Transfer, 1993, 36, 705-711.	4.8	4
1047	Comments on "New Explicit Equations for the Accurate Calculation of Hydrometeors by the Diffusion of Water Vapor― Journals of the Atmospheric Sciences, 1993, 50, 4103-4103.	1.7	4
1048	Heterogeneous nucleation in non-uniform media: Numerical simulations. Journal of Aerosol Science, 1995, 26, 1189-1195.	3.8	4
1049	Experimental and theoretical examination of homogeneous nucleation in a laminar flow reactor (UCPC). Journal of Aerosol Science, 1996, 27, S587-S588.	3.8	4
1050	The role of the attractive potential of a droplet in unary and binary steady state nucleation. Journal of Chemical Physics, 1997, 107, 544-549.	3.0	4
1051	Development of particle size and composition distributions with a novel aerosol dynamics model. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 491-509.	1.6	4
1052	Reversible work of the formation of a layer of a new phase on a spherical charged conductor within a uniform multicomponent macroscopic mother phase. Journal of Chemical Physics, 2003, 119, 10733-10744.	3.0	4
1053	Parameterization of ammonia and water content of atmospheric droplets with fixed number of sulfuric acid molecules. Atmospheric Research, 2006, 82, 514-522.	4.1	4
1054	Duration of tangent-linear regime in sectional multi-component aerosol dynamics. Journal of Aerosol Science, 2008, 39, 723-736.	3.8	4
1055	A new approach to determine vapor pressures of compounds in multicomponent systems by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Talanta, 2014, 124, 21-26.	5.5	4
1056	A study of aerosol activation at the cloud edge with high resolution numerical simulations. Atmospheric Research, 2015, 153, 49-58.	4.1	4
1057	Inadvertent Localized Intensification of Precipitation by Aircraft. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2094-2104.	3.3	4
1058	Insights into vertical differences of particle number size distributions in winter in Beijing, China. Science of the Total Environment, 2022, 802, 149695.	8.0	4
1059	Relevance of Several Nucleation Theories in Different Environments. , 2007, , 87-91.		4
1060	The Origins and Formation Mechanisms of Aerosol during a Measurement Campaign in Finnish Lapland, Evaluated Using the Regional Dispersion Model SILAM. NATO Security Through Science Series C: Environmental Security, 2008, , 530-538.	0.1	4
1061	Analysis of one year of Ion-DMPS data from the SMEAR II station, Finland. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, .	1.6	4
1062	Effects of oligomerization and decomposition on the nanoparticle growth: a model study. Atmospheric Chemistry and Physics, 2022, 22, 155-171.	4.9	4

#	Article	IF	CITATIONS
1063	Measurement report: Introduction to the HylCE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the HyytiĀĀĀDoreal forest. Atmospheric Chemistry and Physics, 2022, 22, 5117-5145.	4.9	4
1064	Extension of atomistic nucleation theory for non-ideal vapours. Journal of Aerosol Science, 1987, 18, 615-618.	3.8	3
1065	The evaporation of airborne droplets in a turbulent two-phase jet. Journal of Aerosol Science, 1988, 19, 871-874.	3.8	3
1066	Measurement of Particulate Carbon in Atmospheric Aerosol in Helsinki. Aerosol Science and Technology, 1989, 10, 224-229.	3.1	3
1067	Continuous measurements of submicron particle size distribution at boreal forest station in southern Finland. Journal of Aerosol Science, 1997, 28, S403-S404.	3.8	3
1068	DSC study of the freezing and thawing behavior of pure water and binary H2O/HNO3 and H2O/HCl systems adsorbed by pyrogenic silica: implications for the atmosphere. Journal of Aerosol Science, 1997, 28, S507-S508.	3.8	3
1069	Formation of cloud condensation nuclei in boreal forest area. Journal of Aerosol Science, 1998, 29, S567-S568.	3.8	3
1070	Characteristics of the three years continuous data on new particle formation events observed at a boreal forest site. AIP Conference Proceedings, 2000, , .	0.4	3
1071	Effects of synoptic weather and boundary layer dynamics on aerosol formation in the continental boundary layer. Journal of Aerosol Science, 2000, 31, 600-601.	3.8	3
1072	Nonsingular self-preserving regimes of coagulation-condensation process. Physical Review E, 2001, 64, 031605.	2.1	3
1073	Effect of Cross-correlated Fluctuations on the Aerosol Dynamics: Monte Carlo Simulations. Monte Carlo Methods and Applications, 2002, 8, .	0.8	3
1074	Particle Concentration Profile in a Vertical Displacement Flow: A Study in an Industrial Hall. Journal of Occupational and Environmental Hygiene, 2003, 18, 183-192.	0.4	3
1075	THE BOND PROJECT: THE MARSEILLE AND ATHENS EXPERIMENTAL CAMPAIGN. AN OVERVIEW. Journal of Aerosol Science, 2004, 35, S1167-S1168.	3.8	3
1076	Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells. Biochemical and Biophysical Research Communications, 2005, 336, 232-238.	2.1	3
1077	Simulating Marine New Particle Formation and Growth Using the M7 Modal Aerosol Dynamics Modal. Advances in Meteorology, 2010, 2010, 1-9.	1.6	3
1078	MECCO: A method to estimate concentrations of condensing organics—Description and evaluation of a Markov chain Monte Carlo application. Journal of Aerosol Science, 2010, 41, 1080-1089.	3.8	3
1079	Heterogeneous nucleation in multi-component vapor on a partially wettable charged conducting particle. II. The generalized Laplace, Gibbs-Kelvin, and Young equations and application to nucleation. Journal of Chemical Physics, 2013, 139, 134108.	3.0	3
1080	The importance of accounting for enhanced emissions of monoterpenes from new Scots pine foliage in models - A Finnish case study. Atmospheric Environment: X, 2020, 8, 100097.	1.4	3

#	Article	IF	CITATIONS
1081	Data Assimilation of AOD and Estimation of Surface Particulate Matters over the Arctic. Applied Sciences (Switzerland), 2021, 11, 1959.	2.5	3
1082	Investigation of several proxies to estimate sulfuric acid concentration under volcanic plume conditions. Atmospheric Chemistry and Physics, 2021, 21, 4541-4560.	4.9	3
1083	The Impact of Boundary Layer Nucleation on Global CCN. , 2007, , 911-915.		3
1084	Phase transitions in Finnish sauna. , 1996, , 403-406.		3
1085	Transport of radioactive materials in convective clouds. , 1996, , 411-414.		3
1086	Analytical methods to calculate condensation rates of a multicomponent droplet. Journal of Aerosol Science, 1998, 29, 1035-1044.	3.8	3
1087	Heterogeneous Nucleation Theorems for Multicomponent Systems. , 2007, , 235-239.		3
1088	Variations of trace gases, meteorological parameters, and their connection with aerosol formation in boreal forests. Russian Journal of Earth Sciences, 2008, 10, 1-4.	0.7	3
1089	Highly oxidized organic aerosols in Beijing: Possible contribution of aqueous-phase chemistry. Atmospheric Environment, 2022, 273, 118971.	4.1	3
1090	Activation of sub-3 nm organic particles in the particle size magnifier using humid and dry conditions. Journal of Aerosol Science, 2022, 161, 105945.	3.8	3
1091	Input-adaptive linear mixed-effects model for estimating alveolar lung-deposited surface area (LDSA) using multipollutant datasets. Atmospheric Chemistry and Physics, 2022, 22, 1861-1882.	4.9	3
1092	Estimating the aerosol behaviour of a turbulent two-phase jet. Journal of Aerosol Science, 1987, 18, 643-645.	3.8	2
1093	Sulphuric acid aerosol formation by irradiation: particlesize distribution and model calculations. Journal of Aerosol Science, 1991, 22, S89-S92.	3.8	2
1094	The physics of aerosol formation in diffusive boundary layers. Journal of Aerosol Science, 1992, 23, 121-124.	3.8	2
1095	A theoretical description of the heterogeneous nucleation in binary systems. Journal of Aerosol Science, 1992, 23, 137-140.	3.8	2
1096	11.O.02 Evaporation of a drop. a temperature dependent mass transfer correlation. Journal of Aerosol Science, 1994, 25, 99-100.	3.8	2
1097	11.0.03 Monte Carlo simulations of heterogeneous nucleation on aerosol particles in the non-uniform media. Journal of Aerosol Science, 1994, 25, 101-102.	3.8	2
1098	Modelling of aerosol particle nucleation, growth and turbulent mixing in a 1-dimensional model of the arctic marine boundary layer. Journal of Aerosol Science, 1997, 28, S381-S382.	3.8	2

#	Article	IF	CITATIONS
1099	Experimental determination of ventilation coefficient for 1-hexanol drops in air. Atmospheric Research, 1998, 46, 361-369.	4.1	2
1100	Sticking probability and uptake coefficient—a quantitative comparison. AIP Conference Proceedings, 2000, , .	0.4	2
1101	Enhancement of CCN concentration due to aqueous phase sulfate production in polluted air. Journal of Aerosol Science, 2000, 31, 360-361.	3.8	2
1102	Development of particle size and composition distribution with aerosol dynamics model AEROFOR2. Journal of Aerosol Science, 2000, 31, 936-937.	3.8	2
1103	Comment on "Postnucleation droplet growth in supersaturated gas with arbitrary vapor concentration―[J. Chem. Phys. 120, 10455 (2004)]. Journal of Chemical Physics, 2004, 121, 8163.	3.0	2
1104	Emissions from thermal insulationsâ€"part 1: development and characteristics of the test apparatus. Building and Environment, 2005, 40, 797-802.	6.9	2
1105	Particle number to volume concentration ratios at two measurement sites in Finland. Journal of Geophysical Research, 2007, 112 , .	3.3	2
1106	On the possible links between tree growth and galactic cosmic rays. New Phytologist, 2009, 184, 511-513.	7.3	2
1107	Corrigendum to & Dipolar Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales& Dipolar Scales& Dipolar Chemistry and Physics, 2009. 9, 3443-3444.	4.9	2
1108	Density-functional study of the sign preference of the binding of 1-propanol to tungsten oxide seed particles. Computational and Theoretical Chemistry, 2011, 966, 322-327.	2.5	2
1109	Characterization of diethylene glycol-condensation particle counters for detection of sub-3 nm particles. , 2013, , .		2
1110	Connecting ground-based in-situ observations, ground-based remote sensing and satellite data within the Pan Eurasian Experiment (PEEX) program. Proceedings of SPIE, 2014, , .	0.8	2
1111	Bildung von Aufbauprodukten aus den Selbst―und Kreuzreaktionen von RO ₂ â€Radikalen in der AtmosphÃæ. Angewandte Chemie, 2018, 130, 3882-3886.	2.0	2
1112	Six-year observations of aerosol optical properties at a southern African grassland savannah site. Atmospheric Environment, 2020, 230, 117477.	4.1	2
1113	An Attempt to Utilize a Regional Dew Formation Model in Kenya. Water (Switzerland), 2021, 13, 1261.	2.7	2
1114	The impact of ammonium on the distillation of organic carbon in PM2.5. Science of the Total Environment, 2022, 803, 150012.	8.0	2
1115	An Algorithm for Automatic Classification of Two-dimensional Aerosol Data., 2007,, 957-961.		2
1116	The First Heterogeneous Nucleation Theorem Including Line Tension: Analysis of Experimental Data. , 2007, , 230-234.		2

#	Article	IF	Citations
1117	Aerosols and Climate Change. Lecture Notes in Earth Sciences, 2012, , 219-226.	0.5	2
1118	Comparison of formation conditions of secondary aerosol particles in boreal forests of Southern Finland and Siberia. Russian Journal of Earth Sciences, $2010,11,1-11$.	0.7	2
1119	Physical Chemistry of Aerosol Formation. , 2000, , 23-46.		2
1120	Retrieval of Multiple Atmospheric Environmental Parameters From Images With Deep Learning. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	2
1121	Size distribution above 0.6 \hat{l} 4m aerodynamic size of the aerosols produced by Spira respirator. Journal of Aerosol Science, 1986, 17, 552-555.	3.8	1
1122	Particle emission from gasoline powered vehicles: emission and deposition under different traffic density situations. Journal of Aerosol Science, 1986, 17, 629-631.	3.8	1
1123	Aerosols in the exhaust gas in traffic: Re-emission analyzed by PIXE. Nuclear Instruments & Methods in Physics Research B, 1987, 22, 319-321.	1.4	1
1124	Nucleation in acid-water systems: experimental and theoretical results. Journal of Aerosol Science, 1988, 19, 825-828.	3.8	1
1125	Wintertime concentrations of acid aerosols in Lapland. Journal of Aerosol Science, 1988, 19, 1243-1246.	3.8	1
1126	Capillary Impactor with Optical Detection in Collection of Carbonaceous Particles. Aerosol Science and Technology, 1989, 10, 386-389.	3.1	1
1127	Formation of acid aerosols in Finland: Field experiments. Journal of Aerosol Science, 1989, 20, 1233-1236.	3.8	1
1128	Formation and growth of water â€" nitric acid aerosols. Journal of Aerosol Science, 1991, 22, S93-S96.	3.8	1
1129	A generalized reformulation of the $K\tilde{A}\P$ hler theory: effects of soluble trace gases and slightly soluble substances. Journal of Aerosol Science, 1997, 28, S749-S750.	3.8	1
1130	Effects of aerosol dynamics on the formation of sulphuric acid aerosols. Journal of Aerosol Science, 1998, 29, S825-S826.	3.8	1
1131	Stable sulfate clusters as a source of new atmospheric particles. , 2000, , .		1
1132	The influence of particle solubility on heterogeneous nucleation in binary vapor mixtures. AIP Conference Proceedings, 2000, , .	0.4	1
1133	Model studies on the effect of nitric acid vapor on cirrus cloud formation. AIP Conference Proceedings, 2000, , .	0.4	1
1134	A model prediction of the yield of CCN from tidal-related nucleation events. Journal of Aerosol Science, 2000, 31, 654-655.	3.8	1

#	Article	IF	Citations
1135	Evaporation and condensation rates of a multicomponent droplet in a non-isothermal gas mixture. Journal of Aerosol Science, 2000, 31, 801-802.	3.8	1
1136	A tool for estimating the contribution of water-soluble organic compounds to the particle mass and condensational growth in the atmosphere. Atmospheric Environment, 2002, 36, 5897-5908.	4.1	1
1137	GROWTH AND CHARGING STATE OF ATMOSPHERIC NANOPARTICLES DURING THE NUCLEATION BURST EVENTS. Journal of Aerosol Science, 2004, 35, S1219-S1220.	3.8	1
1138	BINARY EVAPORATION OF SUCCINIC ACID AND WATER DROPLETS: COMPARISON OF SIMULATED AND EXPERIMENTAL RESULTS. Journal of Aerosol Science, 2004, 35, S1159-S1160.	3.8	1
1139	EVAPORARTION RATES AND VAPOUR PRESSURES OF SUCCINIC ACID SOLUTION DROPLETS. Journal of Aerosol Science, 2004, 35, S1041-S1042.	3.8	1
1140	THE ROLE OF ULTRAFINE PARTICLES AND OTHER TRAFFIC-RELATED POLLUTANTS ON ISCHEMIC HEART DISEASES: MAIN RESULTS OF THE HEAPSS PROJECT. Epidemiology, 2004, 15, S18-S19.	2.7	1
1141	Micrometeorological observations of a microburst in southern Finland. , 2007, , 187-203.		1
1142	Heterogeneous nucleation in multi-component vapor on a partially wettable charged conducting particle. I. Formulation of general equations: Electrical surface and line excess quantities. Journal of Chemical Physics, 2013, 139, 134107.	3.0	1
1143	Role of organics in particle nucleation: From the lab to global model. , 2013, , .		1
1144	Cluster measurements at CLOUD using a high resolution ion mobility spectrometer-mass spectrometer combination. , $2013, \dots$		1
1145	Evolution of nanoparticle composition in CLOUD in presence of sulphuric acid, ammonia and organics. , 2013, , .		1
1146	Two-dimensional volatility basis set modeling of pinanediol oxidation in the CLOUD experiment. , 2013, , .		1
1147	Does the onset of new particle formation occur in the planetary boundary layer?., 2013,,.		1
1148	Long-term size-segregated cloud condensation nuclei counter (CCNc) measurements in a boreal environment and the implications for aerosol-cloud interactions. , 2013, , .		1
1149	Estimation of atmospheric particle formation rates through an analytical formula: validation and application in HyytiĀĀānd Puijo, Finland. Atmospheric Chemistry and Physics, 2017, 17, 13361-13371.	4.9	1
1150	A modelling study of OH, NO ₃ and H ₂ SO ₄ in 2007–2018 at SMEAR II, Finland: analysis of long-term trends. Environmental Science Atmospheres, 2021, 1, 449-472.	2.4	1
1151	On Water Condensation Particle Counters and their Applicability to Field Measurements. , 2007, , 707-710.		1
1152	NEW PARTICLE FORMATION IN THE CONTINENTAL BOUNDARY LAYER: INFLUENCE OF PHYSICAL AND METEOROLOGICAL PARAMETER. Journal of Aerosol Science, 2001, 32, 601-602.	3.8	1

#	Article	IF	Citations
1153	The Effect of Total Pressure on Nucleation in a Laminar Flow Diffusion Chamber: n-Pentanol + Helium. , 2007, , 293-296.		1
1154	Ions and Charged Aerosol Particles in a Native Australian Eucalypt Forest., 2007,, 902-905.		1
1155	New Particle Formation in Clean Savannah Environment. , 2007, , 694-697.		1
1156	Using Charging State in Estimating the Relative Importance of Neutral and Ion-induced Nucleation. , 2007, , 350-353.		1
1157	A Kinetically Correct and an Approximate Model of Heterogeneous Nucleation. , 2007, , 322-326.		1
1158	Characterisation of inhalable atmospheric aerosols. , 2008, , .		1
1159	12. Chernobyl: Observations in Finland and Sweden. , 2011, , 339-366.		1
1160	On the detection efficiency of ultrafine condensation particle counter (ucpc, tsi model 3025) below 3 nm., 1996,, 643-646.		1
1161	Sources of PM10 particles in urban air; effects of co-combustion of different fuels and soil dust episodes., 1996,, 635-638.		1
1162	Physical properties and sources of atmospheric aerosol in the finnish arctic., 1996,, 593-596.		1
1163	Urban airborne pollutant analysis by a neural network. , 1996, , 639-642.		1
1164	Experimental study of heteromolecular nucleation in sulphuric acid-water vapour binary system., 1988,, 379-382.		1
1165	Correlation between the Concentrations of Atmospheric Ions and Radon as Judged from Measurements at the Fonovaya Observatory. Atmospheric and Oceanic Optics, 2022, 35, 36-42.	1.3	1
1166	Institute for Atmospheric and Earth System Research (INAR): Showcases for making science diplomacy. Polar Record, 2022, 58, .	0.8	1
1167	Measurements and interpretation of indoor aerosol radioactivity by a microcomputer system. Journal of Aerosol Science, 1986, 17, 268-270.	3.8	O
1168	Hydration of acid vapours in stratospheric conditions. Journal of Aerosol Science, 1991, 22, S133-S136.	3.8	0
1169	Field measurements in urban background â€" the effect of photochemistry. Journal of Aerosol Science, 1991, 22, S677-S680.	3.8	0
1170	Measured particle size distributions during winter time in Eastern Lappland. Journal of Aerosol Science, 1992, 23, 995-998.	3.8	0

#	Article	IF	Citations
1171	The homogeneous equilibrium approximation in heavy gas dispersion models. Journal of Aerosol Science, 1995, 26, S641-S642.	3.8	0
1172	Simultaneous condensation of five gaseous substances. Journal of Aerosol Science, 1996, 27, S273-S274.	3.8	0
1173	Analysis of long-term air quality trends and variations in northern europe. , 1996, , 695-698.		0
1174	Homogeneous nucleation rates of dibutyl phtalate in nitrogen: Analysis of laminar flow reactor data. Journal of Aerosol Science, 1997, 28, S171-S172.	3.8	0
1175	The effect of ammonia and acids on cloud droplet formation. Journal of Aerosol Science, 1997, 28, S419-S420.	3.8	0
1176	Estimation of supersaturation in a stratocumulus cloud from combined airborne and ground measurements. Journal of Aerosol Science, 1998, 29, S715-S716.	3.8	0
1177	Nucleation, growth and vertical layering of the sub micrometer aerosol in the cloud free boundary layer over the central arctic ocean. Journal of Aerosol Science, 1998, 29, S803-S804.	3.8	0
1178	Supercooled and frozen cirrus cloud properties affected by gaseous nitric acid. Journal of Aerosol Science, 1998, 29, S993-S994.	3.8	0
1179	The potential for atmospheric waves to enhance the aerosol nucleation rate. Journal of Aerosol Science, 1998, 29, S1059-S1060.	3.8	0
1180	Model studies on atmospheric aerosol charge distribution. Journal of Aerosol Science, 1999, 30, S675-S676.	3.8	0
1181	A novel set-up to measure vertical aerosol particle fluxes in the atmospheric surface layer. Journal of Aerosol Science, 1999, 30, S841-S842.	3.8	0
1182	Ternary nucleation of H[sub 2]SO[sub 4], NH[sub 3] and H[sub 2]O. AIP Conference Proceedings, 2000, ,	0.4	0
1183	Analysis of the formation and growth of atmospheric aerosols using DMPS data. AIP Conference Proceedings, 2000, , .	0.4	0
1184	Nucleation rates and empirical particle production in bursts. Journal of Aerosol Science, 2000, 31, 258-259.	3.8	0
1185	Aerosol and gas deposition on interior surfaces of equipment. Journal of Aerosol Science, 2000, 31, 492-493.	3.8	0
1186	Nucleation burst in coagulating aerosol. Journal of Aerosol Science, 2000, 31, 568-569.	3.8	0
1187	Ultrafine particle size distributions at hyytiÃlÃtboreal forest site and at a coastal site in Mace Head. Journal of Aerosol Science, 2000, 31, 602-603.	3.8	0
1188	Estimation of formation and growth rates of nucleation mode particles during biofor and parforce field campaigns. Journal of Aerosol Science, 2000, 31, 606-607.	3.8	0

#	Article	IF	CITATIONS
1189	The homogeneous heteromolecular nucleation of sulphuric acid, water and ammonia in the coastal environment. Journal of Aerosol Science, 2000, 31, 652-653.	3.8	0
1190	NUCLEATION CONTROLLED FORMATION AND GROWTH OF AEROSOL PARTICLES. Journal of Aerosol Science, 2001, 32, 97-98.	3.8	0
1191	NEW SELFPRESERVING REGIMES OF COAGULATION-CONDENSATION. Journal of Aerosol Science, 2001, 32, 981-982.	3.8	0
1192	Model studies on the effect of nitric acid vapour on cirrus cloud activation. Atmospheric Research, 2003, 65, 235-250.	4.1	0
1193	EFFECT OF VARIABILITY IN TEMPERATURE AND VAPOUR CONCENTRATION ON NEW PARTICLE FORMATION. Journal of Aerosol Science, 2004, 35, S939-S940.	3.8	O
1194	ATMOSPHERIC PARTICLE FORMATION EVENTS AT VÃ, RRI× MEASUREMENT STATION 1998-2002. Journal of Aerosol Science, 2004, 35, S1045-S1046.	3.8	0
1195	PARTICLE NUMBER SIZE DISTRIBUTION MEASUREMENTS AT THE FINNISH ANTARCTIC RESEARCH STATION, ABOA. Journal of Aerosol Science, 2004, 35, S731-S732.	3.8	0
1196	HOW IMPORTANT NUCLEATION IS FOR REGIONAL/GLOBAL MODELLING?. Journal of Aerosol Science, 2004, 35, S829-S830.	3.8	0
1197	A PARAMETERIZATION FOR ATMOSPHERIC AEROSOL FORMATION. Journal of Aerosol Science, 2004, 35, S1221-S1222.	3.8	0
1198	PHOTO STATIONARY CALCULATIONS OF SULPHURIC ACID AND ITS CONTRIBUTION TO NUCLEATION MODE PARTICLE GROWTH. Journal of Aerosol Science, 2004, 35, S1231-S1232.	3.8	0
1199	NON-STEADY-STATE BINARY WATER-SULPHURIC ACID NUCLEATION MODEL. Journal of Aerosol Science, 2004, 35, S1199-S1200.	3.8	0
1200	PARAMETERIZATIONS OF WATER-SULFURIC ACID-AMMONIA DROPLETS IN ATMOSPHERIC CONDITIONS. Journal of Aerosol Science, 2004, 35, S1255-S1256.	3.8	0
1201	MODELLING AND CHARACTERISING INDOOR AEROSOLS. Journal of Aerosol Science, 2004, 35, S891-S892.	3.8	0
1202	AIR POLLUTION AND TOTAL MORTALITY AMONG AMI SURVIVORS IN FIVE EUROPEAN CITIES: THE HEAPSS STUDY. Epidemiology, 2004, 15, S55.	2.7	0
1203	EFFECT OF AGE AND CASE FATALITY ON THE ASSOCIATION BETWEEN AIR POLLUTION AND HOSPITALISATIONS FOR FIRST MYOCARDIAL INFARCTION. THE HEAPSS STUDY. Epidemiology, 2004, 15, S56-S57.	2.7	O
1204	ESTIMATING AEROSOL PARTICLE NUMBER CONCENTRATIONS IN THE FIVE HEAPSS CITIES ON THE BASIS OF MEASURED AIR POLLUTION AND METEOROLOGICAL VARIABLES. Epidemiology, 2004, 15, S39.	2.7	0
1205	Improving Particle Detection Effi ciency of a Condensation Particle Counter by Means of Pulse Height Analysis., 2007,, 378-381.		0
1206	How to Utilise the Knowledge of Causal Responses?. , 2013, , 397-469.		0

#	Article	IF	CITATIONS
1207	Fluxes of Carbon, Water and Nutrients. , 2013, , 225-328.		О
1208	Analysis of particle size distribution changes between three measurement sites in Northern Scandinavia. , $2013, , .$		0
1209	Contribution of oxidized organic compounds to nanoparticle growth., 2013,,.		0
1210	Atmospheric electricity and aerosol-cloud interactions in earth's atmosphere. , 2013, , .		O
1211	On atmospheric neutral and ion clusters observed in Hyytial al spring 2011., 2013,,.		0
1212	Determination of the size distribution of recombination products from atmospheric measurements. , 2013, , .		0
1213	Measuring composition and growth of ion clusters of sulfuric acid, ammonia, amines and oxidized organics as first steps of nucleation in the CLOUD experiment. , 2013, , .		0
1214	New aerosol particle formation in Amazonia., 2013,,.		0
1215	Climatic implications of the Brazilian biofuel transition. , 2013, , .		0
1216	Aerosols may increase upper tropospheric humidity. , 2013, , .		0
1217	The versatile size analyzing nuclei counter-vSANC. , 2013, , .		О
1218	Modelling new particle formation from Jul lich plant atmosphere chamber and CERN CLOUD chamber measurements. , 2013, , .		0
1219	Charged and neutral binary nucleation of sulfuric acid in free troposphere conditions., 2013,,.		O
1220	Probing aerosol formation by comprehensive measurements of gas phase oxidation products. , 2013, , .		0
1221	The particle size magnifier closing the gap between measurement of molecules, molecular clusters and aerosol particles., 2013,,.		O
1222	Ion generation and CPC detection efficiency studies in sub 3-nm size range. , 2013, , .		0
1223	Laboratory characterization of a size-resolved CPC battery to infer the composition of freshly formed atmospheric nuclei. , $2013, \ldots$		0
1224	Particle nucleation events at the high Alpine station Jungfraujoch., 2013,,.		0

#	Article	IF	Citations
1225	Measurements of cluster ions using a nano radial DMA and a particle size magnifier in CLOUD., 2013,,.		O
1226	How do amines affect the growth of recently formed aerosol particles. , 2013, , .		0
1227	Evolution of \hat{l}_{\pm} -pinene oxidation products in the presence of varying oxidizers: Negative APi-TOF point of view. , 2013, , .		O
1228	Evolution of alpha-pinene oxidation products in the presence of varying oxidizers: CI-APi-TOF point of view. , 2013, , .		0
1229	Modeling new particle formation with detailed chemistry and aerosol dynamics in a boreal forest environment., 2013,,.		0
1230	Long-term aerosol and trace gas measurements in Eastern Lapland, Finland: The impact of Kola air pollution to new particle formation. , $2013, , .$		0
1231	Effect of salt formation on condensation of organic compounds on atmospheric nanoparticles. , 2013, , .		O
1232	Estimating the concentration of nucleation mode aerosol particles over South Africa using satellite remote sensing measurements. , 2013, , .		0
1233	Particle size distribution measurements at Hada Al Sham, western Saudi Arabia. , 2013, , .		O
1234	Observations of biomass burning smoke from Russian wild fire episodes in Finland 2010. , 2013, , .		0
1235	The impact of temperature on natural aerosol budget over boreal forests., 2013,,.		0
1236	Sulphur dioxide and sulphuric acid concentrations in the vicinity of Kilpilahti industrial area. , 2013, , .		0
1237	Prediction of photosynthesis in Scots pine ecosystems across Europe by a needle-level theory. Atmospheric Chemistry and Physics, 2018, 18, 13321-13328.	4.9	O
1238	Delineation of dew formation zones in Iran using long-term model simulations and cluster analysis. Hydrology and Earth System Sciences, 2021, 25, 4719-4740.	4.9	0
1239	ON THE EFFECT OF GASEOUS AMMONIA ON CLOUD DROP FORMATION. Journal of Aerosol Science, 2001, 32, 761-762.	3.8	O
1240	PROBLEMS IN THE CLASSICAL THEORY OF HETEROGENEOUS NUCLEATION FOR DIFFERENT BINARY VAPOUR MIXTURES. Journal of Aerosol Science, 2001, 32, 15-16.	3.8	0
1241	DSC STUDY OF PHASE TRANSITIONS IN FINELY DIVIDED AQUEOUS SYSTEMS: IMPLICATIONS FOR POLAR STRATOSPHERIC CLOUDS. Journal of Aerosol Science, 2001, 32, 13-14.	3.8	0
1242	RE-EVALUATION OF PARAMETRISATIONS OF SULPHURIC ACID-WATER NUCLEATION RATES. Journal of Aerosol Science, 2001, 32, 1031-1032.	3.8	0

#	Article	IF	CITATIONS
1243	INDOOR-OUTDOOR AEROSOLS: PARTICLE SIZE CHARACTERISATION IN A SUBURBAN AREA. Journal of Aerosol Science, 2001, 32, 161-162.	3.8	O
1244	Initial Results from Long-Range Transport of Particulate Matter in Europe. , 2002, , 298-307.		0
1245	THE HEAPSS PROJECT (HEALTH EFFECTS OF AIR POLLUTION ON SUSCEPTIBLE SUBPOPULATIONS). Epidemiology, 2003, 14, S91-S92.	2.7	0
1246	DAILY VARIATION IN SIZE-FRACTIONATED PARTICULATE AIR POLLUTION AND CARDIOVASCULAR AND RESPIRATORY MORTALITY. Epidemiology, 2005, 16, S76.	2.7	0
1247	New Particle Formation and Sulphuric Acid Concentrations During 26 Months in HyytiÃѬ҈ д 2007, , 226-229.		O
1248	Binary Homogenous Nucleation of Sulfuric Acid and Water Mixture: Experimental Device and Setup. , 2007, , 314-316.		0
1249	Monte Carlo Simulations on Heterogeneous Nucleation I: The Point Where the Classical Theory Fails. , 2007, , 317-321.		O
1250	Aerosol Dynamics Box Model Studies on the Connection of Sulphuric Acid and New Particle Formation., 2007,, 1013-1017.		0
1251	Two-component Heterogeneous Nucleation in the Martian Atmosphere. , 2007, , 310-313.		0
1252	Size Distributions, Charging State, and Hygroscopicity of Aerosol Particles in Antarctica. , 2007, , 664-668.		0
1253	Observations of Particle Nucleation and Growth Events in the Lower Free Troposphere. , 2007, , 674-678.		O
1254	Reversible Work of the Heterogeneous Formation of an Embryo of a New Phase on a Spherical Charged Conductor Within a Uniform Multicomponent Macroscopic Mother Phase., 2007,, 327-331.		0
1255	Experimental Observation of Heterogeneous Nucleation Probabilities for Ion-induced Nucleation. , 2007, , 363-367.		0
1256	Measured Neutral and Charged Aerosol Particle Number Size Distributions in Russia., 2007,, 659-663.		0
1257	Measurement of the Charging State with an Ion-DMPS to Estimate the Contribution of Ion-induced Nucleation., 2007,, 397-401.		O
1258	Air Ion Measurements at Mace Head on the West Coast of Ireland. , 2007, , 373-377.		0
1259	Investigating the Chemical Composition of Growing Nucleation Mode Particles with CPC Battery. , 2007, , 984-988.		O
1260	Effect of Nucleation and Secondary Organic Aerosol Formation on Cloud Droplet Number Concentrations., 2007,, 580-584.		0

#	Article	IF	CITATIONS
1261	Simulations of lodine Dioxide Nucleation. , 2007, , 974-978.		0
1262	Atmospheric Nucleation., 2007,, 878-887.		0
1263	Nanoparticle Detection Using Nucleation Regime of the CPC., 2007,, 209-213.		0
1264	Investigating the Role of Ammonia in Atmospheric Nucleation. , 2007, , 52-56.		0
1265	Atmospheric Aerosol and Ion Characteristics during EUCAP (Eucalypt Forest Aerosols and) Tj ETQq1 1 0.784314	rgBT /Over	lock 10 Tf 5
1266	Linear Model of Nucleation Burst in the Atmosphere. , 2007, , 1023-1027.		0
1267	Aerosol Particle Formation in Different Types of Air Masses in HyytiĀĀÞSouthern Finland., 2007, , 591-595.		O
1268	Condensational Growth of n-Propanol and n-Nonane Droplets: Experiments and Model Calculations. , 2007, , 1028-1032.		0
1269	Atmospheric Charged and Total Particle Formation Rates below 3 nm., 2007, , 953-956.		0
1270	Generation of Nanoparticles from Vapours in Case of Exhaust Filtration. , 2010, , 77-89.		0
1271	Micro-environmental Modelling. Environmental Pollution, 2010, , 251-277.	0.4	O
1272	Comparison of Models for Aerosol Vaporisation in the Dispersion of Heavy Clouds. , 1994, , 431-438.		0
1273	Cluster ion mobility spectra of alcohols. , 1996, , 54-57.		O
1274	The growth of nanometer-size particles in the lower troposphere. , 1996, , 589-592.		0
1275	Aerosol sampling in moving vehicle., 1996,, 678-681.		O
1276	The Pre-Existing Particle Distribution and The Formation of Cloud Droplets. , 1996, , 944-947.		0
1277	Thermodynamics and phenomenological nucleation theories. , 1996, , 89-92.		O
1278	Trace gas and aerosol concentrations and their vertical profiles in väiö measurement station. , 1996, , 647-650.		0

#	Article	IF	CITATIONS
1279	Modelling the formation of H2SO4-H2O particles. , 1996, , 718-721.		0
1280	Experimental determination of ventilation coefficient for 1-hexanol drops in air., 1996,, 941-943.		0
1281	Detection of man-made gamma-emitting radionuclides in the presence of radon progeny aerosols. , 1996, , 674-677.		0
1282	Size estimation of radioactive particles released in the chernobyl accident., 1996,, 670-673.		0
1283	Pyrogenic Silica and Alumina., 0,, 6325-6339.		0
1284	Binary nucleation of water-sulphuric acid systems: Comparison of theoretical and experimental results., 1988,, 383-384.		0
1285	Electrical Mobility as an Indicator for Flexibly Deducing the Kinetics of Nanoparticle Evaporation. Journal of Physical Chemistry C, 0, , .	3.1	0