
Wolfram G Tetzlaff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8838244/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporal Progression of Acute Spinal Cord Injury Mechanisms in a Rat Model: Contusion, Dislocation, and Distraction. Journal of Neurotrauma, 2021, 38, 2103-2121.	3.4	3
2	Diversity of Reactive Astrogliosis in CNS Pathology: Heterogeneity or Plasticity?. Frontiers in Cellular Neuroscience, 2021, 15, 703810.	3.7	34
3	Ketogenesis controls mitochondrial gene expression and rescues mitochondrial bioenergetics after cervical spinal cord injury in rats. Scientific Reports, 2021, 11, 16359.	3.3	17
4	Ketogenic regimens for acute neurotraumatic events. Current Opinion in Biotechnology, 2021, 70, 68-74.	6.6	5
5	FAIR SCI Ahead: The Evolution of the Open Data Commons for Pre-Clinical Spinal Cord Injury Research. Journal of Neurotrauma, 2020, 37, 831-838.	3.4	27
6	The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury. Glia, 2020, 68, 227-245.	4.9	63
7	Transplantation of Skin Precursor-Derived Schwann Cells Yields Better Locomotor Outcomes and Reduces Bladder Pathology in Rats with Chronic Spinal Cord Injury. Stem Cell Reports, 2020, 15, 140-155.	4.8	21
8	A Cervical Spinal Cord Hemi-Contusion Injury Model Based on Displacement Control in Non-Human Primates <i>(Macaca fascicularis)</i> . Journal of Neurotrauma, 2020, 37, 1669-1686.	3.4	10
9	HDAC inhibition leads to age-dependent opposite regenerative effect upon PTEN deletion in rubrospinal axons after SCI. Neurobiology of Aging, 2020, 90, 99-109.	3.1	6
10	Effect of Velocity and Duration of Residual Compression in a Rat Dislocation Spinal Cord Injury Model. Journal of Neurotrauma, 2020, 37, 1140-1148.	3.4	4
11	Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system. Acta Neuropathologica, 2020, 139, 893-909.	7.7	80
12	Neuroprotective effects of a ketogenic diet in combination with exogenous ketone salts following acute spinal cord injury. Neural Regeneration Research, 2020, 15, 1912.	3.0	16
13	KIF2A characterization after spinal cord injury. Cellular and Molecular Life Sciences, 2019, 76, 4355-4368.	5.4	7
14	Development of a traumatic cervical dislocation spinal cord injury model with residual compression in the rat. Journal of Neuroscience Methods, 2019, 322, 58-70.	2.5	6
15	Skilled reaching deterioration contralateral to cervical hemicontusion in rats is reversed by pregabalin treatment conditional upon its early administration. Pain Reports, 2019, 4, e749.	2.7	2
16	Diffusion tensor imaging shows mechanism-specific differences in injury pattern and progression in rat models of acute spinal cord injury. NeuroImage, 2019, 186, 43-55.	4.2	9
17	Basic biomechanics of spinal cord injury — How injuries happen in people and how animal models have informed our understanding. Clinical Biomechanics, 2019, 64, 58-68.	1.2	34
18	Following unilateral spinal contusion pregabalin has an atâ€ŧime effect on pruritus and a protective effect on mechanosensory nociception, but does not improve ipsilateral motor outcomes with early administration in rats. FASEB Journal, 2019, 33, 450.4.	0.5	0

#	Article	IF	CITATIONS
19	Reply to Comment on â€~Adult skin-derived precursor Schwann cell grafts form growths in the injured spinal cord of Fischer rats'. Biomedical Materials (Bristol), 2018, 13, 048002.	3.3	0
20	A brainstem bypass for spinal cord injury. Nature Neuroscience, 2018, 21, 457-458.	14.8	8
21	Adult skin-derived precursor Schwann cell grafts form growths in the injured spinal cord of Fischer rats. Biomedical Materials (Bristol), 2018, 13, 034101.	3.3	10
22	Spinal cord injuryâ€induced cardiomyocyte atrophy and impaired cardiac function are severity dependent. Experimental Physiology, 2018, 103, 179-189.	2.0	15
23	Integrated systems analysis reveals conserved gene networks underlying response to spinal cord injury. ELife, 2018, 7, .	6.0	29
24	Factors Within the Endoneurial Microenvironment Act to Suppress Tumorigenesis of MPNST. Frontiers in Cellular Neuroscience, 2018, 12, 356.	3.7	3
25	High-Speed Fluoroscopy to Measure Dynamic Spinal Cord Deformation in an <i>In Vivo</i> Rat Model. Journal of Neurotrauma, 2018, 35, 2572-2580.	3.4	6
26	Locomotor recovery following contusive spinal cord injury does not require oligodendrocyte remyelination. Nature Communications, 2018, 9, 3066.	12.8	78
27	Minocycline Reduces the Severity of Autonomic Dysreflexia after Experimental Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 2861-2871.	3.4	26
28	Cell transplantation therapy for spinal cord injury. Nature Neuroscience, 2017, 20, 637-647.	14.8	612
29	Validating myelin water imaging with transmission electron microscopy in a rat spinal cord injury model. NeuroImage, 2017, 153, 122-130.	4.2	32
30	Neuroprotection and secondary damage following spinal cord injury: concepts and methods. Neuroscience Letters, 2017, 652, 3-10.	2.1	78
31	Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury. Journal of Neuroscience, 2017, 37, 8635-8654.	3.6	104
32	Repeatability of a Dislocation Spinal Cord Injury Model in a Rat—A High-Speed Biomechanical Analysis. Journal of Biomechanical Engineering, 2017, 139, .	1.3	4
33	Myelin regulatory factor drives remyelination in multiple sclerosis. Acta Neuropathologica, 2017, 134, 403-422.	7.7	87
34	High Thoracic Contusion Model for the Investigation of Cardiovascular Function after Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 671-684.	3.4	26
35	614. Microfluidic Manufacture of RNA-Lipid Nanoparticles Leads to Highly Efficient Delivery of Potent Nucleic Acid Therapeutics for Controlling Gene Expression. Molecular Therapy, 2016, 24, S243-S244.	8.2	0
36	Re-Establishment of Cortical Motor Output Maps and Spontaneous Functional Recovery via Spared Dorsolaterally Projecting Corticospinal Neurons after Dorsal Column Spinal Cord Injury in Adult Mice. Journal of Neuroscience, 2016, 36, 4080-4092.	3.6	84

#	Article	IF	CITATIONS
37	Evidence for an Age-Dependent Decline in Axon Regeneration in the Adult Mammalian Central Nervous System. Cell Reports, 2016, 15, 238-246.	6.4	117
38	Relating Histopathology and Mechanical Strain in Experimental Contusion Spinal Cord Injury in a Rat Model. Journal of Neurotrauma, 2016, 33, 1685-1695.	3.4	15
39	Distinct roles for metalloproteinases during traumatic brain injury. Neurochemistry International, 2016, 96, 46-55.	3.8	35
40	Differential Histopathological and Behavioral Outcomes Eight Weeks after Rat Spinal Cord Injury by Contusion, Dislocation, and Distraction Mechanisms. Journal of Neurotrauma, 2016, 33, 1667-1684.	3.4	48
41	Quantifying the internal deformation of the rodent spinal cord during acute spinal cord injury – the validation of a method. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 386-395.	1.6	9
42	Schwann Cells Generated from Neonatal Skin-Derived Precursors or Neonatal Peripheral Nerve Improve Functional Recovery after Acute Transplantation into the Partially Injured Cervical Spinal Cord of the Rat. Journal of Neuroscience, 2015, 35, 6714-6730.	3.6	70
43	Large animal and primate models of spinal cord injury for the testing of novel therapies. Experimental Neurology, 2015, 269, 154-168.	4.1	75
44	Regenerationâ€associated genes decline in chronically injured rat sciatic motoneurons. European Journal of Neuroscience, 2015, 42, 2783-2791.	2.6	31
45	Challenges for defining minimal clinically important difference (MCID) after spinal cord injury. Spinal Cord, 2015, 53, 84-91.	1.9	76
46	Reduced expression of regeneration associated genes in chronically axotomized facial motoneurons. Experimental Neurology, 2015, 264, 26-32.	4.1	23
47	Ministrokes in Channelrhodopsin-2 Transgenic Mice Reveal Widespread Deficits in Motor Output Despite Maintenance of Cortical Neuronal Excitability. Journal of Neuroscience, 2014, 34, 1094-1104.	3.6	26
48	In vivo longitudinal Myelin Water Imaging in rat spinal cord following dorsal column transection injury. Magnetic Resonance Imaging, 2014, 32, 250-258.	1.8	25
49	Remyelination after spinal cord injury: Is it a target for repair?. Progress in Neurobiology, 2014, 117, 54-72.	5.7	155
50	Impact Depth and the Interaction with Impact Speed Affect the Severity of Contusion Spinal Cord Injury in Rats. Journal of Neurotrauma, 2014, 31, 1985-1997.	3.4	31
51	Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. Glia, 2013, 61, 1471-1487.	4.9	71
52	Characterization of a Cervical Spinal Cord Hemicontusion Injury in Mice Using the Infinite Horizon Impactor. Journal of Neurotrauma, 2013, 30, 869-883.	3.4	39
53	A Novel Porcine Model of Traumatic Thoracic Spinal Cord Injury. Journal of Neurotrauma, 2013, 30, 142-159.	3.4	123
54	Demonstrating efficacy in preclinical studies of cellular therapies for spinal cord injury — How much is enough?. Experimental Neurology, 2013, 248, 30-44.	4.1	52

#	Article	IF	CITATIONS
55	Dorsolateral Funiculus Lesioning of the Mouse Cervical Spinal Cord at C4 but Not at C6 Results in Sustained Forelimb Motor Deficits. Journal of Neurotrauma, 2013, 30, 1070-1083.	3.4	35
56	Histological Effects of Residual Compression Sustained for 60 Minutes at Different Depths in a Novel Rat Spinal Cord Injury Contusion Model. Journal of Neurotrauma, 2013, 30, 1374-1384.	3.4	17
57	Ketogenic Diet Improves Forelimb Motor Function after Spinal Cord Injury in Rodents. PLoS ONE, 2013, 8, e78765.	2.5	91
58	Axonal Thinning and Extensive Remyelination without Chronic Demyelination in Spinal Injured Rats. Journal of Neuroscience, 2012, 32, 5120-5125.	3.6	67
59	Limiting spinal cord injury by pharmacological intervention. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 463-484.	1.8	20
60	Maximum Principal Strain Correlates with Spinal Cord Tissue Damage in Contusion and Dislocation Injuries in the Rat Cervical Spine. Journal of Neurotrauma, 2012, 29, 1574-1585.	3.4	68
61	Expectations of Benefit and Tolerance to Risk of Individuals with Spinal Cord Injury Regarding Potential Participation in Clinical Trials. Journal of Neurotrauma, 2012, 29, 2727-2737.	3.4	24
62	Opinions on the Preclinical Evaluation of Novel Therapies for Spinal Cord Injury: A Comparison between Researchers and Spinal Cord-Injured Individuals. Journal of Neurotrauma, 2012, 29, 2367-2374.	3.4	17
63	A Contusive Model of Unilateral Cervical Spinal Cord Injury Using the Infinite Horizon Impactor. Journal of Visualized Experiments, 2012, , .	0.3	31
64	Courage, luck and patience: in celebration of the 80th birthday of Georg W. Kreutzberg. Acta Neuropathologica, 2012, 124, 593-598.	7.7	1
65	A Grading System To Evaluate Objectively the Strength of Pre-Clinical Data of Acute Neuroprotective Therapies for Clinical Translation in Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1525-1543.	3.4	83
66	Intermittent Fasting in Mice Does Not Improve Hindlimb Motor Performance after Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1051-1061.	3.4	13
67	Intermittent Fasting Improves Functional Recovery after Rat Thoracic Contusion Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 479-492.	3.4	73
68	A Systematic Review of Directly Applied Biologic Therapies for Acute Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1589-1610.	3.4	104
69	Spinal cord injury and plasticity: Opportunities and challenges. Brain Research Bulletin, 2011, 84, 337-342.	3.0	60
70	A Systematic Review of Cellular Transplantation Therapies for Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1611-1682.	3.4	490
71	A Systematic Review of Non-Invasive Pharmacologic Neuroprotective Treatments for Acute Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1545-1588.	3.4	218
72	Adult Spinal Cord Radial Glia Display a Unique Progenitor Phenotype. PLoS ONE, 2011, 6, e24538.	2.5	40

#	Article	IF	CITATIONS
73	Plateletâ€derived growth factorâ€responsive neural precursors give rise to myelinating oligodendrocytes after transplantation into the spinal cords of contused rats and dysmyelinated mice. Glia, 2011, 59, 1891-1910.	4.9	37
74	Effects of Advanced Age on the Morphometry and Degenerative State of the Cervical Spine in a Rat Model. Anatomical Record, 2011, 294, 1326-1336.	1.4	12
75	Biomarkers for Severity of Spinal Cord Injury in the Cerebrospinal Fluid of Rats. PLoS ONE, 2011, 6, e19247.	2.5	66
76	Magnesium in a Polyethylene Glycol Formulation Provides Neuroprotection After Unilateral Cervical Spinal Cord Injury. Spine, 2010, 35, 2041-2048.	2.0	28
77	Combination of olfactory ensheathing cells with local versus systemic cAMP treatment after a cervical rubrospinal tract injury. Journal of Neuroscience Research, 2010, 88, 2833-2846.	2.9	35
78	Prophylactic dietary restriction may promote functional recovery and increase lifespan after spinal cord injury. Annals of the New York Academy of Sciences, 2010, 1198, E1-11.	3.8	21
79	Training regimen involving cyclic induction of pupil constriction during far accommodation improves visual acuity in myopic children. Clinical Ophthalmology, 2010, 4, 251.	1.8	3
80	Translational Research in Spinal Cord Injury: A Survey of Opinion from the SCI Community. Journal of Neurotrauma, 2010, 27, 21-33.	3.4	113
81	892 INTERMITTENT CALORIC RESTRICTION MODIFIES NEUROBIOLOGICAL RESPONSE TO BILATERAL CAVERNOUS NERVE CRUSH INJURY IN THE RAT AND FACILITATES RECOVERY OF ERECTILE FUNCTION. Journal of Urology, 2010, 183, .	0.4	0
82	Biomechanical Aspects of Spinal Cord Injury. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2010, , 159-180.	1.0	5
83	Training-induced plasticity in rats with cervical spinal cord injury: Effects and side effects. Behavioural Brain Research, 2010, 214, 323-331.	2.2	64
84	Lack of robust neurologic benefits with simvastatin or atorvastatin treatment after acute thoracic spinal cord contusion injury. Experimental Neurology, 2010, 221, 285-295.	4.1	25
85	Lack of neuroprotective effects of simvastatin and minocycline in a model of cervical spinal cord injury. Experimental Neurology, 2010, 225, 219-230.	4.1	53
86	Be careful what you train for. Nature Neuroscience, 2009, 12, 1077-1079.	14.8	10
87	Transplantation and repair: Combined cell implantation and chondroitinase delivery prevents deterioration of bladder function in rats with complete spinal cord injury. Spinal Cord, 2009, 47, 727-732.	1.9	52
88	Modeling spinal cord contusion, dislocation, and distraction: Characterization of vertebral clamps, injury severities, and node of Ranvier deformations. Journal of Neuroscience Methods, 2009, 181, 6-17.	2.5	75
89	Aggrecan components differentially modulate nerve growth factor–responsive and neurotrophinâ€3â€responsive dorsal root ganglion neurite growth. Journal of Neuroscience Research, 2008, 86, 581-592.	2.9	31
90	Highâ€resolution myelin water measurements in rat spinal cord. Magnetic Resonance in Medicine, 2008, 59, 796-802.	3.0	58

#	Article	lF	CITATIONS
91	Undesired effects of a combinatorial treatment for spinal cord injury – transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus. European Journal of Neuroscience, 2008, 28, 1795-1807.	2.6	58
92	SB203580, a p38 mitogen-activated protein kinase inhibitor, fails to improve functional outcome following a moderate spinal cord injury in rat. Neuroscience, 2008, 155, 128-137.	2.3	19
93	Delayed treatment of spinal cord injury with erythropoietin or darbepoetin—A lack of neuroprotective efficacy in a contusion model of cord injury. Experimental Neurology, 2008, 211, 34-40.	4.1	26
94	Dietary restriction started after spinal cord injury improves functional recovery. Experimental Neurology, 2008, 213, 28-35.	4.1	101
95	Secondary pathology following contusion, dislocation, and distraction spinal cord injuries. Experimental Neurology, 2008, 212, 490-506.	4.1	95
96	A Graded Forceps Crush Spinal Cord Injury Model in Mice. Journal of Neurotrauma, 2008, 25, 350-370.	3.4	104
97	Anterior Fracture-Dislocation Is More Severe than Lateral: A Biomechanical and Neuropathological Comparison in Rat Thoracolumbar Spine. Journal of Neurotrauma, 2008, 25, 371-383.	3.4	22
98	Characterizing White Matter Damage in Rat Spinal Cord with Quantitative MRI and Histology. Journal of Neurotrauma, 2008, 25, 653-676.	3.4	115
99	Bilirubin Possesses Powerful Immunomodulatory Activity and Suppresses Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2008, 181, 1887-1897.	0.8	187
100	The Distribution of Tissue Damage in the Spinal Cord Is Influenced by the Contusion Velocity. Spine, 2008, 33, E812-E819.	2.0	46
101	Contusion, dislocation, and distraction: primary hemorrhage and membrane permeability in distinct mechanisms of spinal cord injury. Journal of Neurosurgery: Spine, 2007, 6, 255-266.	1.7	127
102	Brain-Derived Neurotrophic Factor Gene Transfer With Adeno-Associated Viral and Lentiviral Vectors Prevents Rubrospinal Neuronal Atrophy and Stimulates Regeneration-Associated Gene Expression After Acute Cervical Spinal Cord Injury. Spine, 2007, 32, 1164-1173.	2.0	73
103	Skin-Derived Precursors Generate Myelinating Schwann Cells That Promote Remyelination and Functional Recovery after Contusion Spinal Cord Injury. Journal of Neuroscience, 2007, 27, 9545-9559.	3.6	279
104	SPARC from Olfactory Ensheathing Cells Stimulates Schwann Cells to Promote Neurite Outgrowth and Enhances Spinal Cord Repair. Journal of Neuroscience, 2007, 27, 7208-7221.	3.6	117
105	ROCK inhibition with Y27632 activates astrocytes and increases their expression of neurite growth-inhibitory chondroitin sulfate proteoglycans. Clia, 2007, 55, 369-384.	4.9	47
106	Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nature Neuroscience, 2007, 10, 1538-1543.	14.8	1,340
107	Biliverdin reductase, a major physiologic cytoprotectant, suppresses experimental autoimmune encephalomyelitis. Free Radical Biology and Medicine, 2006, 40, 960-967.	2.9	56
108	Strategies to Promote Neural Repair and Regeneration After Spinal Cord Injury. Spine, 2005, 30, S3-S13.	2.0	68

#	Article	IF	CITATIONS
109	Lamina Propria and Olfactory Bulb Ensheathing Cells Exhibit Differential Integration and Migration and Promote Differential Axon Sprouting in the Lesioned Spinal Cord. Journal of Neuroscience, 2005, 25, 10700-10711.	3.6	173
110	Minocycline as a Neuroprotective Agent. Neuroscientist, 2005, 11, 308-322.	3.5	245
111	Both positive and negative factors regulate gene expression following chronic facial nerve resection. Experimental Neurology, 2005, 195, 199-207.	4.1	13
112	Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury. Experimental Neurology, 2005, 196, 352-364.	4.1	127
113	Minocycline Treatment Reduces Delayed Oligodendrocyte Death, Attenuates Axonal Dieback, and Improves Functional Outcome after Spinal Cord Injury. Journal of Neuroscience, 2004, 24, 2182-2190.	3.6	445
114	The contribution of activated phagocytes and myelin degeneration to axonal retraction/dieback following spinal cord injury. European Journal of Neuroscience, 2004, 20, 1984-1994.	2.6	53
115	Peripherally-derived olfactory ensheathing cells do not promote primary afferent regeneration following dorsal root injury. Clia, 2004, 47, 189-206.	4.9	78
116	Pathophysiology and pharmacologic treatment of acute spinal cord injury*1. Spine Journal, 2004, 4, 451-464.	1.3	561
117	Axotomy abolishes NeuN expression in facial but not rubrospinal neurons. Experimental Neurology, 2004, 185, 182-190.	4.1	95
118	Axonal reinjury reveals the survival and re-expression of regeneration-associated genes in chronically axotomized adult mouse motoneurons. Experimental Neurology, 2004, 188, 331-340.	4.1	49
119	Rubrospinal neurons fail to respond to brain-derived neurotrophic factor applied to the spinal cord injury site 2 months after cervical axotomy. Experimental Neurology, 2004, 189, 45-57.	4.1	33
120	Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. Journal of Comparative Neurology, 2004, 473, 1-15.	1.6	271
121	Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates. Molecular and Cellular Neurosciences, 2003, 22, 405-416.	2.2	214
122	Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3246-3251.	7.1	228
123	Animal Models Used in Spinal Cord Regeneration Research. Spine, 2002, 27, 1504-1510.	2.0	177
124	Reaxotomy of Chronically Injured Rubrospinal Neurons Results in Only Modest Cell Loss. Experimental Neurology, 2002, 177, 332-337.	4.1	19
125	Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy. Journal of Neuroscience Research, 2002, 68, 1-6.	2.9	138
126	Molecular Targets for Therapeutic Intervention after Spinal Cord Injury. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2002, 2, 244-258.	3.4	45

#	Article	IF	CITATIONS
127	Spinal Cord Regeneration. Spine, 2001, 26, S13-S22.	2.0	97
128	Model for focal demyelination of the spinal dorsal columns of transgenic MBP-LacZ mice by phototargeted ablation of oligodendrocytes. Journal of Neuroscience Research, 2000, 62, 28-39.	2.9	8
129	Caspase-3 is activated following axotomy of neonatal facial motoneurons and caspase-3 gene deletion delays axotomy-induced cell death in rodents. European Journal of Neuroscience, 2000, 12, 3469-3480.	2.6	45
130	Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: Differential regulation of GAP-43, tubulins, and neurofilament-M. , 1999, 414, 495-510.		160
131	BDNF, but not NT-3, promotes long-term survival of axotomized adult rat corticospinal neurons in vivo. NeuroReport, 1999, 10, 2671-2675.	1.2	41
132	Engines, Accelerators, and Brakes on Functional Spinal Cord Repaira. Annals of the New York Academy of Sciences, 1998, 860, 412-424.	3.8	24
133	Immediate-early gene expression in the brain of the thiamine-deficient rat. Journal of Molecular Neuroscience, 1998, 10, 1-15.	2.3	18
134	Acetylcholinesterase Gene Expression in Axotomized Rat Facial Motoneurons Is Differentially Regulated by Neurotrophins: Correlation with trkB and trkC mRNA Levels and Isoforms. Journal of Neuroscience, 1998, 18, 9936-9947.	3.6	57
135	BDNF and NT-4/5 Prevent Atrophy of Rat Rubrospinal Neurons after Cervical Axotomy, Stimulate GAP-43 and Tî±1-Tubulin mRNA Expression, and Promote Axonal Regeneration. Journal of Neuroscience, 1997, 17, 9583-9595.	3.6	470
136	Accelerated recovery following polyamines and aminoguanidine treatment after facial nerve injury in rats. Brain Research, 1996, 724, 141-144.	2.2	44
137	BDNF and NT-3, but not NGF, Prevent Axotomy-induced Death of Rat Corticospinal NeuronsIn Vivo. European Journal of Neuroscience, 1996, 8, 1167-1175.	2.6	232
138	Increased Expression of BDNF and trkB mRNA in Rat Facial Motoneurons after Axotomy. European Journal of Neuroscience, 1996, 8, 1018-1029.	2.6	145
139	Proximal and distal impairments in rat forelimb use in reaching follow unilateral pyramidal tract lesions. Behavioural Brain Research, 1993, 56, 59-76.	2.2	246
140	Microglia and microglia-derived brain macrophages in culture: generation from axotomized rat facial nuclei, identification and characterization in vitro. Brain Research, 1989, 492, 1-14.	2.2	97
141	Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy. Neuroscience Letters, 1988, 85, 317-321.	2.1	319
142	Rapid down regulation of hippocampal adenosine receptors following brief anoxia. Brain Research, 1986, 380, 155-158.	2.2	89
143	Enzyme changes in the rat facial nucleus following a conditioning lesion. Experimental Neurology, 1984, 85, 547-564.	4.1	52
144	Tight junction contact events and temporary gap junctions in the sciatic nerve fibres of the chicken during Wallerian degeneration and subsequent regeneration. Journal of Neurocytology, 1982, 11, 839-858.	1.5	89