Antonio José Monforte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8837809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485, 635-641.	27.8	2,860
2	A chemical genetic roadmap to improved tomato flavor. Science, 2017, 355, 391-394.	12.6	561
3	The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of Experimental Botany, 2013, 65, 4625-4637.	4.8	188
4	Mapping With a Few Plants: Using Selective Mapping for Microsatellite Saturation of the Prunus Reference Map. Genetics, 2005, 171, 1305-1309.	2.9	180
5	Development of a set of near isogenic and backcross recombinant inbred lines containing most of the <i>Lycopersicon hirsutum</i> genome in a <i>L. esculentum</i> genetic background: A tool for gene mapping and gene discovery. Genome, 2000, 43, 803-813.	2.0	178
6	Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theoretical and Applied Genetics, 2005, 110, 802-811.	3.6	170
7	Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theoretical and Applied Genetics, 2004, 108, 750-758.	3.6	159
8	A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis meloL.). BMC Plant Biology, 2011, 11, 111.	3.6	156
9	The expanded tomato fruit volatile landscape. Journal of Experimental Botany, 2013, 65, 4613-4623.	4.8	155
10	A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nature Genetics, 2019, 51, 1607-1615.	21.4	153
11	Identification and Characterization of Aluminum Tolerance Loci in Arabidopsis (Landsberg erecta ×) Tj ETQq1 I Plant Physiology, 2003, 132, 936-948.	1 0.784314 4.8	4 rgBT /Overlo 147
12	A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nature Communications, 2018, 9, 4734.	12.8	146
13	Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theoretical and Applied Genetics, 2000, 100, 471-479.	3.6	126
14	Climacteric or non-climacteric behavior in melon fruit. Postharvest Biology and Technology, 2008, 49, 27-37.	6.0	126
15	Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theoretical and Applied Genetics, 2008, 118, 139-150.	3.6	115
16	High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics, 2012, 13, 80.	2.8	110
17	Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theoretical and Applied Genetics, 2005, 112, 139-148.	3.6	98
18	Candidate genes and QTLs for fruit ripening and softening in melon. Theoretical and Applied Genetics, 2008, 116, 589-602.	3.6	97

#	Article	IF	CITATIONS
19	An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing. BMC Genomics, 2017, 18, 94.	2.8	93
20	Genetic variability in melon based on microsatellite variation. Plant Breeding, 2003, 122, 153-157.	1.9	92
21	Development of a set of near isogenic and backcross recombinant inbred lines containing most of the <i>Lycopersicon hirsutum</i> genome in a <i>L esculentum</i> genetic background: A tool for gene mapping and gene discovery. Genome, 2000, 43, 803-813.	2.0	91
22	Estimating the Genetic Architecture of Fruit Quality Traits in Melon Using a Genomic Library of Near Isogenic Lines. Journal of the American Society for Horticultural Science, 2007, 132, 80-89.	1.0	91
23	A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biology, 2009, 9, 90.	3.6	90
24	Diversity among landraces of Indian snapmelon (Cucumis melo var. momordica). Genetic Resources and Crop Evolution, 2007, 54, 1267-1283.	1.6	89
25	Genetic Control and Evolution of Sesquiterpene Biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell, 2000, 12, 2283-2294.	6.6	87
26	Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theoretical and Applied Genetics, 2001, 102, 572-590.	3.6	87
27	Morphological variation in tomato: a comprehensive study of quantitative trait loci controlling fruit shape and development. Journal of Experimental Botany, 2007, 58, 1339-1349.	4.8	85
28	Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L). Theoretical and Applied Genetics, 2008, 118, 165-175.	3.6	85
29	SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical and Applied Genetics, 2013, 126, 1285-1303.	3.6	85
30	Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biology, 2014, 14, 52.	3.6	73
31	Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics, 2015, 16, 28.	2.7	72
32	<i><scp>ETHQV</scp>6.3</i> is involved in melon climacteric fruit ripening and is encoded by a <scp>NAC</scp> domain transcription factor. Plant Journal, 2017, 91, 671-683.	5.7	71
33	Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis?. Theoretical and Applied Genetics, 1997, 95, 284-293.	3.6	70
34	Salt tolerance in Lycopersicon species VI. Genotype-by-salinity interaction in quantitative trait loci detection: constitutive and response QTLs. Theoretical and Applied Genetics, 1997, 95, 706-713.	3.6	67
35	A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE, 2012, 7, e38992.	2.5	63
36	Variation in melon (Cucumis melo) landraces adapted to the humid tropics of southern India. Genetic Resources and Crop Evolution, 2011, 58, 225-243.	1.6	62

ANTONIO JOSé MONFORTE

#	Article	IF	CITATIONS
37	Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. Journal of Experimental Botany, 2017, 68, erw455.	4.8	61
38	Mapping QTLs associated with fruit quality traits in peach [Prunus persica (L.) Batsch] using SNP maps. Tree Genetics and Genomes, 2016, 12, 1.	1.6	60
39	Use of Natural Diversity and Biotechnology to Increase the Quality and Nutritional Content of Tomato and Grape. Frontiers in Plant Science, 2017, 8, 652.	3.6	60
40	Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Research Notes, 2011, 4, 289.	1.4	59
41	Repeated domestication of melon (<i>Cucumis melo</i>) in Africa and Asia and a new close relative from India. American Journal of Botany, 2018, 105, 1662-1671.	1.7	59
42	Identification of Melon Fruit Quality Quantitative Trait Loci Using Near-isogenic Lines. Journal of the American Society for Horticultural Science, 2008, 133, 139-151.	1.0	59
43	Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into â€ ⁻ Piel de Sapo' Melon (Cucucumis melo L.). PLoS ONE, 2014, 9, e104188.	2.5	58
44	Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theoretical and Applied Genetics, 2013, 126, 1531-1544.	3.6	56
45	Exploring New Alleles Involved in Tomato Fruit Quality in an Introgression Line Library of Solanum pimpinellifolium. Frontiers in Plant Science, 2016, 7, 1172.	3.6	50
46	Inheritance mode of fruit traits in melon: Heterosis for fruit shape and its correlation with genetic distance. Euphytica, 2005, 144, 31-38.	1.2	48
47	Wild melon diversity in India (Punjab State). Genetic Resources and Crop Evolution, 2012, 59, 755-767.	1.6	48
48	An integrative "omics―approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Genomics, 2013, 14, 343.	2.8	48
49	A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biology, 2016, 16, 154.	3.6	48
50	Characterization of the length polymorphism in the A+T-rich region of the Drosophila obscura group species. Journal of Molecular Evolution, 1993, 36, 214-223.	1.8	47
51	Dissection of the oligogenic resistance to Cucumber mosaic virus in the melon accession Pl 161375. Theoretical and Applied Genetics, 2009, 118, 275-284.	3.6	47
52	Identification of QTLs related to sugar and organic acid composition in melon using near-isogenic lines. Scientia Horticulturae, 2009, 121, 425-433.	3.6	47
53	Genetic diversity of Spanish Cucurbita pepo landraces: an unexploited resource for summer squash breeding. Genetic Resources and Crop Evolution, 2012, 59, 1169-1184.	1.6	47
54	Citrus and Prunuscopia-like retrotransposons. Theoretical and Applied Genetics, 1999, 99, 503-510.	3.6	46

#	Article	IF	CITATIONS
55	Single-nucleotide polymorphisms detected in expressed sequence tags of melon (<i>Cucumis) Tj ETQq1 1</i>	0.784314 rgBT	/Overlock 10
56	Aroma volatiles associated with the senescence of climacteric or non-climacteric melon fruit. Postharvest Biology and Technology, 2009, 52, 146-155.	6.0	43
57	Aroma profile of a collection of near-isogenic lines of melon (Cucumis melo L.). Food Chemistry, 2010, 118, 815-822.	8.2	43
58	Phylogenetic relationships among Cucumis species based on the ribosomal internal transcribed spacer sequence and microsatellite markers. Plant Systematics and Evolution, 2004, 248, 191.	0.9	42
59	Uncovering tomato quantitative trait loci and candidate genes for fruit cuticular lipid composition using the Solanum pennellii introgression line population. Journal of Experimental Botany, 2017, 68, 2703-2716.	4.8	41
60	Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theoretical and Applied Genetics, 2010, 121, 931-940.	3.6	39
61	Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theoretical and Applied Genetics, 2017, 130, 1837-1856.	3.6	37
62	Salt tolerance in Lycopersicon species. IV. Efficiency of marker-assisted selection for salt tolerance improvement. Theoretical and Applied Genetics, 1996, 93-93, 765-772.	3.6	36
63	Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genomics, 2019, 20, 448.	2.8	35
64	Climacteric and non-climacteric behavior in melon fruit. Postharvest Biology and Technology, 2008, 50, 125-134.	6.0	34
65	Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Molecular Breeding, 2014, 34, 1817-1831.	2.1	34
66	Phenotypic and molecular diversity among landraces of snapmelon (Cucumis melo var. momordica) adapted to the hot and humid tropics of eastern India. Plant Genetic Resources: Characterisation and Utilisation, 2009, 7, 291-300.	0.8	32
67	QTL Analyses in Multiple Populations Employed for the Fine Mapping and Identification of Candidate Genes at a Locus Affecting Sugar Accumulation in Melon (Cucumis melo L.). Frontiers in Plant Science, 2017, 8, 1679.	3.6	32
68	Genetic Control of Reproductive Traits in Tomatoes Under High Temperature. Frontiers in Plant Science, 2020, 11, 326.	3.6	32
69	The complex resistance to cucumber mosaic cucumovirus (CMV) in the melon accession PI161375 is governed by one gene and at least two quantitative trait loci. Molecular Breeding, 2014, 34, 351-362.	2.1	31
70	Salt tolerance in Lycopersicon spp. VII. Pleiotropic action of genes controlling earliness on fruit yield. Theoretical and Applied Genetics, 1999, 98, 593-601.	3.6	30
71	The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population. BMC Plant Biology, 2014, 14, 137.	3.6	29
72	Parthenogenic Haploids in Melon: Generation and Molecular Characterization of a Doubled Haploid Line Population. Journal of the American Society for Horticultural Science, 2011, 136, 145-154.	1.0	25

#	Article	IF	CITATIONS
73	Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Molecular Breeding, 2015, 35, 1.	2.1	24
74	Mapping Fruit Susceptibility to Postharvest Physiological Disorders and Decay Using a Collection of Near-isogenic Lines of Melon. Journal of the American Society for Horticultural Science, 2007, 132, 739-748.	1.0	24
75	Diversity among melon (Cucumis melo L.) landraces from the Indo-Gangetic plains of India and their genetic relationship with USA melon cultivars. Genetic Resources and Crop Evolution, 2014, 61, 1189-1208.	1.6	23
76	Genetic Diversity and Population Structure of Traditional Greek and Cypriot Melon Cultigens (Cucumis melo L.) Based on Simple Sequence Repeat Variability. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1820-1824.	1.0	22
77	On the Genetic Control of Heterosis for Fruit Shape in Melon (Cucumis Melo L.). Journal of Heredity, 2009, 100, 229-235.	2.4	20
78	Genetics of Root System Architecture Using Near-isogenic Lines of Melon. Journal of the American Society for Horticultural Science, 2008, 133, 448-458.	1.0	20
79	Postharvest firmness behaviour of near-isogenic lines of melon. Postharvest Biology and Technology, 2009, 51, 320-326.	6.0	19
80	Identification of tomato accessions as source of new genes for improving heat tolerance: from controlled experiments to field. BMC Plant Biology, 2021, 21, 345.	3.6	18
81	CmVPS41 Is a General Gatekeeper for Resistance to Cucumber Mosaic Virus Phloem Entry in Melon. Frontiers in Plant Science, 2019, 10, 1219.	3.6	16
82	Discrimination of climacteric and non limacteric melon fruit at harvest or at the senescence stage by quality traits. Journal of the Science of Food and Agriculture, 2009, 89, 1743-1753.	3.5	15
83	Exploiting synteny in Cucumis for mapping of Psm: a unique locus controlling paternal mitochondrial sorting. Theoretical and Applied Genetics, 2008, 117, 523-529.	3.6	13
84	Characterization of a repertoire of tomato fruit genetic variants in the San marzano genetic background. Scientia Horticulturae, 2020, 261, 108927.	3.6	12
85	A cryptic variation in a member of the Ovate Family Proteins is underlying the melon fruit shape QTL fsqs8.1. Theoretical and Applied Genetics, 2022, 135, 785-801.	3.6	12
86	â€~MAK-10': A Long Shelf-life Charentais Breeding Line Developed by Introgression of a Genomic Region from Makuwa Melon. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 1633-1638.	1.0	11
87	Time to exploit phenotypic plasticity. Journal of Experimental Botany, 2020, 71, 5295-5297.	4.8	11
88	European traditional tomatoes galore: a result of farmers' selection of a few diversity-rich loci. Journal of Experimental Botany, 2022, 73, 3431-3445.	4.8	11
89	Transcriptomic analysis of a nearâ€isogenic line of melon with high fruit flesh firmness during ripening. Journal of the Science of Food and Agriculture, 2021, 101, 754-777.	3.5	9
90	Creating climacteric melon fruit from nonclimacteric parentals: postharvest quality implications. ,		8

6

#	Article	IF	CITATIONS
91	Genetic diversity in Vicia faba L. populations cultivated in Tunisia revealed by simple sequence repeat analysis. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, 278-285.	0.8	7
92	New melon introgression lines in a Piel de Sapo genetic background with desirable agronomical traits from dudaim melons. Euphytica, 2019, 215, 1.	1.2	7
93	Snapmelon (<i>Cucumis melo</i> L. <i>Momordica</i> group), an indigenous cucurbit from India with immense value for melon breeding. Acta Horticulturae, 2015, , 99-108.	0.2	6
94	Fine mapping of wmv1551, a resistance gene to Watermelon mosaic virus in melon. Molecular Breeding, 2019, 39, 1.	2.1	6
95	Using genetic variability available in the breeder's pool to engineer fruit quality. GM Crops, 2010, 1, 120-127.	1.9	5
96	Analysis of aroma-related volatile compounds affected by â€~Ginsen Makuwa' genomic regions introgressed in â€~Vedrantais' melon background. Scientia Horticulturae, 2021, 276, 109664.	3.6	5
97	Genetic Control of Reproductive Traits under Different Temperature Regimes in Inbred Line Populations Derived from Crosses between S. pimpinellifolium and S. lycopersicum Accessions. Plants, 2022, 11, 1069.	3.5	5
98	QTL ANALYSIS OF FRUIT QUALITY TRAITS IN PEACH [PRUNUS PERSICA (L.) BATSCH] USING DENSE SNP MAPS. Acta Horticulturae, 2015, , 703-710.	0.2	4
99	Genetic Mapping of Complex Traits in Cucurbits. Plant Genetics and Genomics: Crops and Models, 2016, , 269-290.	0.3	3
100	Evidence of the Role of QTL Epistatic Interactions in the Increase of Melon Fruit Flesh Content during Domestication. Agronomy, 2020, 10, 1064.	3.0	3
101	Heterosis goes underground. Journal of Experimental Botany, 2021, 72, 6081-6083.	4.8	3
102	THE SPANISH MELON GENOMICS INITIATIVE. Acta Horticulturae, 2007, , 47-54.	0.2	3
103	Combined Stress Conditions in Melon Induce Non-additive Effects in the Core miRNA Regulatory Network. Frontiers in Plant Science, 2021, 12, 769093.	3.6	3
104	A new introgression line collection to improve â€~Piel de Sapo' melons. Acta Horticulturae, 2017, , 81-86.	0.2	2
105	HORTICULTURAL AND MOLECULAR CHARACTERIZATION OF LANDRACES OF INDIAN SNAPMELON (CUCUMIS) Tj	ETQq1 1	0.784314 rg
106	Uncommon disorders and decay in near-isogenic lines of melon and reference cultivars. Horticultura Brasileira, 2009, 27, 505-514.	0.5	1
107	The genetic control of fruit morphology in Cucumis melo L Acta Horticulturae, 2017, , 1-4.	0.2	1
108	IDENTIFICATION OF QTLs ASSOCIATED WITH COMMERCIAL POSTHARVEST QUALITY TRAITS AND DISORDERS USING A COLLECTION OF NEAR ISOGENIC LINES OF MELON. Acta Horticulturae, 2007, , 309-317.	0.2	1

#	Article	IF	CITATIONS
109	FLESH CAROTENOID PROFILE IN CLIMACTERIC NEAR-ISOGENIC LINES OF MELON OBTAINED FROM NON-CLIMACTERIC PARENTALS: IMPLICATIONS FOR FRUIT DESIGN. Acta Horticulturae, 2010, , 43-49.	0.2	0
110	New tools for breeding cantaloupe melons: first introgression line collection of makuwa melons into Charentais genetic background. Acta Horticulturae, 2017, , 75-80.	0.2	0
111	FIRST ATTEMPTS OF LINKING MODELLING, POSTHARVEST BEHAVIOUR AND MELON GENETICS. Acta Horticulturae, 2008, , 401-408.	0.2	0
112	AN ANALYSIS IN THE STRUCTURE OF A GENETICALLY CHARACTERIZED MELON GERMPLASM COLLECTION FOR CLIMACTERIC - NON-CLIMACTERIC RIPENING BEHAVIOUR. Acta Horticulturae, 2015, , 95-98.	0.2	0
113	La tomata †Valenciana' del PerellÃ3: comparaciÃ3 de les seues caracterÃstiques genà tiques i fenotÃpiques amb el conjunt de tomates tradicionals europees , 0, , .		Ο
114	Mapeo de un gen implicado en segregación distorsionada en poblaciones interespecÃficas de tomate. Agronomy Mesoamerican, 0, , 419-431.	0.2	0