
Samuel Stuart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/883750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measuring freezing of gait during daily-life: an open-source, wearable sensors approach. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 1.	4.6	131
2	From A to Z: Wearable technology explained. Maturitas, 2018, 113, 40-47.	2.4	126
3	Validity of Mobility Lab (version 2) for gait assessment in young adults, older adults and Parkinson's disease. Physiological Measurement, 2019, 40, 095003.	2.1	122
4	fNIRS response during walking — Artefact or cortical activity? A systematic review. Neuroscience and Biobehavioral Reviews, 2017, 83, 160-172.	6.1	116
5	Cortical activity during walking and balance tasks in older adults and in people with Parkinson's disease: A structured review. Maturitas, 2018, 113, 53-72.	2.4	115
6	Gait analysis in neurological populations: Progression in the use of wearables. Medical Engineering and Physics, 2021, 87, 9-29.	1.7	79
7	A consensus guide to using functional near-infrared spectroscopy in posture and gait research. Gait and Posture, 2020, 82, 254-265.	1.4	75
8	Assessment of the ability of open- and closed-loop cueing to improve turning and freezing in people with Parkinson's disease. Scientific Reports, 2018, 8, 12773.	3.3	52
9	Pre-frontal Cortical Activity During Walking and Turning Is Reliable and Differentiates Across Young, Older Adults and People With Parkinson's Disease. Frontiers in Neurology, 2019, 10, 536.	2.4	47
10	Gait in Parkinson's disease: A visuo-cognitive challenge. Neuroscience and Biobehavioral Reviews, 2016, 62, 76-88.	6.1	41
11	Direct and indirect effects of attention and visual function on gait impairment in Parkinson's disease: influence of task and turning. European Journal of Neuroscience, 2017, 46, 1703-1716.	2.6	41
12	Multi-modal gait: A wearable, algorithm and data fusion approach for clinical and free-living assessment. Information Fusion, 2022, 78, 57-70.	19.1	38
13	The measurement of visual sampling during real-world activity in Parkinson's disease and healthy controls: A structured literature review. Journal of Neuroscience Methods, 2014, 222, 175-188.	2.5	35
14	Reduced Gait Variability and Enhanced Brain Activity in Older Adults With Auditory Cues: A Functional Near-Infrared Spectroscopy Study. Neurorehabilitation and Neural Repair, 2018, 32, 976-987.	2.9	35
15	The Association between Prefrontal Cortex Activity and Turning Behavior in People with and without Freezing of Gait. Neuroscience, 2019, 416, 168-176.	2.3	33
16	Eye-tracker algorithms to detect saccades during static and dynamic tasks: a structured review. Physiological Measurement, 2019, 40, 02TR01.	2.1	33
17	Monitoring multiple cortical regions during walking in young and older adults: Dual-task response and comparison challenges. International Journal of Psychophysiology, 2019, 135, 63-72.	1.0	33
18	Prefrontal Cortical Activation With Open and Closed-Loop Tactile Cueing When Walking and Turning in Parkinson Disease: A Pilot Study, Journal of Neurologic Physical Therapy, 2020, 44, 121-131	1.4	29

SAMUEL STUART

#	Article	IF	CITATIONS
19	Towards remote healthcare monitoring using accessible IoT technology: state-of-the-art, insights and experimental design. BioMedical Engineering OnLine, 2020, 19, 80.	2.7	26
20	Quantifying saccades while walking: Validity of a novel velocity-based algorithm for mobile eye tracking. , 2014, 2014, 5739-42.		25
21	Inertial wearables as pragmatic tools in dementia. Maturitas, 2019, 127, 12-17.	2.4	25
22	Gait measurement in chronic mild traumatic brain injury: A model approach. Human Movement Science, 2020, 69, 102557.	1.4	25
23	Prefrontal Cortex Activity and Gait in Parkinson's Disease With Cholinergic and Dopaminergic Therapy. Movement Disorders, 2020, 35, 2019-2027.	3.9	25
24	Proâ€Saccades Predict Cognitive Decline in Parkinson's Disease: ICICLEâ€PD. Movement Disorders, 2019, 34, 1690-1698.	3.9	24
25	Executive Control of Walking in People With Parkinson's Disease With Freezing of Gait. Neurorehabilitation and Neural Repair, 2020, 34, 1138-1149.	2.9	24
26	Instrumented gait assessment with a single wearable: an introductory tutorial. F1000Research, 0, 5, 2323.	1.6	24
27	Accuracy and re-test reliability of mobile eye-tracking in Parkinson's disease and older adults. Medical Engineering and Physics, 2016, 38, 308-315.	1.7	22
28	Analysis of Free-Living Mobility in People with Mild Traumatic Brain Injury and Healthy Controls: Quality over Quantity. Journal of Neurotrauma, 2020, 37, 139-145.	3.4	21
29	Brain Activity Response to Visual Cues for Gait Impairment in Parkinson's Disease: An EEG Study. Neurorehabilitation and Neural Repair, 2021, 35, 996-1009.	2.9	20
30	Gait Impairment in Traumatic Brain Injury: A Systematic Review. Sensors, 2022, 22, 1480.	3.8	20
31	The Measurement of Eye Movements in Mild Traumatic Brain Injury: A Structured Review of an Emerging Area. Frontiers in Sports and Active Living, 2020, 2, 5.	1.8	19
32	Saccade frequency response to visual cues during gait in Parkinson's disease: the selective role of attention. European Journal of Neuroscience, 2018, 47, 769-778.	2.6	18
33	Do you see what I see? Mobile eye-tracker contextual analysis and inter-rater reliability. Medical and Biological Engineering and Computing, 2018, 56, 289-296.	2.8	18
34	The Sensor Technology and Rehabilitative Timing (START) Protocol: A Randomized Controlled Trial for the Rehabilitation of Mild Traumatic Brain Injury. Physical Therapy, 2020, 100, 687-697.	2.4	18
35	Validation of a velocity-based algorithm to quantify saccades during walking and turning in mild traumatic brain injury and healthy controls. Physiological Measurement, 2019, 40, 044006.	2.1	16
36	Inertial Sensors Reveal Subtle Motor Deficits When Walking With Horizontal Head Turns After Concussion. Journal of Head Trauma Rehabilitation, 2019, 34, E74-E81.	1.7	16

SAMUEL STUART

#	Article	IF	CITATIONS
37	Gait Performance in People with Symptomatic, Chronic Mild Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 218-224.	3.4	16
38	Do people with Parkinson's disease look at task relevant stimuli when walking? An exploration of eye movements. Behavioural Brain Research, 2018, 348, 82-89.	2.2	15
39	Relating Parkinson freezing and balance domains: A structural equation modeling approach. Parkinsonism and Related Disorders, 2020, 79, 73-78.	2.2	15
40	iTrack: instrumented mobile electrooculography (EOG) eye-tracking in older adults and Parkinson's disease. Physiological Measurement, 2017, 38, N16-N31.	2.1	13
41	Concussion in contact sport: A challenging area to tackle. Journal of Sport and Health Science, 2017, 6, 299-301.	6.5	13
42	Just Find It: The Mymo Approach to Recommend Running Shoes. IEEE Access, 2020, 8, 109791-109800.	4.2	12
43	The Impact Of Freezing Of Gait On Balance Perception And Mobility In Community-Living With Parkinson'S Disease. , 2018, 2018, 3040-3043.		10
44	A protocol to examine vision and gait in Parkinson's disease: impact of cognition and response to visual cues. F1000Research, 2015, 4, 1379.	1.6	10
45	Vision, visuo-cognition and postural control in Parkinson's disease: An associative pilot study. Gait and Posture, 2016, 48, 74-76.	1.4	9
46	Changes in prefrontal cortical activity and turning in response to dopaminergic and cholinergic therapy in Parkinson's disease: A randomized cross-over trial. Parkinsonism and Related Disorders, 2021, 86, 10-14.	2.2	8
47	Introducing the thematic series on transcranial direct current stimulation (tDCS) for motor rehabilitation: on the way to optimal clinical use. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 34.	4.6	7
48	A protocol to examine vision and gait in Parkinson's disease: impact of cognition and response to visual cues. F1000Research, 2015, 4, 1379.	1.6	7
49	Does visual cueing improve gait initiation in people with Parkinson's disease?. Human Movement Science, 2022, 84, 102970.	1.4	7
50	A feasibility study towards instrumentation of the Sport Concussion Assessment Tool (iSCAT). , 2020, 2020, 4624-4627.		6
51	Walk on the wild side: the complexity of free-living mobility assessment. Journal of Epidemiology and Community Health, 2017, 71, 624-624.	3.7	4
52	Pain in Parkinson's disease: the lived experience. International Journal of Therapy and Rehabilitation, 2018, 25, 301-308.	0.3	4
53	Investigating the AX6 inertial-based wearable for instrumented physical capability assessment of young adults in a low-resource setting. Smart Health, 2021, 22, 100220.	3.2	4
54	Staying UpRight in Parkinson's disease: A pilot study of a novel wearable postural intervention. Gait and Posture, 2022, 91, 86-93.	1.4	3

SAMUEL STUART

#	Article	IF	CITATIONS
55	Wearables as objective tools in sport-related concussion: a protocol for more informed player management. Physiotherapy, 2020, 107, e142-e143.	0.4	3
56	Validation of an inertial-based contact and swing time algorithm for running analysis from a foot mounted IoT enabled wearable. , 2021, 2021, 6818-6821.		3
57	Bespoke Fuzzy Logic Design to Automate a Better Understanding of Running Gait Analysis. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 2178-2185.	6.3	3
58	Safety of pitch-side care provision in community contact sport within England. Physical Therapy in Sport, 2018, 33, 18-20.	1.9	2
59	Focus collection on Modern Approaches for Sports Medicine and Performance. Physiological Measurement, 2019, 40, 090401.	2.1	2
60	53MOTOR IMPAIRMENTS ARE ASSOCIATED WITH FEAR OF FALLING IN PEOPLE WITH PARKINSON's DISEASE. Age and Ageing, 2017, 46, ii19-ii19.	1.6	1
61	Anatomical distribution of musculoskeletal disorders following a road traffic collision in litigants presenting to physiotherapists within a private-clinic in North-East England. Physiotherapy Theory and Practice, 2019, 35, 873-883.	1.3	1
62	Saccade and Fixation Eye Movements During Walking in People With Mild Traumatic Brain Injury. Frontiers in Bioengineering and Biotechnology, 2021, 9, 701712.	4.1	1
63	International Sport Science and Sport Medicine Conference, Newcastle upon Tyne, UK. International Journal of Therapy and Rehabilitation, 2016, 23, 606-606.	0.3	0
64	Musculoskeletal disorders seen within a private physiotherapy practice following a road traffic collision in England. Physiotherapy, 2017, 103, e57.	0.4	0
65	The association between prefrontal cortex activity and turning behaviors in people with and without freezing of gait. Gait and Posture, 2018, 66, S2-S3.	1.4	0
66	Tech world and medicine come together to harness digital medicine. Maturitas, 2019, 127, 95-96.	2.4	0
67	Objective measures of brain health: a pilot study with a somatosensory device in rugby union. Physiotherapy, 2020, 107, e22.	0.4	0
68	Acupuncture for whiplash-associated disorder following road traffic collision: a physiotherapy service evaluation. Acupuncture in Medicine, 2020, 38, 272-278.	1.0	0
69	Technological visuo-cognitive training in Parkinson's disease: Protocol for a randomised cross-over trial. Physiotherapy, 2022, 114, e107-e108.	0.4	0
70	Active rehabilitation intervention following acute mild traumatic brain injury: A systematic review. Physiotherapy, 2022, 114, e43-e44.	0.4	0
71	Examining the use of wearables for remote monitoring of balance,gait and sleep in sports-related concussion: A single-subject study in rugby-union. Physiotherapy, 2022, 114, e9-e10.	0.4	0
72	Validation of a low-cost wearable sensor for assessment of balance within young adult rugby players. Physiotherapy, 2022, 114, e20-e21.	0.4	0

#	Article	IF	CITATIONS
73	Exploring Inertial-Based Wearable Technologies for Objective Monitoring in Sports-Related Concussion: a Single-Participant Report. Physical Therapy, 2022, , .	2.4	Ο
74	Visual exploration while walking with and without visual cues in Parkinson's disease: The influence of freezing of gait. Physiotherapy, 2022, 114, e21.	0.4	0
75	Validation of a low-cost wearable sensor to assess turning in healthy adults. Physiotherapy, 2022, 114, e112-e113.	0.4	ο