Kenneth J D Mackenzie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8837494/publications.pdf

Version: 2024-02-01

		76326	102487
155	5,609	40	66
papers	citations	h-index	g-index
1.60	1.60	1.00	5100
169	169	169	5139
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The composition range of aluminosilicate geopolymers. Journal of the European Ceramic Society, 2005, 25, 1471-1477.	5.7	283
2	Preparation and characterisation of fly ash based geopolymer mortars. Construction and Building Materials, 2010, 24, 1906-1910.	7.2	270
3	Effect of Silica Additive on the Anataseâ€toâ€Rutile Phase Transition. Journal of the American Ceramic Society, 2001, 84, 1591-1596.	3.8	240
4	Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceramics International, 2011, 37, 3011-3018.	4.8	206
5	Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceramics International, 2004, 30, 251-255.	4.8	131
6	27Al and 25Mg solid-state magic-angle spinning nuclear magnetic resonance study of hydrotalcite and its thermal decomposition sequence. Journal of Materials Chemistry, 1993, 3, 1263.	6.7	125
7	The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57Fe Mössbauer spectroscopy study. Journal of Materials Science, 2013, 48, 5280-5286.	3.7	113
8	Water retention properties of porous geopolymers for use in cooling applications. Journal of the European Ceramic Society, 2009, 29, 1917-1923.	5.7	110
9	Thermal decomposition of mechanically activated gibbsite. Thermochimica Acta, 1999, 327, 103-108.	2.7	107
10	Preparation of porous silica from vermiculite by selective leaching. Applied Clay Science, 2003, 22, 187-195.	5.2	106
11	Geopolymer synthesis using silica fume and sodium aluminate. Journal of Materials Science, 2007, 42, 3990-3993.	3.7	99
12	Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals. Cement and Concrete Research, 2010, 40, 787-794.	11.0	94
13	New composites of nanoparticle Cu (I) oxide and titania in a novel inorganic polymer (geopolymer) matrix for destruction of dyes and hazardous organic pollutants. Journal of Hazardous Materials, 2016, 318, 772-782.	12.4	91
14	Ion exchange in the charge-balancing sites of aluminosilicate inorganic polymers. Journal of Materials Chemistry, 2010, 20, 10234.	6.7	90
15	Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres. Journal of Materials Science, 2012, 47, 6958-6965.	3.7	88
16	Formation of aluminosilicate geopolymers from 1:1 layer-lattice minerals pre-treated by various methods: a comparative study. Journal of Materials Science, 2007, 42, 4667-4674.	3.7	87
17	Synthesis and mechanical properties of novel composites of inorganic polymers (geopolymers) with unidirectional natural flax fibres (phormium tenax). Applied Clay Science, 2013, 75-76, 148-152.	5.2	86
18	Effect of mechanochemical activation on the thermal reactions of boehmite (Î ³ -AlOOH) and Î ³ -Al2O3. Thermochimica Acta, 2000, 359, 87-94.	2.7	81

#	Article	IF	CITATIONS
19	Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicate. Journal of Materials Science, 2009, 44, 4668-4676.	3.7	81
20	Role of Water in the Mechanochemical Reactions of MgO–SiO2Systems. Journal of Solid State Chemistry, 1998, 138, 169-177.	2.9	78
21	Utilization of radioactive high-calcium Mongolian flyash for the preparation of alkali-activated geopolymers for safe use as construction materials. Ceramics International, 2014, 40, 16475-16483.	4.8	73
22	Electrical and mechanical properties of aluminosilicate inorganic polymer composites with carbon nanotubes. Journal of Materials Science, 2009, 44, 2851-2857.	3.7	67
23	Synthesis and properties of inorganic polymers (geopolymers) derived from Bayer process residue (red) Tj ETQq1	1 9.78431	4.rgBT /Ov€
24	Synthesis and Catalytic Properties of New Sustainable Aluminosilicate Heterogeneous Catalysts Derived from Fly Ash. ACS Sustainable Chemistry and Engineering, 2018, 6, 5273-5282.	6.7	67
25	Formation of inorganic polymers (geopolymers) from 2:1 layer lattice aluminosilicates. Journal of the European Ceramic Society, 2008, 28, 177-181.	5.7	62
26	Investigation on bioactivity and cytotoxicity of mesoporous nano-composite MCM-48/hydroxyapatite for ibuprofen drug delivery. Ceramics International, 2014, 40, 7355-7362.	4.8	61
27	Preparation of Porous Silica from Mechanically Activated Kaolinite. Journal of Porous Materials, 2001, 8, 233-238.	2.6	60
28	Porous aluminosilicate inorganic polymers (geopolymers): a new class of environmentally benign heterogeneous solid acid catalysts. Applied Catalysis A: General, 2016, 524, 173-181.	4.3	57
29	Thermal formation of corundum from aluminium hydroxides prepared from various aluminium salts. Bulletin of Materials Science, 2000, 23, 301-304.	1.7	55
30	A multinuclear MAS NMR study of calcium-containing aluminosilicate inorganic polymers. Journal of Materials Chemistry, 2007, 17, 5090.	6.7	54
31	The effect of Zr content on electrical properties of Ba(Ti1-xZrx)O3 ceramics. Applied Physics A: Materials Science and Processing, 2008, 90, 723-727.	2.3	53
32	Modeling and optimization of compressive strength and bulk density of metakaolin-based geopolymer using central composite design: A numerical and experimental study. Ceramics International, 2017, 43, 324-335.	4.8	53
33	Multiple-Quantum and Cross-Polarized27Al MAS NMR of Mechanically Treated Mixtures of Kaolinite and Gibbsite. Journal of Physical Chemistry B, 2000, 104, 6408-6416.	2.6	49
34	Porous ceramics mimicking natureâ€"preparation and properties of microstructures with unidirectionally oriented pores. Science and Technology of Advanced Materials, 2011, 12, 064701.	6.1	48
35	Synthesis of belite cement from nano-silica extracted from two rice husk ashes. Journal of Environmental Management, 2017, 190, 53-60.	7.8	47
36	Formation of Layered Magnesium Silicate during the Aging of Magnesium Hydroxide–Silica Mixtures. Journal of the American Ceramic Society, 1998, 81, 754-756.	3.8	45

#	Article	IF	CITATIONS
37	Synthesis of AlN Nanopowder from gamma-Al2O3 by Reduction-Nitridation in a Mixture of NH3-C3H8. Journal of the American Ceramic Society, 2006, 89, 171-175.	3.8	45
38	Phase evolution in mechanically treated mixtures of kaolinite and alumina hydrates (gibbsite and) Tj ETQq0 0 0	rgBŢ [Over	lock 10 Tf 50
39	Synthesis of $11 ilde{A}\dots$ Al-substituted tobermorite from trachyte rock by hydrothermal treatment. Ceramics International, 2010, 36, 203-209.	4.8	44
40	\hat{l}_{\pm} -Sialon ceramics synthesised from a clay precursor by carbothermal reduction and nitridation. Journal of Materials Chemistry, 1998, 8, 977-983.	6.7	41
41	Characterization of porous silica prepared from mechanically amorphized kaolinite by selective leaching. Powder Technology, 2001, 121, 259-262.	4.2	41
42	Synthesis and properties of novel photoactive composites of P25 titanium dioxide and copper (I) oxide with inorganic polymers. Ceramics International, 2015, 41, 13702-13708.	4.8	41
43	Formation of mullite from mechanochemically activated oxides and hydroxides. Journal of the European Ceramic Society, 1998, 18, 831-835.	5.7	40
44	The effect of water vapour atmospheres on the thermal transformation of kaolinite investigated by XRD, FTIR and solid state MAS NMR. Journal of the European Ceramic Society, 1999, 19, 105-112.	5.7	40
45	Synthesis, characterisation and thermal behaviour of lithium aluminosilicate inorganic polymers. Journal of Materials Science, 2010, 45, 3707-3713.	3.7	40
46	Synthesis of high surface area Al-containing mesoporous silica from calcined and acid leached kaolinites as the precursors. Journal of Colloid and Interface Science, 2006, 297, 724-731.	9.4	38
47	Effect of the solid-state synthesis parameters on the physical and electronic properties of perovskite-type Ba(Fe,Nb)0.5O3 ceramics. Current Applied Physics, 2009, 9, 993-996.	2.4	37
48	Thermal oxidation of carbothermal $\hat{l}^2\hat{a}\in^2$ -sialon powder: reaction sequence and kinetics. Journal of Materials Chemistry, 1997, 7, 527-530.	6.7	36
49	Effect of grinding on the leaching behaviour of pyrophyllite. Journal of the European Ceramic Society, 2003, 23, 1277-1282.	5.7	36
50	Novel photoactive inorganic polymer composites of inorganic polymers with copper(I) oxide nanoparticles. Journal of Materials Science, 2015, 50, 7374-7383.	3.7	36
51	MAS NMR Evidence for the Presence of Silicon in the Alumina Spinel from Thermally Transformed Kaolinite. Journal of the American Ceramic Society, 1996, 79, 2980-2982.	3.8	34
52	The effect of mechanical activation on the properties of \hat{l}^2 -sialon precursors. Journal of the European Ceramic Society, 2008, 28, 279-288.	5.7	34
53	The electronic properties of complex oxides of bismuth with the mullite structure. Journal of the European Ceramic Society, 2008, 28, 499-504.	5.7	33
54	Magnesium analogues of aluminosilicate inorganic polymers (geopolymers) from magnesium minerals. Journal of Materials Science, 2013, 48, 1787-1793.	3.7	33

#	Article	IF	Citations
55	Effect of grinding on the preparation of porous material from talc by selective leaching. Journal of Materials Science Letters, 2002, 21, 1607-1609.	0.5	32
56	The effect of nano sized SrFe12O19 additions on the magnetic properties of chromium-doped strontium-hexaferrite ceramics. Journal of Materials Science: Materials in Electronics, 2011, 22, 1297-1302.	2.2	32
57	Photocatalytic properties of mesoporous TiO2 nanocomposites modified with carbon nanotubes and copper. Ceramics International, 2016, 42, 11901-11906.	4.8	32
58	Calcium-containing inorganic polymers as potential bioactive materials. Journal of Materials Science, 2010, 45, 999-1007.	3.7	31
59	Effect of mechanochemical treatment on the crystallization behaviour of diphasic mullite gel. Ceramics International, 1999, 25, 85-90.	4.8	30
60	Crystal structure of synthetic Al4B2O9: A member of the mullite family closely related to boralsilite. American Mineralogist, 2008, 93, 918-927.	1.9	30
61	Visible-light-driven photodegradation of acetaldehyde gas catalyzed by aluminosilicate nanotubes and Cu(II)-grafted TiO2 composites. Applied Catalysis B: Environmental, 2013, 138-139, 243-252.	20.2	30
62	Fabrication and properties of microporous metakaolin-based geopolymer bodies with polylactic acid (PLA) fibers as pore generators. Ceramics International, 2015, 41, 7872-7880.	4.8	30
63	Synthesis and properties of geopolymers based on water treatment residue and their immobilization of some heavy metals. Journal of Materials Science, 2017, 52, 7345-7359.	3.7	30
64	Characterization of aluminosilicate (mullite) precursors prepared by a mechanochemical process. Journal of Materials Research, 1998, 13, 2184-2189.	2.6	29
65	Titanosilicates: Giant exchange capacity and selectivity for Sr and Ba. Separation and Purification Technology, 2012, 95, 222-226.	7.9	28
66	The effect of different sources of porous carbon on the synthesis of nanostructured boron carbide by magnesiothermic reduction. Ceramics International, 2014, 40, 16399-16408.	4.8	28
67	Porous properties of coprecipitated Al2O3-SiO2 xerogels prepared from aluminium nitrate nonahydrate and tetraethylorthosilicate. Journal of Materials Chemistry, 1999, 9, 1307-1312.	6.7	27
68	Simultaneous uptake of ammonium and phosphate ions by compounds prepared from paper sludge ash. Journal of Hazardous Materials, 2007, 141, 622-629.	12.4	27
69	Facile synthesis of new hierarchical aluminosilicate inorganic polymer solid acids and their catalytic performance in alkylation reactions. Microporous and Mesoporous Materials, 2017, 241, 316-325.	4.4	27
70	The effect of nanoparticle and mesoporous TiO2 additions on the electronic characteristics of reduced graphene oxide nanocomposites with zinc oxide under UV irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 246, 89-95.	3 . 5	27
71	MAS NMR study of pentacoordinated magnesium in grandidierite. American Mineralogist, 1997, 82, 479-482.	1.9	26
72	Phases occurring in the Si3N4–YN system. Journal of Materials Chemistry, 1997, 7, 505-509.	6.7	26

#	Article	lF	CITATIONS
73	Preparation and porous properties of materials prepared by selective leaching of phlogopite. Clays and Clay Minerals, 2002, 50, 624-632.	1.3	26
74	AlO4/SiO4 Distribution in Tetrahedral Double Chains of Mullite. Journal of the American Ceramic Society, 2005, 88, 2935-2937.	3.8	24
75	Mechanochemical processing of sialon compositions. Journal of the European Ceramic Society, 2003, 23, 1069-1082.	5.7	23
76	Properties of geopolymer binders prepared from milled pond ash. Materiales De Construccion, 2017, 67, 134.	0.7	23
77	Multi Functional Uptake Behaviour of Materials Prepared by Calcining Waste Paper Sludge. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 703-719.	1.7	22
78	Inorganic polymers (geopolymers) containing acid–base indicators as possible colour-change humidity indicators. Materials Letters, 2009, 63, 230-232.	2.6	22
79	Pozzolanic Activity of Diatomaceous Earth. Journal of the American Ceramic Society, 2010, 93, 3406-3410.	3.8	22
80	Fly Ash-Based Geopolymers as Sustainable Bifunctional Heterogeneous Catalysts and Their Reactivity in Friedel-Crafts Acylation Reactions. Catalysts, 2019, 9, 372.	3.5	21
81	Effect of mechanochemical treatment on the synthesis of calcium dialuminate. Journal of Materials Chemistry, 2000, 10, 1019-1023.	6.7	20
82	Earlyâ€Stage Thermal Oxidation of Carbothermal βâ€Sialon Powder. Journal of the American Ceramic Society, 1998, 81, 266-268.	3.8	20
83	Preparation and properties of potassium aluminosilicate prepared from the waste solution of selectively leached calcined kaolinite. Applied Clay Science, 2002, 21, 125-131.	5. 2	19
84	Inorganic polymers (geopolymers) as precursors for carbothermal reduction and nitridation (CRN) synthesis of SiAlON ceramics. Journal of the European Ceramic Society, 2015, 35, 2755-2764.	5.7	19
85	Synthesis of nanostructured SiC by magnesiothermal reduction of silica from zeolite ZSM-5 and carbon: The effect of carbons from different sources. Ceramics International, 2015, 41, 5287-5293.	4.8	19
86	Additive-assisted pressureless sintering of carbothermal β′-sialon: an X-ray and solid-state MAS NMR study. Journal of Materials Chemistry, 1996, 6, 821-831.	6.7	18
87	Simultaneous uptake of ammonium and phosphate ions by composites of γ-alumina/potassium aluminosilicate gel. Materials Research Bulletin, 2003, 38, 749-756.	5.2	18
88	Uptake of various cations by amorphous CaAl2Si2O8 prepared by solid-state reaction of kaolinite with CaCO3. Journal of Materials Chemistry, 2003, 13, 550-556.	6.7	17
89	Photocatalytic Nanocomposite Materials Based on Inorganic Polymers (Geopolymers): A Review. Catalysts, 2020, 10, 1158.	3.5	17
90	Optimization of the magnetic properties and microstructure of Co2+–La3+ substituted strontium hexaferrite by varying the production parameters. Ceramics International, 2014, 40, 5675-5680.	4.8	16

#	Article	IF	CITATIONS
91	Zeolite formation by hydrothermal treatment of waste solution from selectively leached kaolinite. Materials Letters, 2002, 52, 91-95.	2.6	15
92	Effect of Synthesis pH on the Preparation and Properties of K-Al-Bearing Silicate Gels from Solution. Journal of the Ceramic Society of Japan, 2006, 114 , 624 - 629 .	1.3	15
93	Elucidation of the Formation Mechanism of ?-SiAlON from a Zeolite. Journal of the American Ceramic Society, 2007, 90, 1541-1544.	3.8	15
94	Synthesis of sodium and potassium aluminogermanate inorganic polymers. Materials Letters, 2011, 65, 2086-2088.	2.6	15
95	New phosphors based on the reduction of Eu(III) to Eu(II) in ion-exchanged aluminosilicate and gallium silicate inorganic polymers. Ceramics International, 2018, 44, 1110-1119.	4.8	15
96	Thermal reactions of alkali-leached aluminosilicates studied by XRD and solid-state 27Al, 29Si and 23Na MAS NMR. Journal of Materials Chemistry, 1996, 6, 833.	6.7	14
97	Volatile products formed by carboreduction and nitridation of clay mixtures with silica and elemental silicon. Journal of Materials Chemistry, 1996, 6, 1225-1230.	6.7	14
98	A new hydroxide-based synthesis method for inorganic polymers. Journal of Materials Science, 2010, 45, 3284-3288.	3.7	14
99	Synthesis and thermal behaviour of gallium-substituted aluminosilicate inorganic polymers. Dalton Transactions, 2011, 40, 4865.	3.3	14
100	The system Ga2O3(Al2O3)–GeO2(SiO2) studied by NMR, XRD, IR and DTA. Journal of Materials Chemistry, 2000, 10, 701-707.	6.7	13
101	Synthesis and properties of new \hat{l}^2 -Sialon/TiN composites via a novel AlxTiy intermediate. Ceramics International, 2016, 42, 2330-2338.	4.8	13
102	Crystalline Aluminium Borates with the Mullite Structure: A 11B and 27Al Solid-State NMR Study. Applied Magnetic Resonance, 2007, 32, 647-662.	1.2	12
103	Application of the statistical Taguchi method to optimize X-SiAlON and mullite formation in composite powders prepared by the SRN process. Ceramics International, 2014, 40, 263-271.	4.8	12
104	An infra-red frequency shift method for the determination of the high-temperature phases of aluminosilicate minerals. Journal of Applied Chemistry, 2007, 19, 65-67.	0.0	11
105	Influence of mechanical distortion on the solubility of fluorapatite. Minerals Engineering, 2007, 20, 194-196.	4.3	11
106	Highly charged swelling micas of different charge densities: Synthesis, characterization, and selectivity for Sr and Ba. Separation and Purification Technology, 2013, 104, 238-245.	7.9	11
107	Crystallization behavior and cordierite formation in rapidly quenched MgAl ₂ O ₄ –SiO ₂ glasses of various chemical compositions. Journal of Materials Research, 1998, 13, 1351-1357.	2.6	10
108	Were the casing stones of Senefru's Bent Pyramid in Dahshour cast or carved? Materials Letters, 2011, 65, 350-352.	2.6	10

#	Article	IF	Citations
109	The Effect of the Si/Al Ratio on the Properties of Water Treatment Residue (WTR)-Based Geopolymers. Key Engineering Materials, 0, 608, 289-294.	0.4	10
110	Novel photoluminescent materials based on gallium silicate inorganic polymer hosts activated with Sm3+ or Eu3+. Journal of Non-Crystalline Solids, 2017, 460, 98-105.	3.1	10
111	Phase formation, microstructure and setting time of MCM-48 mesoporous silica nanocomposites with hydroxyapatite for dental applications: Effect of the Ca/P ratio. Ceramics International, 2017, 43, 12857-12862.	4.8	10
112	Structural behaviour of an Australian silty clay (Coode Island silt) stabilised by treatment with slag lime. Applied Clay Science, 2018, 157, 198-203.	5.2	10
113	Preparation of aluminosilicate precursor by mechanochemical method from gibbsite-fumed silica mixtures. Bulletin of Materials Science, 1998, 21, 185-187.	1.7	9
114	Nanoporous inorganic materials from mineral templates. Current Applied Physics, 2004, 4, 167-170.	2.4	9
115	Simultaneous uptake of Ni2+, NH+4 and PO3â^'4 by amorphous CaOâ€"Al2O3â€"SiO2 compounds. Journal of Colloid and Interface Science, 2007, 305, 229-238.	9.4	9
116	Changes in the medium-range order of zeolite A by mechanical and thermal amorphization. Microporous and Mesoporous Materials, 2010, 136, 92-96.	4.4	9
117	Aluminosilicate inorganic polymers (geopolymers) containing rare earth ions: a new class of photoluminescent materials. Journal of Materials Science, 2017, 52, 11370-11382.	3.7	9
118	New phosphors synthesised by ion exchange of a metakaolin-based geopolymer. Applied Clay Science, 2018, 157, 1-7.	5.2	9
119	Oxidation and Mechanical Behavior of Carbothermal .BETASiAlON Ceramics Journal of the Ceramic Society of Japan, 1999, 107, 786-790.	1.3	8
120	Synthesis and characterization of low-charge sodium fluorophlogopite mica-type clay minerals. Applied Clay Science, 2009, 42, 524-528.	5.2	8
121	Inorganic polymers as novel chromatographic stationary phase media. Ceramics International, 2014, 40, 3553-3560.	4.8	8
122	Magnesiothermal synthesis of nanostructured SiC from natural zeolite (clinoptilolite) and mesoporous carbon CMK-1. Ceramics International, 2015, 41, 8809-8813.	4.8	8
123	Mechanochemical preparation of aluminosilicate precursors from gibbsite–silicic acid mixtures. Materials Letters, 1998, 36, 48-51.	2.6	7
124	Uptake properties of Ni2+ by nCaO·Al2O3·2SiO2 (n=1–4) prepared from solid-state reaction of kaolinite and calcite. Journal of Hazardous Materials, 2005, 123, 281-287.	12.4	7
125	Effect of grinding and heating on Ni2+ uptake properties of waste paper sludge. Journal of Environmental Management, 2006, 80, 363-371.	7.8	7
126	Mechanochemical activation of mixtures of wolframite (FeWO4) with carbon, studied by 57Fe Mössbauer spectroscopy. Journal of the European Ceramic Society, 2006, 26, 2581-2585.	5.7	7

#	Article	IF	Citations
127	Mechanical activation of MoS2+Na2O2 mixtures. Minerals Engineering, 2009, 22, 415-418.	4.3	7
128	Porous properties of mesoporous silicas from two silica sources (acid-leached kaolinite and) Tj ETQq0 0 0 rgBT /0	Overlock 1	0 т _. f 50 702 т
129	Comment on "Differential Thermal Calorimetric Determination of the Thermodynamic Properties of Kaolinite― Journal of the American Ceramic Society, 1971, 54, 174-174.	3.8	6
130	Carbothermal synthesis of low-z $\hat{l}^2\hat{a}\in^2$ -sialon from silica or elemental silicon in the presence and absence of Y2O3: an XRD and MAS NMR perspective. Journal of Materials Chemistry, 1997, 7, 1057-1061.	6.7	6
131	Structural elucidation of synthetic calcium silicates. Powder Diffraction, 2008, 23, 204-212.	0.2	6
132	Development of pyroelectric ceramics for high-temperature applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 161, 125-129.	3.5	6
133	Adsorption and photocatalytic properties of TiO2/mesoporous silica composites from two silica sources (acid-leached kaolinite and Si-alkoxide). Journal of Porous Materials, 2011, 18, 345-354.	2.6	6
134	Characterization of the State of Ni2+ in Ni-Exchanged KAlSiO4 by XPS, XRF, XRD, EXAFS and NMR Journal of the Ceramic Society of Japan, 2000, 108, 989-992.	1.3	5
135	Reaction of phosphate compounds with a high-silica allophane. Clays and Clay Minerals, 2005, 53, 372-379.	1.3	5
136	NMR study on the formation mechanism of β-SiAlON from zeolite by nitridation using ammonia gas. Journal of the Ceramic Society of Japan, 2008, 116, 980-983.	1.1	5
137	The influence of different carbon sources in the carbothermal reduction and nitridation (CRN) synthesis of SiAlON from nanocomposite precursors based on Al–SBA-15. Ceramics International, 2013, 39, 6293-6298.	4.8	5
138	Comment on "Characterization of Spinel Phase Formed in the Kaolin-Mullite Thermal Sequence". Journal of the American Ceramic Society, 1987, 70, C-222-C-223.	3.8	4
139	Effect of water vapour atmospheres on thermal transformations and mechanical strength of montmorillonite clay compacts. Advances in Applied Ceramics, 2000, 99, 63-66.	0.4	4
140	New Ceramic Membrane Materials for Gas Purification. Advanced Materials Research, 2007, 29-30, 15-20.	0.3	4
141	CRN synthesis of β-SiAlON from a nanocomposite precursor of mesoporous silica–alumina (Al-SBA-15) with poly 4-vinyl pyridine. Journal of Porous Materials, 2012, 19, 775-780.	2.6	4
142	Comparative study of mechanochemical preparation of aluminosilicate precursors from various aluminium hydroxides and amorphous silica. Advances in Applied Ceramics, 2000, 99, 23-25.	0.4	3
143	Ferroelectric, pyroelectric and dielectric properties of complex perovskite-structured Pb0.84Ba0.16(Zr0.44Ti0.40Fe0.08Nb0.08)O3 ceramics. Current Applied Physics, 2008, 8, 266-269.	2.4	3
144	Comparative study on the preparation of belite cement from nano-silicas extracted from different agricultural wastes with calcium carbide residue. Journal of Sustainable Cement-Based Materials, 2023, 12, 129-140.	3.1	3

#	Article	IF	CITATIONS
145	Formation Mechanism of Nano AlN Powder by Gas-Reduction-Nitridation. Key Engineering Materials, 2006, 317-318, 215-218.	0.4	2
146	Origin of P-E Hysteresis Offsets in Compositionally Graded Ba _(1-x) Sr _x TiO ₃ Thick Films. Advanced Materials Research, 0, 55-57, 15-22.	0.3	2
147	A Novel Method for the Formation of Lithium Aluminosilicate and Lithium Aluminosilicate-Alumina Matrix Composites by Silicothermal Reaction of Li-Geopolymers. Molecular Crystals and Liquid Crystals, 2013, 577, 116-126.	0.9	2
148	Oxidation resistance of \hat{l}^2 -Sialon/TiN composites: an ion beam analysis (IBA) study. Journal of Materials Science, 2018, 53, 15348-15361.	3.7	2
149	Synthesis of nanosized SiC by low-temperature magnesiothermal reduction of nanocomposites of functionalized carbon nanotubes with MCM-48. Ceramics International, 2019, 45, 5525-5530.	4.8	2
150	Synthesis, Densification and Properties of SiAlON Bodies and Composites. Key Engineering Materials, 2003, 237, 95-104.	0.4	1
151	"Synthesis of AlN Nanopowder from gamma-Al2O3 by Reduction-Nitridation in a Mixture of NH3-C3H8". Journal of the American Ceramic Society, 2006, 89, 773-773.	3.8	1
152	EFFECT OF PRE-HEATING TEMPERATURE ON THE CHARACTERISTICS OF PZT THIN FILMS GROWN BY USING A TRIOL SOL–GEL ROUTE. Surface Review and Letters, 2007, 14, 229-234.	1.1	1
153	Water Content and Water Evolution from Reaction-Bonded Aluminum Oxide (RBAO) Powder Precursors. International Journal of Applied Ceramic Technology, 2008, 5, 289-294.	2.1	1
154	Investigating the Properties of the Nanocomposite (poly(4-vinyl pyridine)/Al-SBA-15): A Precursor for \hat{l}^2 -SiAlON. Molecular Crystals and Liquid Crystals, 2012, 555, 104-111.	0.9	1
155	Recent Developments in SiAlON Research in New Zealand. Key Engineering Materials, 2007, 352, 153-163.	0.4	O