## Frédéric Barras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8836334/publications.pdf

Version: 2024-02-01



ΕρÃΟΟΑΟΡΙΟ ΒΑΡΡΑς

| #  | Article                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cellular assays identify barriers impeding iron-sulfur enzyme activity in a non-native prokaryotic host.<br>ELife, 2022, 11, .                                           | 6.0  | 9         |
| 2  | The Fe–S proteome of <i>Escherichia coli</i> : prediction, function, and fate. Metallomics, 2022, 14, .                                                                  | 2.4  | 6         |
| 3  | Redox controls RecA protein activity via reversible oxidation of its methionine residues. ELife, 2021, 10,                                                               | 6.0  | 18        |
| 4  | Iron–sulfur biology invades tRNA modification: the case of U34 sulfuration. Nucleic Acids Research, 2021, 49, 3997-4007.                                                 | 14.5 | 16        |
| 5  | The Biosynthetic Pathway of Ubiquinone Contributes to Pathogenicity of Francisella novicida. Journal of Bacteriology, 2021, 203, e0040021.                               | 2.2  | 8         |
| 6  | Bacterial Approaches for Assembling Iron-Sulfur Proteins. MBio, 2021, 12, e0242521.                                                                                      | 4.1  | 31        |
| 7  | Making iron-sulfur cluster: structure, regulation and evolution of the bacterial ISC system. Advances in Microbial Physiology, 2020, 76, 1-39.                           | 2.4  | 32        |
| 8  | The O2-independent pathway of ubiquinone biosynthesis is essential for denitrification in Pseudomonas aeruginosa. Journal of Biological Chemistry, 2020, 295, 9021-9032. | 3.4  | 25        |
| 9  | Oxidative stress antagonizes fluoroquinolone drug sensitivity via the SoxR-SUF Fe-S cluster homeostatic axis. PLoS Genetics, 2020, 16, e1009198.                         | 3.5  | 10        |
| 10 | Art and microbiology: encounters of the third type. Environmental Microbiology Reports, 2019, 11, 29-34.                                                                 | 2.4  | 3         |
| 11 | The SUF system: an ABC ATPase-dependent protein complex with a role in Fe–S cluster biogenesis.<br>Research in Microbiology, 2019, 170, 426-434.                         | 2.1  | 49        |
| 12 | Ubiquinone Biosynthesis over the Entire O <sub>2</sub> Range: Characterization of a Conserved O<br><sub>2</sub> -Independent Pathway. MBio, 2019, 10, .                  | 4.1  | 34        |
| 13 | A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone. Cell Chemical Biology, 2019, 26, 482-492.e7.                                                            | 5.2  | 46        |
| 14 | A small RNA controls bacterial sensitivity to gentamicin during iron starvation. PLoS Genetics, 2019,<br>15, e1008078.                                                   | 3.5  | 22        |
| 15 | The MFS efflux pump EmrKY contributes to the survival of Shigella within macrophages. Scientific Reports, 2019, 9, 2906.                                                 | 3.3  | 31        |
| 16 | The ErpA/NfuA complex builds an oxidation-resistant Fe-S cluster delivery pathway. Journal of<br>Biological Chemistry, 2018, 293, 7689-7702.                             | 3.4  | 28        |
| 17 | Species-specific activity of antibacterial drug combinations. Nature, 2018, 559, 259-263.                                                                                | 27.8 | 276       |
| 18 | Silver and Antibiotic, New Facts to an Old Story. Antibiotics, 2018, 7, 79.                                                                                              | 3.7  | 65        |

Frédéric Barras

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Oxidative stress, protein damage and repair in bacteria. Nature Reviews Microbiology, 2017, 15, 385-396.                                                                                                                                       | 28.6 | 634       |
| 20 | The UbiK protein is an accessory factor necessary for bacterial ubiquinone (UQ) biosynthesis and forms a complex with the UQ biogenesis factor UbiJ. Journal of Biological Chemistry, 2017, 292, 11937-11950.                                  | 3.4  | 35        |
| 21 | Silver potentiates aminoglycoside toxicity by enhancing their uptake. Molecular Microbiology, 2017, 105, 115-126.                                                                                                                              | 2.5  | 27        |
| 22 | The iron-sulfur cluster sensor IscR is a negative regulator of Spi1 type III secretion system in<br><i>Salmonella enterica</i> . Cellular Microbiology, 2017, 19, e12680.                                                                      | 2.1  | 21        |
| 23 | Evolution of Ubiquinone Biosynthesis: Multiple Proteobacterial Enzymes with Various<br>Regioselectivities To Catalyze Three Contiguous Aromatic Hydroxylation Reactions. MSystems, 2016, 1, .                                                  | 3.8  | 44        |
| 24 | A Regulatory Circuit Composed of a Transcription Factor, IscR, and a Regulatory RNA, RyhB, Controls<br>Fe-S Cluster Delivery. MBio, 2016, 7, .                                                                                                 | 4.1  | 41        |
| 25 | The †liaisons dangereuses' between iron and antibiotics. FEMS Microbiology Reviews, 2016, 40, 418-435.                                                                                                                                         | 8.6  | 60        |
| 26 | Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons. Nature, 2015, 528, 409-412.                                                                                                                           | 27.8 | 139       |
| 27 | Turning Escherichia coli into a Frataxin-Dependent Organism. PLoS Genetics, 2015, 11, e1005134.                                                                                                                                                | 3.5  | 19        |
| 28 | The ironâ€binding <scp>CyaY</scp> and <scp>lscX</scp> proteins assist the <scp>lSC</scp> â€catalyzed<br><scp>F</scp> eâ€ <scp>S</scp> biogenesis in <scp><i>E</i></scp> <i>scherichia coli</i> . Molecular<br>Microbiology, 2015, 95, 605-623. | 2.5  | 36        |
| 29 | Commercial Lysogeny Broth culture media and oxidative stress: A cautious tale. Free Radical Biology and Medicine, 2014, 74, 245-251.                                                                                                           | 2.9  | 28        |
| 30 | ubiJ, a New Gene Required for Aerobic Growth and Proliferation in Macrophage, Is Involved in<br>Coenzyme Q Biosynthesis in Escherichia coli and Salmonella enterica Serovar Typhimurium. Journal of<br>Bacteriology, 2014, 196, 70-79.         | 2.2  | 38        |
| 31 | Biosynthesis and physiology of coenzyme Q in bacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1004-1011.                                                                                                                   | 1.0  | 123       |
| 32 | Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity.<br>Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 923-937.                                                                        | 1.0  | 58        |
| 33 | <i>In vivo</i> [ <scp>F</scp> eâ€ <scp>S</scp> ] cluster acquisition by <scp>IscR</scp> and<br><scp>NsrR</scp> , two stress regulators in <i><scp>E</scp>scherichia coli</i> . Molecular<br>Microbiology, 2013, 87, 493-508.                   | 2.5  | 43        |
| 34 | lron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity. Biochimica Et<br>Biophysica Acta - Bioenergetics, 2013, 1827, 455-469.                                                                                    | 1.0  | 281       |
| 35 | Fe-S Cluster Biosynthesis Controls Uptake of Aminoglycosides in a ROS-Less Death Pathway. Science, 2013, 340, 1583-1587.                                                                                                                       | 12.6 | 201       |
| 36 | Ferredoxin Competes with Bacterial Frataxin in Binding to the Desulfurase IscS*. Journal of Biological Chemistry, 2013, 288, 24777-24787.                                                                                                      | 3.4  | 68        |

Frédéric Barras

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | ubil, a New Gene in Escherichia coli Coenzyme Q Biosynthesis, Is Involved in Aerobic C5-hydroxylation.<br>Journal of Biological Chemistry, 2013, 288, 20085-20092.                                                                                            | 3.4  | 45        |
| 38 | Molecular organization, biochemical function, cellular role and evolution of NfuA, an atypical Fe<br>carrier. Molecular Microbiology, 2012, 86, 155-171.                                                                                                      | 2.5  | 80        |
| 39 | Building Fe–S proteins: bacterial strategies. Nature Reviews Microbiology, 2010, 8, 436-446.                                                                                                                                                                  | 28.6 | 334       |
| 40 | The CsdA cysteine desulphurase promotes Fe/S biogenesis by recruiting Suf components and<br>participates to a new sulphur transfer pathway by recruiting CsdL (ex‥gdL), a ubiquitinâ€modifyingâ€like<br>protein. Molecular Microbiology, 2009, 74, 1527-1542. | 2.5  | 52        |
| 41 | Iron-Sulfur (Fe/S) Protein Biogenesis: Phylogenomic and Genetic Studies of A-Type Carriers. PLoS<br>Genetics, 2009, 5, e1000497.                                                                                                                              | 3.5  | 166       |
| 42 | Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing <i>Erwinia chrysanthemi</i> to adapt to hostile conditions. Molecular Microbiology, 2008, 67, 1257-1273.                                                                     | 2.5  | 51        |
| 43 | NfuA, a New Factor Required for Maturing Fe/S Proteins in Escherichia coli under Oxidative Stress and Iron Starvation Conditions. Journal of Biological Chemistry, 2008, 283, 14084-14091.                                                                    | 3.4  | 132       |
| 44 | ErpA, an iron–sulfur (Fe–S) protein of the A-type essential for respiratory metabolism in<br><i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of<br>America, 2007, 104, 13626-13631.                            | 7.1  | 134       |
| 45 | Calorimetry and mass spectrometry study of oxidized calmodulin interaction with target and differential repair by methionine sulfoxide reductases. Biochimie, 2005, 87, 473-480.                                                                              | 2.6  | 20        |
| 46 | Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli. EMBO<br>Journal, 2004, 23, 1868-1877.                                                                                                                                 | 7.8  | 62        |
| 47 | SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress.<br>EMBO Journal, 2003, 22, 427-437.                                                                                                                         | 7.8  | 245       |
| 48 | Repair of Oxidized Proteins. Journal of Biological Chemistry, 2001, 276, 48915-48920.                                                                                                                                                                         | 3.4  | 320       |