Frédéric Barras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8836334/publications.pdf

Version: 2024-02-01

48 papers

4,252 citations

172457 29 h-index 197818 49 g-index

56 all docs 56
docs citations

56 times ranked 4625 citing authors

#	Article	IF	Citations
1	Oxidative stress, protein damage and repair in bacteria. Nature Reviews Microbiology, 2017, 15, 385-396.	28.6	634
2	Building Fe–S proteins: bacterial strategies. Nature Reviews Microbiology, 2010, 8, 436-446.	28.6	334
3	Repair of Oxidized Proteins. Journal of Biological Chemistry, 2001, 276, 48915-48920.	3.4	320
4	Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 455-469.	1.0	281
5	Species-specific activity of antibacterial drug combinations. Nature, 2018, 559, 259-263.	27.8	276
6	SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress. EMBO Journal, 2003, 22, 427-437.	7.8	245
7	Fe-S Cluster Biosynthesis Controls Uptake of Aminoglycosides in a ROS-Less Death Pathway. Science, 2013, 340, 1583-1587.	12.6	201
8	Iron-Sulfur (Fe/S) Protein Biogenesis: Phylogenomic and Genetic Studies of A-Type Carriers. PLoS Genetics, 2009, 5, e1000497.	3.5	166
9	Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons. Nature, 2015, 528, 409-412.	27.8	139
10	ErpA, an iron–sulfur (Fe–S) protein of the A-type essential for respiratory metabolism in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13626-13631.	7.1	134
11	NfuA, a New Factor Required for Maturing Fe/S Proteins in Escherichia coli under Oxidative Stress and Iron Starvation Conditions. Journal of Biological Chemistry, 2008, 283, 14084-14091.	3.4	132
12	Biosynthesis and physiology of coenzyme Q in bacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1004-1011.	1.0	123
13	Molecular organization, biochemical function, cellular role and evolution of NfuA, an atypical Feâ€S carrier. Molecular Microbiology, 2012, 86, 155-171.	2.5	80
14	Ferredoxin Competes with Bacterial Frataxin in Binding to the Desulfurase IscS*. Journal of Biological Chemistry, 2013, 288, 24777-24787.	3.4	68
15	Silver and Antibiotic, New Facts to an Old Story. Antibiotics, 2018, 7, 79.	3.7	65
16	Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli. EMBO Journal, 2004, 23, 1868-1877.	7.8	62
17	The â€~liaisons dangereuses' between iron and antibiotics. FEMS Microbiology Reviews, 2016, 40, 418-435.	8.6	60
18	Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 923-937.	1.0	58

#	Article	IF	CITATIONS
19	The CsdA cysteine desulphurase promotes Fe/S biogenesis by recruiting Suf components and participates to a new sulphur transfer pathway by recruiting CsdL (exâ€YgdL), a ubiquitinâ€modifyingâ€like protein. Molecular Microbiology, 2009, 74, 1527-1542.	2.5	52
20	Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing <i>Erwinia chrysanthemi</i> to adapt to hostile conditions. Molecular Microbiology, 2008, 67, 1257-1273.	2.5	51
21	The SUF system: an ABC ATPase-dependent protein complex with a role in Fe–S cluster biogenesis. Research in Microbiology, 2019, 170, 426-434.	2.1	49
22	A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone. Cell Chemical Biology, 2019, 26, 482-492.e7.	5.2	46
23	ubil, a New Gene in Escherichia coli Coenzyme Q Biosynthesis, Is Involved in Aerobic C5-hydroxylation. Journal of Biological Chemistry, 2013, 288, 20085-20092.	3.4	45
24	Evolution of Ubiquinone Biosynthesis: Multiple Proteobacterial Enzymes with Various Regioselectivities To Catalyze Three Contiguous Aromatic Hydroxylation Reactions. MSystems, 2016, 1, .	3.8	44
25	<i>In vivo</i> [<scp>F</scp> eâ€ <scp>S</scp>] cluster acquisition by <scp>IscR</scp> and <scp>NsrR</scp> , two stress regulators in <i><scp>E</scp>scherichia coli</i> . Molecular Microbiology, 2013, 87, 493-508.	2.5	43
26	A Regulatory Circuit Composed of a Transcription Factor, IscR, and a Regulatory RNA, RyhB, Controls Fe-S Cluster Delivery. MBio, 2016, 7, .	4.1	41
27	ubil, a New Gene Required for Aerobic Growth and Proliferation in Macrophage, Is Involved in Coenzyme Q Biosynthesis in Escherichia coli and Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2014, 196, 70-79.	2.2	38
28	The ironâ€binding <scp>CyaY</scp> and <scp>IscX</scp> proteins assist the <scp>ISC</scp> â€catalyzed <scp>F</scp> eâ€cscp>S biogenesis in <scp><i>E</i></scp> <i>scherichia coli</i> Molecular Microbiology, 2015, 95, 605-623.	2.5	36
29	The UbiK protein is an accessory factor necessary for bacterial ubiquinone (UQ) biosynthesis and forms a complex with the UQ biogenesis factor UbiJ. Journal of Biological Chemistry, 2017, 292, 11937-11950.	3.4	35
30	Ubiquinone Biosynthesis over the Entire O $<$ sub $>$ 2 $<$ /sub $>$ Range: Characterization of a Conserved O $<$ sub $>$ 2 $<$ /sub $>$ -Independent Pathway. MBio, 2019, 10, .	4.1	34
31	Making iron-sulfur cluster: structure, regulation and evolution of the bacterial ISC system. Advances in Microbial Physiology, 2020, 76, 1-39.	2.4	32
32	The MFS efflux pump EmrKY contributes to the survival of Shigella within macrophages. Scientific Reports, 2019, 9, 2906.	3.3	31
33	Bacterial Approaches for Assembling Iron-Sulfur Proteins. MBio, 2021, 12, e0242521.	4.1	31
34	Commercial Lysogeny Broth culture media and oxidative stress: A cautious tale. Free Radical Biology and Medicine, 2014, 74, 245-251.	2.9	28
35	The ErpA/NfuA complex builds an oxidation-resistant Fe-S cluster delivery pathway. Journal of Biological Chemistry, 2018, 293, 7689-7702.	3.4	28
36	Silver potentiates aminoglycoside toxicity by enhancing their uptake. Molecular Microbiology, 2017, 105, 115-126.	2.5	27

#	Article	IF	CITATIONS
37	The O2-independent pathway of ubiquinone biosynthesis is essential for denitrification in Pseudomonas aeruginosa. Journal of Biological Chemistry, 2020, 295, 9021-9032.	3.4	25
38	A small RNA controls bacterial sensitivity to gentamicin during iron starvation. PLoS Genetics, 2019, 15, e1008078.	3 . 5	22
39	The iron-sulfur cluster sensor lscR is a negative regulator of Spi1 type III secretion system in <i>Salmonella enterica</i> . Cellular Microbiology, 2017, 19, e12680.	2.1	21
40	Calorimetry and mass spectrometry study of oxidized calmodulin interaction with target and differential repair by methionine sulfoxide reductases. Biochimie, 2005, 87, 473-480.	2.6	20
41	Turning Escherichia coli into a Frataxin-Dependent Organism. PLoS Genetics, 2015, 11, e1005134.	3.5	19
42	Redox controls RecA protein activity via reversible oxidation of its methionine residues. ELife, $2021,10,$.	6.0	18
43	Iron–sulfur biology invades tRNA modification: the case of U34 sulfuration. Nucleic Acids Research, 2021, 49, 3997-4007.	14.5	16
44	Oxidative stress antagonizes fluoroquinolone drug sensitivity via the SoxR-SUF Fe-S cluster homeostatic axis. PLoS Genetics, 2020, 16, e1009198.	3.5	10
45	Cellular assays identify barriers impeding iron-sulfur enzyme activity in a non-native prokaryotic host. ELife, 2022, 11, .	6.0	9
46	The Biosynthetic Pathway of Ubiquinone Contributes to Pathogenicity of Francisella novicida. Journal of Bacteriology, 2021, 203, e0040021.	2.2	8
47	The Fe–S proteome of <i>Escherichia coli</i> : prediction, function, and fate. Metallomics, 2022, 14, .	2.4	6
48	Art and microbiology: encounters of the third type. Environmental Microbiology Reports, 2019, 11, 29-34.	2.4	3