Victor Sorribas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8835872/publications.pdf Version: 2024-02-01

VICTOR SODDIBAS

#	Article	IF	CITATIONS
1	Inhibition of phosphate transport by NAD ⁺ /NADH in brush border membrane vesicles. American Journal of Physiology - Cell Physiology, 2022, 322, C803-C813.	4.6	4
2	Sensitivity of Pseudunio auricularius to metals and ammonia: first evaluation. Hydrobiologia, 2021, 848, 2977-2992.	2.0	10
3	The Thermodynamics of Medial Vascular Calcification. Frontiers in Cell and Developmental Biology, 2021, 9, 633465.	3.7	11
4	Effects of oral exposure to arsenite on arsenic metabolism and transport in rat kidney. Toxicology Letters, 2020, 333, 4-12.	0.8	13
5	Several phosphate transport processes are present in vascular smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H448-H460.	3.2	11
6	Mechanisms of phosphate transport. Nature Reviews Nephrology, 2019, 15, 482-500.	9.6	99
7	Identification and expression analysis of type II and type III P _i transporters in the opossum kidney cell line. Experimental Physiology, 2019, 104, 149-161.	2.0	7
8	Substrates and inhibitors of phosphate transporters: from experimental tools to pathophysiological relevance. Pflugers Archiv European Journal of Physiology, 2019, 471, 53-65.	2.8	10
9	PEG-copolymer-coated iron oxide nanoparticles that avoid the reticuloendothelial system and act as kidney MRI contrast agents. Nanoscale, 2018, 10, 14153-14164.	5.6	59
10	Endogenous Calcification Inhibitors in the Prevention of Vascular Calcification: A Consensus Statement From the COST Action EuroSoftCalcNet. Frontiers in Cardiovascular Medicine, 2018, 5, 196.	2.4	82
11	SLC20. , 2018, , 4987-4994.		2
12	Intestinal phosphate absorption is mediated by multiple transport systems in rats. American Journal of Physiology - Renal Physiology, 2017, 312, G355-G366.	3.4	36
13	Identifying early pathogenic events during vascular calcification in uremic rats. Kidney International, 2017, 92, 1384-1394.	5.2	62
14	Effects of donor age and proliferative aging on the phenotype stability of rat aortic smooth muscle cells. Physiological Reports, 2015, 3, e12626.	1.7	6
15	Cell compatibility of a maghemite/polymer biomedical nanoplatform. Toxicology in Vitro, 2015, 29, 962-975.	2.4	13
16	Critical Parameters of the In Vitro Method of Vascular Smooth Muscle Cell Calcification. PLoS ONE, 2015, 10, e0141751.	2.5	29
17	Na ⁺ -independent phosphate transport in Caco2BBE cells. American Journal of Physiology - Cell Physiology, 2014, 307, C1113-C1122.	4.6	19
18	Medial vascular calcification revisited: review and perspectives. European Heart Journal, 2014, 35, 1515-1525.	2.2	567

VICTOR SORRIBAS

#	Article	IF	CITATIONS
19	Effect of water fluoridation on the development of medial vascular calcification in uremic rats. Toxicology, 2014, 318, 40-50.	4.2	11
20	Arsenic Increases Pi-Mediated Vascular Calcification and Induces Premature Senescence in Vascular Smooth Muscle Cells. Toxicological Sciences, 2013, 131, 641-653.	3.1	27
21	Nuclear Receptor LXR: A New Partner for Sodium-Dependent Phosphate Cotransporters. Contributions To Nephrology, 2013, 180, 64-73.	1.1	4
22	Inorganic Phosphate Modulates the Expression of the NaPi-2a Transporter in thetrans-Golgi Network and the Interaction with PIST in the Proximal Tubule. BioMed Research International, 2013, 2013, 1-9.	1.9	13
23	Prevention of Vascular Calcification by Polyphosphates and Nucleotides. Circulation Journal, 2013, 77, 2145-2151.	1.6	35
24	Phosphate Transporters in Renal, Gastrointestinal, and Other Tissues. Advances in Chronic Kidney Disease, 2011, 18, 63-76.	1.4	36
25	Calcium Phosphate Deposition With Normal Phosphate Concentration - Role of Pyrophosphate Circulation Journal, 2011, 75, 2705-2710.	1.6	52
26	On the osteogenic expression induced by calcium/phosphate deposition. Kidney International, 2011, 79, 921.	5.2	2
27	Liver X receptor-activating ligands modulate renal and intestinal sodium–phosphate transporters. Kidney International, 2011, 80, 535-544.	5.2	28
28	Role of calcium-phosphate deposition in vascular smooth muscle cell calcification. American Journal of Physiology - Cell Physiology, 2011, 300, C210-C220.	4.6	138
29	Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Pflugers Archiv European Journal of Physiology, 2010, 459, 499-508.	2.8	60
30	Arsenate transport by sodium/phosphate cotransporter type IIb. Toxicology and Applied Pharmacology, 2010, 247, 36-40.	2.8	58
31	Effects of 2-Bromoethanamine on TonEBP Expression and Its Possible Role in Induction of Renal Papillary Necrosis in Mice. Toxicological Sciences, 2010, 118, 510-520.	3.1	3
32	Phosphonoformic Acid Prevents Vascular Smooth Muscle Cell Calcification by Inhibiting Calcium-Phosphate Deposition. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 761-766.	2.4	99
33	On vascular calcification prevention with phosphonoformate and bisphosphonates. Kidney International, 2009, 75, 1355-1356.	5.2	5
34	Different effects of arsenate and phosphonoformate on P _i transport adaptation in opossum kidney cells. American Journal of Physiology - Cell Physiology, 2009, 297, C516-C525.	4.6	25
35	Vascular smooth muscle cell calcification and SLC20 inorganic phosphate transporters: effects of PDGF, TNF-α, and Pi. Pflugers Archiv European Journal of Physiology, 2009, 458, 1151-1161.	2.8	66
36	The Na ⁺ -P _i cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary P _i . American Journal of Physiology - Renal Physiology, 2009, 296, F691-F699.	2.7	149

VICTOR SORRIBAS

#	Article	IF	CITATIONS
37	Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicology and Applied Pharmacology, 2008, 232, 125-134.	2.8	100
38	Interaction of MAP17 with NHERF3/4 induces translocation of the renal Na/Pi IIa transporter to the trans-Golgi. American Journal of Physiology - Renal Physiology, 2007, 292, F230-F242.	2.7	48
39	Characterization of Phosphate Transport in Rat Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1030-1036.	2.4	117
40	Cytotoxicity of peroxisome proliferator-activated receptor α and γ agonists in renal proximal tubular cell lines. Toxicology in Vitro, 2007, 21, 1066-1076.	2.4	12
41	Insulin attenuates vascular smooth muscle calcification but increases vascular smooth muscle cell phosphate transport. Atherosclerosis, 2007, 195, e65-e75.	0.8	43
42	Renal Phosphate–Wasting Disorders. Advances in Chronic Kidney Disease, 2006, 13, 155-165.	1.4	7
43	Acute and chronic changes in cholesterol modulate Na-Pi cotransport activity in OK cells. American Journal of Physiology - Renal Physiology, 2005, 289, F154-F165.	2.7	30
44	Partitioning of NaPi Cotransporter in Cholesterol-, Sphingomyelin-, and Glycosphingolipid-enriched Membrane Domains Modulates NaPi Protein Diffusion, Clustering, and Activity. Journal of Biological Chemistry, 2004, 279, 49160-49171.	3.4	43
45	Rat kidney MAP17 induces cotransport of Na-mannose and Na-glucose inXenopus laevisoocytes. American Journal of Physiology - Renal Physiology, 2003, 285, F799-F810.	2.7	41
46	Interactions of MAP17 with the NaPi-IIa/PDZK1 protein complex in renal proximal tubular cells. American Journal of Physiology - Renal Physiology, 2003, 285, F784-F791.	2.7	52
47	Gentamicin causes endocytosis of Na/Pi cotransporter protein (NaPi-2). Kidney International, 2001, 59, 1024-1036.	5.2	16
48	Role of Thyroid Hormone in Regulation of Renal Phosphate Transport in Young and Aged Rats ¹ . Endocrinology, 1999, 140, 1544-1551.	2.8	87
49	Cellular mechanisms of the age-related decrease in renal phosphate reabsorption. Kidney International, 1996, 50, 855-863.	5.2	36
50	Regulation of opossum kidney (OK) cell Na/Pi cotransport by Pi deprivation involves mRNA stability. Pflugers Archiv European Journal of Physiology, 1995, 430, 459-463.	2.8	45
51	Thyroid hormone stimulation of Na/Pi-cotransport in opossum kidney cells. Pflugers Archiv European Journal of Physiology, 1995, 431, 266-271.	2.8	34
52	Expression of rat ileal Na+-sulphate cotransport in Xenopus laevis oocytes: functional characterization. Pflugers Archiv European Journal of Physiology, 1994, 427, 252-256.	2.8	5
53	Expression of Na/Pi cotransport from opossum kidney cells in Xenopus laevis oocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1178, 141-145.	4.1	9