Jinsong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8835546/publications.pdf

Version: 2024-02-01

125	7,049	35	77
papers	citations	h-index	g-index
137 all docs	137 docs citations	137 times ranked	9717 citing authors

#	Article	IF	CITATIONS
1	Haploinsufficiency in non-homologous end joining factor 1 induces ovarian dysfunction in humans and mice. Journal of Medical Genetics, 2022, 59, 579-588.	1.5	3
2	Homozygous mutations in <i>CCDC34</i> cause male infertility with oligoasthenoteratozoospermia in humans and mice. Journal of Medical Genetics, 2022, 59, 710-718.	1.5	20
3	Structure-based discovery of nonhallucinogenic psychedelic analogs. Science, 2022, 375, 403-411.	6.0	126
4	CEP128 is involved in spermatogenesis in humans and mice. Nature Communications, 2022, 13, 1395.	5.8	23
5	Gonadal mosaicism mediated female-biased gender control in mice. Protein and Cell, 2022, 13, 863-868.	4.8	2
6	Msi2â€mediated MiR7aâ€1 processing repression promotes myogenesis. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 728-742.	2.9	18
7	Epigenetic integrity of paternal imprints enhances the developmental potential of androgenetic haploid embryonic stem cells. Protein and Cell, 2022, 13, 102-119.	4.8	4
8	Cytoplasmic PARP1 links the genome instability to the inhibition of antiviral immunity through PARylating cGAS. Molecular Cell, 2022, 82, 2032-2049.e7.	4.5	31
9	TRIM34 attenuates colon inflammation and tumorigenesis by sustaining barrier integrity. Cellular and Molecular Immunology, 2021, 18, 350-362.	4.8	16
10	Rabl2 GTP hydrolysis licenses BBSomeâ€mediated export to fineâ€ŧune ciliary signaling. EMBO Journal, 2021, 40, e105499.	3.5	26
11	Screening for functional circular RNAs using the CRISPR–Cas13 system. Nature Methods, 2021, 18, 51-59.	9.0	179
12	Constitutive Activity of Serotonin Receptor 6 Regulates Human Cerebral Organoids Formation and Depression-like Behaviors. Stem Cell Reports, 2021, 16, 75-88.	2.3	14
13	Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility. American Journal of Human Genetics, 2021, 108, 309-323.	2.6	74
14	Procr-expressing granulosa cells are highly proliferative and are important for follicle development. IScience, 2021, 24, 102065.	1.9	8
15	The SUN1-SPDYA interaction plays an essential role in meiosis prophase I. Nature Communications, 2021, 12, 3176.	5.8	21
16	Paternal <i>USP26</i> mutations raise Klinefelter syndrome risk in the offspring of mice and humans. EMBO Journal, 2021, 40, e106864.	3 . 5	11
17	5'-UTR SNP of FGF13 causes translational defect and intellectual disability. ELife, 2021, 10, .	2.8	9
18	Small-molecule compounds boost genome-editing efficiency of cytosine base editor. Nucleic Acids Research, 2021, 49, 8974-8986.	6.5	10

#	Article	IF	CITATIONS
19	Lentiviral CRISPR-guided RNA library screening identified Adam17 as an upstream negative regulator of Procr in mammary epithelium. BMC Biotechnology, 2021, 21, 42.	1.7	1
20	Tissue signals imprint Aiolos expression in ILC2s to modulate type 2 immunity. Mucosal Immunology, 2021, 14, 1306-1322.	2.7	15
21	Targeting lysophospholipid acid receptor 1 and ROCK kinases promotes antiviral innate immunity. Science Advances, 2021, 7, eabb5933.	4.7	12
22	Rett syndrome linked to defects in forming the MeCP2/Rbfox/LASR complex in mouse models. Nature Communications, 2021, 12, 5767.	5.8	16
23	Human cell based directed evolution of adenine base editors with improved efficiency. Nature Communications, 2021, 12, 5897.	5.8	15
24	Dynamic crotonylation of EB1 by TIP60 ensures accurate spindle positioning in mitosis. Nature Chemical Biology, 2021, 17, 1314-1323.	3.9	29
25	Preface to the special topic on tissue stem cell research. Science China Life Sciences, 2021, 64, 1995-1997.	2.3	0
26	3D hESC exosomes enriched with miR-6766-3p ameliorates liver fibrosis by attenuating activated stellate cells through targeting the TGF $\hat{1}^2$ RII-SMADS pathway. Journal of Nanobiotechnology, 2021, 19, 437.	4.2	29
27	Temporal regulation of prenatal embryonic development by paternal imprinted loci. Science China Life Sciences, 2020, 63, 1-17.	2.3	66
28	Joint utilization of genetic analysis and semi-cloning technology reveals a digenic etiology of MÃ $\frac{1}{4}$ llerian anomalies. Cell Research, 2020, 30, 91-94.	5.7	10
29	Dosage effect of multiple genes accounts for multisystem disorder of myotonic dystrophy type 1. Cell Research, 2020, 30, 133-145.	5.7	21
30	In vitro expansion of human sperm through nuclear transfer. Cell Research, 2020, 30, 356-359.	5.7	16
31	Chondroitin synthaseâ€3 regulates nucleus pulposus degeneration through actinâ€induced YAP signaling. FASEB Journal, 2020, 34, 16581-16600.	0.2	13
32	Rare deleterious BUB1B variants induce premature ovarian insufficiency and early menopause. Human Molecular Genetics, 2020, 29, 2698-2707.	1.4	13
33	The chromatin remodeler <scp>SRCAP</scp> promotes selfâ€renewal of intestinal stem cells. EMBO Journal, 2020, 39, e103786.	3.5	10
34	A mutation that blocks integrin $\hat{l}\pm4\hat{l}^27$ activation prevents adaptive immune-mediated colitis without increasing susceptibility to innate colitis. BMC Biology, 2020, 18, 64.	1.7	9
35	piRNA-independent function of PIWIL1 as a co-activator for anaphase promoting complex/cyclosome to drive pancreatic cancer metastasis. Nature Cell Biology, 2020, 22, 425-438.	4.6	49
36	LARP7-Mediated U6 snRNA Modification Ensures Splicing Fidelity and Spermatogenesis in Mice. Molecular Cell, 2020, 77, 999-1013.e6.	4.5	41

#	Article	IF	CITATIONS
37	Imbalance of Excitatory/Inhibitory Neuron Differentiation in Neurodevelopmental Disorders with an NR2F1 Point Mutation. Cell Reports, 2020, 31, 107521.	2.9	37
38	Combined application of CRISPR-Cas and stem cells for clinical and basic research. Cell Regeneration, 2020, 9, 19.	1.1	1
39	Combined application of CRISPR-Cas and stem cells for clinical and basic research. Cell Regeneration, 2020, 9, 19.	1.1	4
40	Genome tagging project: tag every protein in mice through â€~artificial spermatids'. National Science Review, 2019, 6, 394-396.	4.6	8
41	Preface to the special topic on genome editing research in China. National Science Review, 2019, 6, 389-390.	4.6	2
42	Targeted genetic screening in mice through haploid embryonic stem cells identifies critical genes in bone development. PLoS Biology, 2019, 17, e3000350.	2.6	15
43	Bi-allelic Mutations in TTC29 Cause Male Subfertility with Asthenoteratospermia in Humans and Mice. American Journal of Human Genetics, 2019, 105, 1168-1181.	2.6	62
44	Distinct enhancer signatures in the mouse gastrula delineate progressive cell fate continuum during embryo development. Cell Research, 2019, 29, 911-926.	5.7	16
45	Technical advances contribute to the study of genomic imprinting. PLoS Genetics, 2019, 15, e1008151.	1.5	16
46	The evolving CRISPR technology. Protein and Cell, 2019, 10, 783-786.	4.8	7
47	PHF7 is a novel histone H2A E3 ligase prior to histone-to-protamine exchange during spermiogenesis. Development (Cambridge), 2019, 146, .	1.2	33
48	Expansion of the mutant monkey through cloning. Science China Life Sciences, 2019, 62, 865-867.	2.3	0
49	â€~Artificial spermatid'-mediated genome editingâ€. Biology of Reproduction, 2019, 101, 538-548.	1.2	8
50	NRDE2 negatively regulates exosome functions by inhibiting MTR4 recruitment and exosome interaction. Genes and Development, 2019, 33, 536-549.	2.7	34
51	SCRE serves as a unique synaptonemal complex fastener and is essential for progression of meiosis prophase I in mice. Nucleic Acids Research, 2019, 47, 5670-5683.	6.5	17
52	VGLL4 plays a critical role in heart valve development and homeostasis. PLoS Genetics, 2019, 15, e1007977.	1.5	40
53	A Translation-Activating Function of MIWI/piRNA during Mouse Spermiogenesis. Cell, 2019, 179, 1566-1581.e16.	13.5	136
54	EMC10 governs male fertility via maintaining sperm ion balance. Journal of Molecular Cell Biology, 2018, 10, 503-514.	1.5	23

#	Article	IF	Citations
55	Haploid embryonic stem cells can be enriched and maintained by simple filtration. Journal of Biological Chemistry, 2018, 293, 5230-5235.	1.6	7
56	Nanoliter-Scale Oil-Air-Droplet Chip-Based Single Cell Proteomic Analysis. Analytical Chemistry, 2018, 90, 5430-5438.	3.2	167
57	CRISPR–Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development. Nature Cell Biology, 2018, 20, 1315-1325.	4.6	54
58	Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Research, 2018, 28, 879-896.	5.7	253
59	The RNA-binding protein ROD1/PTBP3 cotranscriptionally defines AID-loading sites to mediate antibody class switch in mammalian genomes. Cell Research, 2018, 28, 981-995.	5.7	37
60	Efficient CRISPR â€based genome editing using tandem guide RNA s and editable surrogate reporters. FEBS Open Bio, 2018, 8, 1167-1175.	1.0	6
61	Opposing Roles of Acetylation and Phosphorylation in LIFR-Dependent Self-Renewal Growth Signaling in Mouse Embryonic Stem Cells. Cell Reports, 2017, 18, 933-946.	2.9	19
62	Derivation of Haploid Neurons from Mouse Androgenetic Haploid Embryonic Stem Cells. Neuroscience Bulletin, 2017, 33, 361-364.	1.5	11
63	CRISPR-Cas9-mediated genome editing in one blastomere of two-cell embryos reveals a novel Tet3 function in regulating neocortical development. Cell Research, 2017, 27, 815-829.	5.7	35
64	Polar bodies are efficient donors for reconstruction of human embryos for potential mitochondrial replacement therapy. Cell Research, 2017, 27, 1069-1072.	5.7	19
65	One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Cell Research, 2017, 27, 933-945.	5.7	164
66	Trivial role for NSMCE2 during in vitro proliferation and differentiation of male germline stem cells. Reproduction, 2017, 154, 181-195.	1.1	15
67	Ubiquitination-Deficient Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange during Spermiogenesis. Cell, 2017, 169, 1090-1104.e13.	13.5	193
68	Mitochondrial replacement by pre-pronuclear transfer in human embryos. Cell Research, 2017, 27, 834-837.	5.7	12
69	Ubiquitination-Deficient Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange During Spermiogenesis. Obstetrical and Gynecological Survey, 2017, 72, 540-541.	0.2	4
70	Stabilization of mouse haploid embryonic stem cells with combined kinase and signal modulation. Scientific Reports, 2017, 7, 13222.	1.6	14
71	Efficient generation of the mouse model with a defined point mutation through haploid cell-mediated gene editing. Journal of Genetics and Genomics, 2017, 44, 461-463.	1.7	10
72	An intermediate cell state allows rerouting of cell fate. Journal of Biological Chemistry, 2017, 292, 19133-19134.	1.6	3

#	Article	IF	CITATIONS
73	Abnormal Paraventricular Nucleus of Hypothalamus and Growth Retardation Associated with Loss of Nuclear Receptor Gene COUP-TFII. Scientific Reports, 2017, 7, 5282.	1.6	13
74	CRISPR-Cas9-Mediated Gene Editing in Mouse Spermatogonial Stem Cells. Methods in Molecular Biology, 2017, 1622, 293-305.	0.4	9
75	Efficient Generation of Gene-Modified Mice by Haploid Embryonic Stem Cell-Mediated Semi-cloned Technology. Methods in Molecular Biology, 2017, 1498, 121-133.	0.4	12
76	Generation of human haploid embryonic stem cells from parthenogenetic embryos obtained by microsurgical removal of male pronucleus. Cell Research, 2016, 26, 743-746.	5.7	35
77	Tet Enzymes Regulate Telomere Maintenance and Chromosomal Stability of Mouse ESCs. Cell Reports, 2016, 15, 1809-1821.	2.9	67
78	Generation and application of mammalian haploid embryonic stem cells. Journal of Internal Medicine, 2016, 280, 236-245.	2.7	22
79	Questions about NgAgo. Protein and Cell, 2016, 7, 913-915.	4.8	24
80	Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9. Journal of Genetics and Genomics, 2016, 43, 289-296.	1.7	5
81	Parthenogenetic haploid embryonic stem cells efficiently support mouse generation by oocyte injection. Cell Research, 2016, 26, 131-134.	5.7	38
82	Similarity of epigenetic reprogramming in primordial germ cells between human and mouse. National Science Review, 2015, 2, 384-384.	4.6	1
83	Stem cell, basis and application. Science Bulletin, 2015, 60, 1711-1712.	4.3	5
84	Mediator Med23 deficiency enhances neural differentiation of murine embryonic stem cells through modulating BMP signaling. Development (Cambridge), 2015, 142, 465-76.	1.2	24
85	Generation of embryonic stem cells from mouse adipose-tissue derived cells via somatic cell nuclear transfer. Cell Cycle, 2015, 14, 1282-1290.	1.3	8
86	CRISPR-Cas9-Mediated Genetic Screening in Mice with Haploid Embryonic Stem Cells Carrying a Guide RNA Library. Cell Stem Cell, 2015, 17, 221-232.	5.2	91
87	Histone deacetylation promotes mouse neural induction by restricting Nodal-dependent mesendoderm fate. Nature Communications, 2015, 6, 6830.	5.8	25
88	CRISPR germline engineeringâ€"the community speaks. Nature Biotechnology, 2015, 33, 478-486.	9.4	110
89	Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Research, 2015, 25, 67-79.	5.7	209
90	The transcription factor Pou3f1 promotes neural fate commitment via activation of neural lineage genes and inhibition of external signaling pathways. ELife, 2014, 3, .	2.8	213

#	Article	IF	CITATIONS
91	Next-Generation Models of Human Cardiogenesis via Genome Editing. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a013920-a013920.	2.9	4
92	The Adipose-Derived Lineage-Negative Cells Are Enriched Mesenchymal Stem Cells and Promote Limb Ischemia Recovery in Mice. Stem Cells and Development, 2014, 23, 363-371.	1.1	13
93	Stimulation of Somatic Cell Reprogramming by ERas-Akt-FoxO1 Signaling Axis. Stem Cells, 2014, 32, 349-363.	1.4	40
94	Active and Passive Demethylation of Male and Female Pronuclear DNA in the Mammalian Zygote. Cell Stem Cell, 2014, 15, 447-459.	5.2	311
95	Genome-wide mapping of miRNAs expressed in embryonic stem cells and pluripotent stem cells generated by different reprogramming strategies. BMC Genomics, 2014, 15, 488.	1.2	21
96	The Roles of Testicular C-kit Positive Cells in De novo Morphogenesis of Testis. Scientific Reports, 2014, 4, 5936.	1.6	33
97	Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9. Cell Stem Cell, 2013, 13, 659-662.	5.2	541
98	piRNA-Triggered MIWI Ubiquitination and Removal by APC/C in Late Spermatogenesis. Developmental Cell, 2013, 24, 13-25.	3.1	107
99	Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Research, 2013, 23, 92-106.	5.7	124
100	Mice cloned from white adipose tissue-derived cells. Journal of Molecular Cell Biology, 2013, 5, 348-350.	1.5	5
101	Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Research, 2013, 23, 1187-1200.	5.7	106
102	Generation of Genetically Modified Mice by Oocyte Injection of Androgenetic Haploid Embryonic Stem Cells. Cell, 2012, 149, 605-617.	13.5	168
103	Haploid embryonic stem cells: an ideal tool for mammalian genetic analyses. Protein and Cell, 2012, 3, 806-810.	4.8	9
104	Human foreskin fibroblast produces interleukin-6 to support derivation and self-renewal of mouse embryonic stem cells. Stem Cell Research and Therapy, 2012, 3, 29.	2.4	9
105	The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 2011, 477, 606-610.	13.7	969
106	Calcineurin-NFAT Signaling Critically Regulates Early Lineage Specification in Mouse Embryonic Stem Cells and Embryos. Cell Stem Cell, 2011, 8, 46-58.	5.2	89
107	Defects in Trophoblast Cell Lineage Account for the Impaired InÂVivo Development of Cloned Embryos Generated by Somatic Nuclear Transfer. Cell Stem Cell, 2011, 8, 371-375.	5.2	47
108	Reprogramming of mouse and human somatic cells by highâ€performance engineered factors. EMBO Reports, 2011, 12, 373-378.	2.0	81

#	Article	IF	CITATIONS
109	Mice generated after round spermatid injection into haploid two-cell blastomeres. Cell Research, 2011, 21, 854-858.	5.7	10
110	Different developmental potential of pluripotent stem cells generated by different reprogramming strategies. Journal of Molecular Cell Biology, 2011, 3, 197-199.	1.5	23
111	Differentiation character of adult mesenchymal stem cells and transfection of MSCs with lentiviral vectors. Journal of Huazhong University of Science and Technology [Medical Sciences], 2010, 30, 687-693.	1.0	7
112	E-Cadherin-Mediated Cell–Cell Contact Is Critical for Induced Pluripotent Stem Cell Generation Â. Stem Cells, 2010, 28, 1315-1325.	1.4	207
113	Stk40 links the pluripotency factor Oct4 to the Erk/MAPK pathway and controls extraembryonic endoderm differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1402-1407.	3.3	64
114	High-efficiency somatic reprogramming induced by intact MII oocytes. Cell Research, 2010, 20, 1034-1042.	5.7	17
115	Germline-Competent Mouse-Induced Pluripotent Stem Cell Lines Generated on Human Fibroblasts without Exogenous Leukemia Inhibitory Factor. PLoS ONE, 2009, 4, e6724.	1.1	29
116	More synergetic cooperation of Yamanaka factors in induced pluripotent stem cells than in embryonic stem cells. Cell Research, 2009, 19, 1127-1138.	5.7	49
117	Nuclear Transfer-Mediated Rescue of the Nuclear Genome of Nonviable Mouse Cells Frozen Without Cryoprotectant. Biology of Reproduction, 2008, 79, 588-593.	1.2	27
118	Mice cloned from skin cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2738-2743.	3.3	67
119	Non-equivalence of cloned and clonal mice. Current Biology, 2005, 15, R756-R757.	1.8	18
120	Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature, 2004, 428, 393-399.	13.7	247
121	Flow cytometric cell-cycle analysis of cultured fibroblasts from the giant panda, Ailuropoda melanoleuca L Cell Biology International, 2003, 27, 349-353.	1.4	17
122	Rotation of Meiotic Spindle Is Controlled by Microfilaments in Mouse Oocytes1. Biology of Reproduction, 2003, 68, 943-946.	1.2	86
123	Interspecies Implantation and Mitochondria Fate of Panda-Rabbit Cloned Embryos1. Biology of Reproduction, 2002, 67, 637-642.	1.2	125
124	Serial nuclear transfer improves the development of interspe-cies reconstructed giant panda (Aluropoda melanoleuca) em-bryos. Science Bulletin, 2002, 47, 467.	1.7	12
125	Nuclear transfer using nonquiescent adult fibroblasts from a bovine ear. Science Bulletin, 1999, 44, 1971-1974.	1.7	4