Elsayed M Zahran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8835478/publications.pdf

Version: 2024-02-01

430874 395702 1,121 37 18 33 citations g-index h-index papers 38 38 38 1625 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Reagentless electrochemical biosensors through incorporation of unnatural amino acids on the protein structure. Biosensors and Bioelectronics, 2022, 200, 113861.	10.1	4
2	Hierarchical Core–Shell ACOF-1@BiOBr as an Efficient Photocatalyst for the Degradation of Emerging Organic Contaminants. Journal of Physical Chemistry C, 2022, 126, 2503-2516.	3.1	14
3	Mechanistic analysis identifying reaction pathways for rapid reductive photodebromination of polybrominated diphenyl ethers using BiVO ₄ /BiOBr/Pd heterojunction nanocomposite photocatalyst. Environmental Science: Nano, 2022, 9, 1106-1115.	4.3	4
4	Cu ₂ O nanoparticle-catalyzed synthesis of diaryl tetrazolones and investigation of their solid-state properties. CrystEngComm, 2021, 23, 3220-3229.	2.6	3
5	Halide Effects in BiVO ₄ /BiOX Heterostructures Decorated with Pd Nanoparticles for Photocatalytic Degradation of Rhodamine B as a Model Organic Pollutant. ACS Applied Nano Materials, 2021, 4, 3262-3272.	5.0	28
6	Anion-Selective Electrodes Based On a CH-Hydrogen Bonding Bis-macrocyclic Ionophore with a Clamshell Architecture. Analytical Chemistry, 2021, 93, 5412-5419.	6.5	7
7	Persistence of aerially-sprayed naled in coastal sediments. Science of the Total Environment, 2021, 794, 148701.	8.0	3
8	Design of Pd-Decorated SrTiO ₃ /BiOBr Heterojunction Materials for Enhanced Visible-Light-Based Photocatalytic Reactivity. Langmuir, 2021, 37, 11986-11995.	3.5	4
9	Cu2S@Bi2S3 Double-Shelled Hollow Cages as a Nanocatalyst with Substantial Activity in Peroxymonosulfate Activation for Atrazine Degradation. ACS Applied Nano Materials, 2021, 4, 12222-12234.	5.0	8
10	Persistence of aerially applied mosquito-pesticide, Naled, in fresh and marine waters. Science of the Total Environment, 2020, 725, 138391.	8.0	2
11	Self-healing behaviour of furan–maleimide poly(ionic liquid) covalent adaptable networks. Polymer Chemistry, 2020, 11, 5321-5326.	3.9	12
12	Size-Controlled SrTiO ₃ Nanoparticles Photodecorated with Pd Cocatalysts for Photocatalytic Organic Dye Degradation. ACS Applied Nano Materials, 2020, 3, 4904-4912.	5.0	23
13	Amino Acids for the Sustainable Production of Cu ₂ 0 Materials: Effects on Morphology and Photocatalytic Reactivity. ACS Sustainable Chemistry and Engineering, 2019, 7, 17055-17064.	6.7	10
14	Conjugation of Carbon Dots with \hat{l}^2 -Galactosidase Enzyme: Surface Chemistry and Use in Biosensing. Molecules, 2019, 24, 3275.	3.8	19
15	Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Applied Catalysis B: Environmental, 2019, 248, 157-166.	20.2	165
16	Miniaturization overcomes macro sample analysis limitations: Salicylate-selective polystyrene nanoparticle-modified optical sensor. Talanta, 2019, 196, 436-441.	5.5	4
17	Cyanostar: C–H Hydrogen Bonding Neutral Carrier Scaffold for Anion-Selective Sensors. Analytical Chemistry, 2018, 90, 1925-1933.	6.5	32
18	Covalently Crosslinked 1,2,3-Triazolium-Containing Polyester Networks: Thermal, Mechanical, and Conductive Properties. ACS Omega, 2018, 3, 13442-13453.	3.5	18

#	Article	IF	CITATIONS
19	Metal oxide semiconductor nanomaterial for reductive debromination: Visible light degradation of polybrominated diphenyl ethers by Cu2O@Pd nanostructures. Applied Catalysis B: Environmental, 2017, 213, 147-154.	20.2	42
20	Pd-decorated m-BiVO ₄ /BiOBr ternary composite with dual heterojunction for enhanced photocatalytic activity. Journal of Materials Chemistry A, 2017, 5, 529-534.	10.3	72
21	Correlating the potentiometric selectivity of cyclosporin-based electrodes with binding patterns obtained from electrospray ionization-mass spectrometry. Analyst, The, 2017, 142, 3241-3249.	3.5	2
22	Potential Impacts of PCBs on Sediment Microbiomes in a Tropical Marine Environment. Journal of Marine Science and Engineering, 2016, 4, 13.	2.6	1
23	Converting Light Energy to Chemical Energy: A New Catalytic Approach for Sustainable Environmental Remediation. ACS Omega, 2016, 1, 41-51.	3.5	12
24	Thermal, mechanical and conductive properties of imidazolium-containing thiol-ene poly(ionic liquid) networks. Polymer, 2016, 100, 1-9.	3.8	34
25	Direct Synthetic Control over the Size, Composition, and Photocatalytic Activity of Octahedral Copper Oxide Materials: Correlation Between Surface Structure and Catalytic Functionality. ACS Applied Materials & Synthesis (2015), 7, 13238-13250.	8.0	34
26	Preorganized composite material of polyanilineâ€"palladium nanoparticles with high electrocatalytic activity to methanol and ethanol oxidation. International Journal of Hydrogen Energy, 2015, 40, 6745-6753.	7.1	36
27	Light-Activated Tandem Catalysis Driven by Multicomponent Nanomaterials. Journal of the American Chemical Society, 2014, 136, 32-35.	13.7	94
28	Polymeric plasticizer extends the lifetime of PVC-membrane ion-selective electrodes. Analyst, The, 2014, 139, 757-763.	3.5	48
29	Reactivity of Pd/Fe bimetallic nanotubes in dechlorination of coplanar polychlorinated biphenyls. Chemosphere, 2013, 91, 165-171.	8.2	31
30	Palladium nanoparticle-decorated iron nanotubes hosted in a polycarbonate porous membrane: development, characterization, and performance as electrocatalysts of ascorbic acid. Analytical and Bioanalytical Chemistry, 2012, 404, 1637-1642.	3.7	6
31	Development of reactive Pd/Fe bimetallic nanotubes for dechlorination reactions. Journal of Materials Chemistry, 2011, 21, 10454.	6.7	24
32	Ion-Selective Electrodes Based on a Pyridyl-Containing Triazolophane: Altering Halide Selectivity by Combining Dipole-Promoted Cooperativity with Hydrogen Bonding. Analytical Chemistry, 2011, 83, 3455-3461.	6.5	45
33	Can Temperature Be Used To Tune the Selectivity of Membrane Ion-Selective Electrodes?. Analytical Chemistry, 2010, 82, 3622-3628.	6.5	16
34	Triazolophanes: A New Class of Halide-Selective Ionophores for Potentiometric Sensors. Analytical Chemistry, 2010, 82, 368-375.	6.5	70
35	Novel solid-state cadmium ion-selective electrodes based on its tetraiodo- and tetrabromo-ion pairs with cetylpyridinium. Journal of Electroanalytical Chemistry, 2005, 576, 205-213.	3.8	29
36	A Novel Membrane Sensor for Histamine H1-Receptor Antagonist "Fexofenadine". Analytical Sciences, 2004, 20, 1137-1142.	1.6	23

#	Article	IF	CITATIONS
37	Ionophore-based ion-selective potentiometric and optical sensors. Analytical and Bioanalytical Chemistry, 2003, 376, 328-341.	3.7	134