
Yaogang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8835420/publications.pdf Version: 2024-02-01

VAOCANCLI

#	Article	IF	CITATIONS
1	Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280.	47.7	2,379
2	3D Freezeâ€Casting of Cellular Graphene Films for Ultrahighâ€Powerâ€Density Supercapacitors. Advanced Materials, 2016, 28, 6719-6726.	21.0	390
3	Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Science Advances, 2015, 1, e1500533.	10.3	312
4	Highly Conductive, Flexible, and Compressible Allâ€Graphene Passive Electronic Skin for Sensing Human Touch. Advanced Materials, 2014, 26, 5018-5024.	21.0	273
5	Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Materials Horizons, 2017, 4, 1145-1150.	12.2	222
6	Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells. ACS Catalysis, 2019, 9, 7-15.	11.2	189
7	Ultrathin, Washable, and Largeâ€Area Graphene Papers for Personal Thermal Management. Small, 2017, 13, 1702645.	10.0	177
8	Advanced Functional Fiber and Smart Textile. Advanced Fiber Materials, 2019, 1, 3-31.	16.1	169
9	Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nature Communications, 2018, 9, 590.	12.8	159
10	High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO ₂ nanorod and graphene/Ag hybrid thin-film electrodes. Journal of Materials Chemistry C, 2013, 1, 1245-1251.	5.5	156
11	An Elastic Transparent Conductor Based on Hierarchically Wrinkled Reduced Graphene Oxide for Artificial Muscles and Sensors. Advanced Materials, 2016, 28, 9491-9497.	21.0	147
12	Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nature Communications, 2021, 12, 1587.	12.8	143
13	Morphology-tailored synthesis of vertically aligned 1D WO ₃ nano-structure films for highly enhanced electrochromic performance. Journal of Materials Chemistry A, 2013, 1, 684-691.	10.3	140
14	Fluoroalkylsilane-Modified Textile-Based Personal Energy Management Device for Multifunctional Wearable Applications. ACS Applied Materials & Interfaces, 2016, 8, 4676-4683.	8.0	130
15	Continuous and scalable manufacture of amphibious energy yarns and textiles. Nature Communications, 2019, 10, 868.	12.8	121
16	All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nature Communications, 2019, 10, 5541.	12.8	121
17	A highly integrated sensing paper for wearable electrochemical sweat analysis. Biosensors and Bioelectronics, 2021, 174, 112828.	10.1	113
18	MXene-Coated Air-Permeable Pressure-Sensing Fabric for Smart Wear. ACS Applied Materials & Interfaces, 2020, 12, 46446-46454.	8.0	111

#	Article	IF	CITATIONS
19	Aluminum″on″ntercalation Supercapacitors with Ultrahigh Areal Capacitance and Highly Enhanced Cycling Stability: Power Supply for Flexible Electrochromic Devices. Small, 2017, 13, 1700380.	10.0	107
20	High-performance all-solid-state yarn supercapacitors based on porous graphene ribbons. Nano Energy, 2015, 12, 26-32.	16.0	101
21	Highâ€Performance Flexible Thermoelectric Devices Based on Allâ€Inorganic Hybrid Films for Harvesting Lowâ€Grade Heat. Advanced Functional Materials, 2019, 29, 1900304.	14.9	97
22	A Moisture-Wicking Passive Radiative Cooling Hierarchical Metafabric. ACS Nano, 2022, 16, 2188-2197.	14.6	96
23	A multi-responsive water-driven actuator with instant and powerful performance for versatile applications. Scientific Reports, 2015, 5, 9503.	3.3	91
24	Synergistic Solvation and Interface Regulations of Ecoâ€Friendly Silk Peptide Additive Enabling Stable Aqueous Zincâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	91
25	Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high-performance electrochromism. Materials Horizons, 2019, 6, 571-579.	12.2	90
26	S, N Co-Doped Graphene Quantum Dot/TiO2 Composites for Efficient Photocatalytic Hydrogen Generation. Nanoscale Research Letters, 2017, 12, 400.	5.7	87
27	Stable Hydrogel Electrolytes for Flexible and Submarine-Use Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 46005-46014.	8.0	87
28	Lattice-contraction triggered synchronous electrochromic actuator. Nature Communications, 2018, 9, 4798.	12.8	80
29	Facilitating Interfacial Stability Via Bilayer Heterostructure Solid Electrolyte Toward Highâ€energy, Safe and Adaptable Lithium Batteries. Advanced Energy Materials, 2020, 10, 2000709.	19.5	79
30	Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. Journal of Materials Chemistry, 2012, 22, 14991.	6.7	76
31	Self-seeded growth of nest-like hydrated tungsten trioxide film directly on FTO substrate for highly enhanced electrochromic performance. Journal of Materials Chemistry A, 2014, 2, 11305-11310.	10.3	70
32	Abrasion Resistant/Waterproof Stretchable Triboelectric Yarns Based on Fermat Spirals. Advanced Materials, 2021, 33, e2100782.	21.0	68
33	Facile growth of vertically aligned BiOCl nanosheet arrays on conductive glass substrate with high photocatalytic properties. Journal of Materials Chemistry, 2012, 22, 16851.	6.7	67
34	Self-weaving WO3 nanoflake films with greatly enhanced electrochromic performance. Journal of Materials Chemistry, 2012, 22, 16633.	6.7	65
35	A high efficiency microreactor with Pt/ZnO nanorod arrays on the inner wall for photodegradation of phenol. Journal of Hazardous Materials, 2013, 254-255, 318-324.	12.4	65
36	Modifying Perovskite Films with Polyvinylpyrrolidone for Ambient-Air-Stable Highly Bendable Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 35385-35394.	8.0	64

#	Article	IF	CITATIONS
37	Spray coated ultrathin films from aqueous tungsten molybdenum oxide nanoparticle ink for high contrast electrochromic applications. Journal of Materials Chemistry C, 2016, 4, 33-38.	5.5	63
38	Selfâ€Powered Interactive Fiber Electronics with Visual–Digital Synergies. Advanced Materials, 2021, 33, e2104681.	21.0	58
39	Aqueous synthesis of color-tunable and stable Mn ²⁺ -doped ZnSe quantum dots. Journal of Materials Chemistry, 2011, 21, 151-156.	6.7	56
40	Controllable growth of high-quality metal oxide/conducting polymer hierarchical nanoarrays with outstanding electrochromic properties and solar-heat shielding ability. Journal of Materials Chemistry A, 2014, 2, 13541-13549.	10.3	56
41	Facile fabrication of a magnetically induced structurally colored fiber and its strain-responsive properties. Journal of Materials Chemistry A, 2015, 3, 11093-11097.	10.3	54
42	Highly Integrable Thermoelectric Fiber. ACS Applied Materials & Interfaces, 2020, 12, 33297-33304.	8.0	54
43	Highly Strong and Elastic Graphene Fibres Prepared from Universal Graphene Oxide Precursors. Scientific Reports, 2014, 4, 4248.	3.3	53
44	Wicking–Polarizationâ€Induced Water Cluster Size Effect on Triboelectric Evaporation Textiles. Advanced Materials, 2021, 33, e2007352.	21.0	53
45	Low shrinkage light curable dental nanocomposites using SiO2 microspheres as fillers. Materials Science and Engineering C, 2012, 32, 2115-2121.	7.3	52
46	Dual-Mechanism and Multimotion Soft Actuators Based on Commercial Plastic Film. ACS Applied Materials & Interfaces, 2018, 10, 15122-15128.	8.0	52
47	Aqueous synthesis of high bright and tunable near-infrared AgInSe 2 –ZnSe quantum dots for bioimaging. Journal of Colloid and Interface Science, 2016, 463, 1-7.	9.4	49
48	Solutionâ€Processed Porous Tungsten Molybdenum Oxide Electrodes for Energy Storage Smart Windows. Advanced Materials Technologies, 2017, 2, 1700047.	5.8	48
49	Continuously Processed, Long Electrochromic Fibers with Multi-Environmental Stability. ACS Applied Materials & Interfaces, 2020, 12, 28451-28460.	8.0	48
50	Fabrication of large-area and high-crystallinity photoreduced graphene oxide films via reconstructed two-dimensional multilayer structures. NPG Asia Materials, 2014, 6, e119-e119.	7.9	47
51	Prepolymerization-assisted fabrication of an ultrathin immobilized layer to realize a semi-embedded wrinkled AgNW network for a smart electrothermal chromatic display and actuator. Journal of Materials Chemistry C, 2017, 5, 9778-9785.	5.5	46
52	Self-powered multifunctional UV and IR photodetector as an artificial electronic eye. Journal of Materials Chemistry C, 2017, 5, 1436-1442.	5.5	45
53	1T-Molybdenum disulfide/reduced graphene oxide hybrid fibers as high strength fibrous electrodes for wearable energy storage. Journal of Materials Chemistry A, 2019, 7, 3143-3149.	10.3	45
54	CaSi2O2N2:Eu nanofiber mat based on electrospinning: facile synthesis, uniform arrangement, and application in white LEDs. Journal of Materials Chemistry, 2011, 21, 17790.	6.7	44

#	Article	lF	CITATIONS
55	A remote controllable fiber-type near-infrared light-responsive actuator. Chemical Communications, 2017, 53, 11118-11121.	4.1	43
56	Reduced graphene oxide functionalized stretchable and multicolor electrothermal chromatic fibers. Journal of Materials Chemistry C, 2017, 5, 11448-11453.	5.5	41
57	Thermochromic Hydrogel-Functionalized Textiles for Synchronous Visual Monitoring of On-Demand <i>In Vitro</i> Drug Release. ACS Applied Materials & Interfaces, 2020, 12, 51225-51235.	8.0	39
58	High performance stretchable fibrous supercapacitors and flexible strain sensors based on CNTs/MXene-TPU hybrid fibers. Electrochimica Acta, 2021, 395, 139141.	5.2	38
59	In Situ Functionalization of Stable 3D Nestâ€Like Networks in Confined Channels for Microfluidic Enrichment and Detection. Advanced Functional Materials, 2014, 24, 1017-1026.	14.9	37
60	Thermally Responsive Photonic Fibers Consisting of Chained Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 50844-50851.	8.0	37
61	Redispersible and water-soluble LaF3:Ce,Tb nanocrystals via a microfluidic reactor with temperature steps. Journal of Materials Chemistry, 2008, 18, 5060.	6.7	36
62	Lightweight, highly bendable and foldable electrochromic films based on all-solution-processed bilayer nanowire networks. Journal of Materials Chemistry C, 2016, 4, 5849-5857.	5.5	34
63	Construction of hydrated tungsten trioxide nanosheet films for efficient electrochromic performance. RSC Advances, 2015, 5, 196-201.	3.6	33
64	Highâ€Performance Ionic Thermoelectric Supercapacitor for Integrated Energy Conversionâ€Storage. Energy and Environmental Materials, 2022, 5, 954-961.	12.8	33
65	Transparent Metal–Organic Framework-Based Gel Electrolytes for Generalized Assembly of Quasi-Solid-State Electrochromic Devices. ACS Applied Materials & Interfaces, 2020, 12, 42955-42961.	8.0	32
66	Facile crystallization control of LaF3/LaPO4:Ce, Tb nanocrystals in a microfluidic reactor using microwave irradiation. Journal of Materials Chemistry, 2010, 20, 1766.	6.7	31
67	White light emission from Mn-doped ZnSe d-dots synthesized continuously in microfluidic reactors. Journal of Materials Chemistry, 2011, 21, 17972.	6.7	31
68	Largeâ€Grained Perovskite Films Enabled by Oneâ€Step Meniscusâ€Assisted Solution Printing of Crossâ€Aligned Conductive Nanowires for Biodegradable Flexible Solar Cells. Advanced Energy Materials, 2020, 10, 2001185.	19.5	31
69	Flexible 3D Porous MoS ₂ /CNTs Architectures with <i>ZT</i> of 0.17 at Room Temperature for Wearable Thermoelectric Applications. Advanced Functional Materials, 2020, 30, 2002508.	14.9	31
70	Metal–Organic Frameworkâ€Derived Nickel/Cobaltâ€Based Nanohybrids for Sensing Nonâ€Enzymatic Glucose. ChemElectroChem, 2020, 7, 4446-4452.	3.4	30
71	Molar ratio of In to urea directed formation of In2O3 hierarchical structures: cubes and nanorod-flowers. CrystEngComm, 2011, 13, 2557.	2.6	27
72	Fabrication of magnetic field induced structural colored films with tunable colors and its application on security materials. Journal of Colloid and Interface Science, 2017, 485, 18-24.	9.4	27

#	Article	IF	CITATIONS
73	Skeleton-Structure WS2@CNT Thin-Film Hybrid Electrodes for High-Performance Quasi-Solid-State Flexible Supercapacitors. Frontiers in Chemistry, 2020, 8, 442.	3.6	27
74	One-pot Hydrothermal Synthesis of N-Doped Carbon Quantum Dots Using the Waste of Shrimp for Hydrogen Evolution from Formic Acid. Chemistry Letters, 2015, 44, 241-243.	1.3	26
75	Facile fabrication of magnetically responsive PDMS fiber for camouflage. Journal of Colloid and Interface Science, 2016, 483, 11-16.	9.4	26
76	A kirigami-inspired island-chain design for wearable moistureproof perovskite solar cells with high stretchability and performance stability. Nanoscale, 2020, 12, 3646-3656.	5.6	26
77	Emerging Two-dimensional Materials Constructed Nanofluidic Fiber: Properties, Preparation and Applications. Advanced Fiber Materials, 2022, 4, 129-144.	16.1	26
78	Nitridation from core-shell oxides for tunable luminescence of BaSi2O2N2 : Eu2Â+ LED phosphors. Journal of Materials Chemistry, 2010, 20, 6050.	6.7	24
79	Functionalization of PNIPAAm microgels using magnetic graphene and their application in microreactors as switch materials. Journal of Materials Chemistry, 2011, 21, 10512.	6.7	24
80	Single-walled carbon nanotubes/polyaniline-coated polyester thermoelectric textile with good interface stability prepared by ultrasonic induction. RSC Advances, 2016, 6, 90347-90353.	3.6	24
81	Microfluidic spinning of editable polychromatic fibers. Journal of Colloid and Interface Science, 2020, 558, 115-122.	9.4	24
82	A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF). Journal of Colloid and Interface Science, 2022, 616, 326-337.	9.4	24
83	Antisolvent-Derived Intermediate Phases for Low-Temperature Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 6477-6486.	5.1	23
84	Composite Solid Electrolytes: Facilitating Interfacial Stability Via Bilayer Heterostructure Solid Electrolyte Toward Highâ€energy, Safe and Adaptable Lithium Batteries (Adv. Energy Mater. 31/2020). Advanced Energy Materials, 2020, 10, 2070131.	19.5	23
85	Ultra-stretchable, self-adhesive, transparent, and ionic conductive organohydrogel for flexible sensor. APL Materials, 2021, 9, .	5.1	23
86	NiCo–NiCoO2/carbon hollow nanocages for non-enzyme glucose detection. Electrochimica Acta, 2021, 381, 138259.	5.2	22
87	Structure and crystallization of ZnO-B2O3-P2O5 glasses. Glass Physics and Chemistry, 2011, 37, 29-33.	0.7	21
88	Peptization–Hydrothermal Method as a Surfactantâ€Free Process toward Nanorodâ€Like Anatase TiO ₂ Nanocrystals. European Journal of Inorganic Chemistry, 2009, 2009, 4078-4084.	2.0	20
89	Low-temperature preparation of monodispersed Eu-doped CaTiO3 LED phosphors with controllable morphologies. CrystEngComm, 2012, 14, 2094.	2.6	20
90	Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors. Oncotarget, 2016, 7, 2855-2866.	1.8	19

#	Article	IF	CITATIONS
91	Integrated Ionicâ€Additive Assisted Wetâ€6pinning of Highly Conductive and Stretchable PEDOT:PSS Fiber for Fibrous Organic Electrochemical Transistors. Advanced Electronic Materials, 2021, 7, 2100231.	5.1	19
92	A flexible metallic actuator using reduced graphene oxide as a multifunctional component. Nanoscale, 2017, 9, 12963-12968.	5.6	18
93	ZnS–CdS–TaON nanocomposites with enhanced stability and photocatalytic hydrogen evolution activity. Journal of Sol-Gel Science and Technology, 2019, 91, 82-91.	2.4	18
94	High Volumetric Energy Density Asymmetric Fibrous Supercapacitors with Coaxial Structure Based on Graphene/MnO ₂ Hybrid Fibers. ChemElectroChem, 2020, 7, 4641-4648.	3.4	18
95	Preparation of Core/Shell Structured Rutile/Anatase Photocatalyst via Vapor Phase Hydrolysis and its Photocatalytic Degradation of Phenol and Methylene Blue. Journal of the American Ceramic Society, 2012, 95, 1927-1932.	3.8	17
96	Stretchable electrothermochromic fibers based on hierarchical porous structures with electrically conductive dual-pathways. Science China Materials, 2020, 63, 2582-2589.	6.3	17
97	Mechanical design of brush coating technology for the alignment of one-dimension nanomaterials. Journal of Colloid and Interface Science, 2021, 583, 188-195.	9.4	15
98	Core-shell structured SiO2@ZrO2@SiO2 filler for radiopacity and ultra-low shrinkage dental composite resins. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104593.	3.1	15
99	Electrochemical Actuators with Multicolor Changes and Multidirectional Actuation. Small, 2022, 18, e2107778.	10.0	15
100	Rapid formation of superelastic 3D reduced graphene oxide networks with simultaneous removal of HI utilizing NIR irradiation. Journal of Materials Chemistry A, 2015, 3, 9882-9889.	10.3	14
101	Highly Aligned Molybdenum Trioxide Nanobelts for Flexible Thin-Film Transistors and Supercapacitors: Macroscopic Assembly and Anisotropic Electrical Properties. ACS Applied Nano Materials, 2019, 2, 1466-1471.	5.0	14
102	Flexible photodetector based on cotton coated with reduced graphene oxide and sulfur and nitrogen co-doped graphene quantum dots. Journal of Materials Science, 2019, 54, 3242-3251.	3.7	14
103	Laser irradiated self-supporting and flexible 3-dimentional graphene-based film electrode with promising electrochemical properties. RSC Advances, 2015, 5, 47074-47079.	3.6	13
104	Solvatochromic structural color fabrics with favorable wearability properties. Journal of Materials Chemistry C, 2019, 7, 4855-4862.	5.5	13
105	Independent dual-responsive Janus chromic fibers. Science China Materials, 2021, 64, 1770-1779.	6.3	13
106	ZnO/Mg–Al layered double hydroxides as strongly adsorptive photocatalysts. Research on Chemical Intermediates, 2009, 35, 685-692.	2.7	12
107	Controllable construction of Titanium dioxide-Zirconium dioxide@Zinc hydroxyfluoride networks in micro-capillaries for bio-analysis. Journal of Colloid and Interface Science, 2015, 446, 290-297.	9.4	12
108	Flow Effects on the Controlled Growth of Nanostructured Networks at Microcapillary Walls for Applications in Continuous Flow Reactions. ACS Applied Materials & Interfaces, 2015, 7, 21580-21588.	8.0	12

#	Article	IF	CITATIONS
109	Three-dimensional ordered titanium dioxide-zirconium dioxide film-based microfluidic device for efficient on-chip phosphopeptide enrichment. Journal of Colloid and Interface Science, 2016, 478, 227-235.	9.4	12
110	Visibly vapor-responsive structurally colored carbon fibers prepared by an electrophoretic deposition method. RSC Advances, 2016, 6, 16319-16322.	3.6	12
111	Light-driven artificial muscles based on electrospun microfiber yarns. Science China Technological Sciences, 2019, 62, 965-970.	4.0	12
112	Highly efficient walking perovskite solar cells based on thermomechanical polymer films. Journal of Materials Chemistry A, 2019, 7, 26154-26161.	10.3	12
113	Microstructural origin of selective water oxidation to hydrogen peroxide at low overpotentials: a study on Mn-alloyed TiO ₂ . Journal of Materials Chemistry A, 2021, 9, 18498-18505.	10.3	12
114	Enhanced fluorescence and heat dissipation of calcium titanate red phosphor based on silver coating. Journal of Colloid and Interface Science, 2015, 459, 44-52.	9.4	9
115	Environmentâ€sensitive carbon nanotube/polymer composite microhydrogels synthesized via a microfluidic reactor. Journal of Applied Polymer Science, 2013, 127, 2422-2426.	2.6	8
116	Photoelectrocatalytic microfluidic reactors utilizing hierarchical TiO ₂ nanotubes for determination of chemical oxygen demand. RSC Advances, 2016, 6, 49824-49830.	3.6	8
117	Capillary force driven printing of asymmetric Na-ion micro-supercapacitors. Journal of Materials Chemistry A, 2020, 8, 22083-22089.	10.3	8
118	Structure and chemical durability of ZnO–B2O3–P2O5–R n O m glass system with Fe2O3 additive. Glass Physics and Chemistry, 2015, 41, 467-473.	0.7	7
119	An electrically controllable all-solid-state Au@graphene oxide actuator. Chemical Communications, 2016, 52, 5816-5819.	4.1	7
120	Facile synthesis of 3D hierarchical micro-/nanostructures in capillaries for efficient capture of circulating tumor cells. Journal of Colloid and Interface Science, 2020, 575, 108-118.	9.4	7
121	Synthesis of Mesoporous (Ga _{1â^'} <i>_x</i> O <i>< Using Layered Double Hydroxides as Precursors for Enhanced Visibleâ€Light Driven H₂ Production. Chinese Journal of Chemistry, 2017, 35, 196-202.</i>	sub>x4.9	ub>)
122	Carbon-based thin-film actuator with 1D to 2D transitional structure applied in smart clothing. Carbon, 2020, 168, 546-552.	10.3	5
123	Synthesis and characterization of biodegradable block copolymer pluronicâ€ <i>b</i> â€poly(<scp>L</scp> â€lysine). Journal of Applied Polymer Science, 2009, 112, 3371-3379.	2.6	4
124	Design, Synthesis and Characterization of A Novel Cationic Polymer Poly(lactic acid- <i>b</i> -L-lysine). Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 230-234.	2.2	4
125	Additionalâ€Heatingâ€Enhanced Largeâ€Scale Metallic Molybdenum Disulfide Nanosheet Exfoliation for Freeâ€Standing Films and Flexible Highâ€Performance Supercapacitors. ChemNanoMat, 2020, 6, 267-273.	2.8	4
126	Dielectrophoretic Assembly of Carbon Nanotube Chains in Aqueous Solution. Advanced Fiber Materials, 2021, 3, 312-320.	16.1	4

#	Article	IF	CITATIONS
127	Continuous preparation of dual-responsive sensing fibers for smart textiles. Journal of Colloid and Interface Science, 2021, 597, 215-222.	9.4	4
128	Graphene-based implantable neural electrodes for insect flight control. Journal of Materials Chemistry B, 2022, 10, 4632-4639.	5.8	4
129	Eu doped Si-oxynitride fluorescent nanofibrous inorganic membranes with high flexibility. RSC Advances, 2015, 5, 101287-101292.	3.6	3
130	Mesoporous Pt/TiO2-xNx nanoparticles with less than 10 nm and high specific surface area as visible light hydrogen evolution photocatalysts. Journal of Sol-Gel Science and Technology, 2018, 87, 230-239.	2.4	3
131	Highly fluorinated polyimide gate dielectric for fully transparent aqueous precursor derived In–Zn oxide thin-film transistors. Journal of Materials Science, 2020, 55, 15919-15929.	3.7	3
132	Redox-Active Ni(II) Nodes Induced Electrochromism in a Two-Dimensional Conductive Metal–Organic Framework. ACS Applied Electronic Materials, 2022, 4, 2915-2922.	4.3	3
133	Oneâ€Dimensional Magnetic Composite of Polypyrroleâ€Containing Carbon Nanotubes/Ni0.75Zn0.25Fe2O4. Journal of Macromolecular Science - Physics, 2006, 45, 541-547.	1.0	1
134	Fabrication of LiMnPO4-MWCNT cathode material via vapor phase hydrolysis and its electrochemical properties. Ionics, 2015, 21, 651-656.	2.4	1
135	Raman-tag labelled Au@ZIF-8 for cell metabolism monitoring in vitro. Clinical Hemorheology and Microcirculation, 2020, 75, 489-498.	1.7	1