
Shane V Hegarty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8835270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipidomics dataset of PTEN deletion-induced optic nerve regeneration mouse model. Data in Brief, 2021, 34, 106699.	1.0	6
2	Editorial: The Role of Stem Cells, Epigenetics and MicroRNAs in Parkinson's Disease. Frontiers in Neuroscience, 2020, 14, 515.	2.8	3
3	Viral vectors for neuronal cell type-specific visualization and manipulations. Current Opinion in Neurobiology, 2020, 63, 67-76.	4.2	16
4	Association of distinct type 1 bone morphogenetic protein receptors with different molecular pathways and survival outcomes in neuroblastoma. Neuronal Signaling, 2020, 4, NS20200006.	3.2	4
5	4-Hydroxychalcone Induces Cell Death via Oxidative Stress in <i>MYCN</i> -Amplified Human Neuroblastoma Cells. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	4.0	5
6	The dietary flavonoid isoliquiritigenin is a potent cytotoxin for human neuroblastoma cells. Neuronal Signaling, 2019, 3, NS20180201.	3.2	9
7	Exposure to Hypertensive Disorders of Pregnancy Increases the Risk of Autism Spectrum Disorder in Affected Offspring. Molecular Neurobiology, 2018, 55, 5557-5564.	4.0	34
8	Inhibition of <i>miR-181a</i> promotes midbrain neuronal growth through a Smad1/5-dependent mechanism: implications for Parkinson's disease. Neuronal Signaling, 2018, 2, NS20170181.	3.2	26
9	Reactivation of Dormant Relay Pathways in Injured Spinal Cord by KCC2 Manipulations. Cell, 2018, 174, 521-535.e13.	28.9	165
10	Effects of intracerebral neurotrophic factor application on motor symptoms in Parkinson's disease: A systematic review and meta-analysis. Parkinsonism and Related Disorders, 2017, 38, 19-25.	2.2	20
11	Endocytosis contributes to BMP2-induced Smad signalling and neuronal growth. Neuroscience Letters, 2017, 643, 32-37.	2.1	11
12	Romidepsin induces caspase-dependent cell death in human neuroblastoma cells. Neuroscience Letters, 2017, 653, 12-18.	2.1	8
13	Zeb2 is a negative regulator of midbrain dopaminergic axon growth and target innervation. Scientific Reports, 2017, 7, 8568.	3.3	24
14	Targeting bone morphogenetic protein signalling in midbrain dopaminergic neurons as a therapeutic approach in Parkinson's disease. Neuronal Signaling, 2017, 1, NS20170027.	3.2	19
15	Targeting transcriptional regulators to regenerate midbrain dopaminergic axons in Parkinson's disease. Neural Regeneration Research, 2017, 12, 1814.	3.0	0
16	A Small Molecule Activator of p300/CBP Histone Acetyltransferase Promotes Survival and Neurite Growth in a Cellular Model of Parkinson's Disease. Neurotoxicity Research, 2016, 30, 510-520.	2.7	30
17	Protocol for evaluation of neurotrophic strategies in Parkinson. Journal of Biological Methods, 2016, 3, e50.	0.6	10
18	The Epigenome as a therapeutic target for Parkinson's disease. Neural Regeneration Research, 2016, 11, 1735.	3.0	35

2

SHANE V HEGARTY

0

#	Article	IF	CITATIONS
19	Class-Ila Histone Deacetylase Inhibition Promotes the Growth of Neural Processes and Protects Them Against Neurotoxic Insult. Molecular Neurobiology, 2015, 51, 1432-1442.	4.0	31
20	Zeb2: A multifunctional regulator of nervous system development. Progress in Neurobiology, 2015, 132, 81-95.	5.7	88
21	Neurotrophic factors: from neurodevelopmental regulators to novel therapies for Parkinson′s disease. Neural Regeneration Research, 2014, 9, 1708.	3.0	48
22	Roles for the TGFβ Superfamily in the Development and Survival of Midbrain Dopaminergic Neurons. Molecular Neurobiology, 2014, 50, 559-573.	4.0	32
23	Ventral midbrain neural stem cells have delayed neurogenic potential in vitro. Neuroscience Letters, 2014, 559, 193-198.	2.1	1
24	Canonical BMP–Smad Signalling Promotes Neurite Growth in Rat Midbrain Dopaminergic Neurons. NeuroMolecular Medicine, 2014, 16, 473-489.	3.4	46
25	BMP-Smad 1/5/8 signalling in the development of the nervous system. Progress in Neurobiology, 2013, 109, 28-41.	5.7	137
26	BMP2 and GDF5 induce neuronal differentiation through a Smad dependant pathway in a model of human midbrain dopaminergic neurons. Molecular and Cellular Neurosciences, 2013, 56, 263-271.	2.2	46
27	Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development. Developmental Biology, 2013, 379, 123-138.	2.0	158

Parkinsonâ \in ^{Ms} disease: Can we move in the right direction?., 2012, , 33-37.