
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8834857/publications.pdf Version: 2024-02-01



IIA MENC

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Tet1 Is Critical for Neuronal Activity-Regulated Gene Expression and Memory Extinction. Neuron, 2013, 79, 1109-1122.                                                         | 8.1  | 393       |
| 2  | Epigenetic Priming of Memory Updating during Reconsolidation to Attenuate Remote Fear Memories.<br>Cell, 2014, 156, 261-276.                                                 | 28.9 | 318       |
| 3  | A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak<br>R/Bioconductor package. Methods, 2014, 69, 274-281.                                | 3.8  | 253       |
| 4  | m6A-Atlas: a comprehensive knowledgebase for unraveling the <i>N</i> 6-methyladenosine (m6A)<br>epitranscriptome. Nucleic Acids Research, 2021, 49, D134-D143.               | 14.5 | 185       |
| 5  | WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach. Nucleic Acids Research, 2019, 47, e41-e41.  | 14.5 | 177       |
| 6  | Exome-based analysis for RNA epigenome sequencing data. Bioinformatics, 2013, 29, 1565-1567.                                                                                 | 4.1  | 139       |
| 7  | Viral and cellular N6-methyladenosine and N6,2′-O-dimethyladenosine epitranscriptomes in the KSHV<br>life cycle. Nature Microbiology, 2018, 3, 108-120.                      | 13.3 | 137       |
| 8  | MeT-DB V2.0: elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome.<br>Nucleic Acids Research, 2018, 46, D281-D287.                              | 14.5 | 115       |
| 9  | Direct and efficient cellular transformation of primary rat mesenchymal precursor cells by KSHV.<br>Journal of Clinical Investigation, 2012, 122, 1076-1081.                 | 8.2  | 98        |
| 10 | Guitar: An R/Bioconductor Package for Gene Annotation Guided Transcriptomic Analysis of RNA-Related Genomic Features. BioMed Research International, 2016, 2016, 1-8.        | 1.9  | 95        |
| 11 | IncRScan-SVM: A Tool for Predicting Long Non-Coding RNAs Using Support Vector Machine. PLoS ONE, 2015, 10, e0139654.                                                         | 2.5  | 92        |
| 12 | Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior. Nature Neuroscience, 2016, 19, 1497-1505.                                                  | 14.8 | 88        |
| 13 | Early remodeling of the neocortex upon episodic memory encoding. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11852-11857.    | 7.1  | 86        |
| 14 | m7GHub: deciphering the location, regulation and pathogenesis of internal mRNA N7-methylguanosine<br>(m7G) sites in human. Bioinformatics, 2020, 36, 3528-3536.              | 4.1  | 85        |
| 15 | A novel algorithm for calling mRNA m 6 A peaks by modeling biological variances in MeRIP-seq data.<br>Bioinformatics, 2016, 32, i378-i385.                                   | 4.1  | 81        |
| 16 | MeTDiff: A Novel Differential RNA Methylation Analysis for MeRIP-Seq Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 526-534.             | 3.0  | 79        |
| 17 | RNA methylation and diseases: experimental results, databases, Web servers and computational models. Briefings in Bioinformatics, 2019, 20, 896-917.                         | 6.5  | 74        |
| 18 | RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis. Nucleic Acids Research, 2021, 49, D1396-D1404. | 14.5 | 65        |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | MeT-DB: a database of transcriptome methylation in mammalian cells. Nucleic Acids Research, 2015, 43, D197-D203.                                                                                     | 14.5 | 63        |
| 20 | Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications. Nature Communications, 2021, 12, 4011.                        | 12.8 | 61        |
| 21 | m5C-Atlas: a comprehensive database for decoding and annotating the 5-methylcytosine (m5C)<br>epitranscriptome. Nucleic Acids Research, 2022, 50, D196-D203.                                         | 14.5 | 53        |
| 22 | Global analysis of N6-methyladenosine functions and its disease association using deep learning and network-based methods. PLoS Computational Biology, 2019, 15, e1006663.                           | 3.2  | 41        |
| 23 | QNB: differential RNA methylation analysis for count-based small-sample sequencing data with a quad-negative binomial model. BMC Bioinformatics, 2017, 18, 387.                                      | 2.6  | 40        |
| 24 | m6A-Driver: Identifying Context-Specific mRNA m6A Methylation-Driven Gene Interaction Networks.<br>PLoS Computational Biology, 2016, 12, e1005287.                                                   | 3.2  | 38        |
| 25 | Bioinformatics approaches for deciphering the epitranscriptome: Recent progress and emerging topics. Computational and Structural Biotechnology Journal, 2020, 18, 1587-1604.                        | 4.1  | 38        |
| 26 | FunDMDeep-m6A: identification and prioritization of functional differential m6A methylation genes.<br>Bioinformatics, 2019, 35, i90-i98.                                                             | 4.1  | 34        |
| 27 | ConsRM: collection and large-scale prediction of the evolutionarily conserved RNA methylation sites, with implications for the functional epitranscriptome. Briefings in Bioinformatics, 2021, 22, . | 6.5  | 34        |
| 28 | DRUM: Inference of Disease-Associated m6A RNA Methylation Sites From a Multi-Layer Heterogeneous<br>Network. Frontiers in Genetics, 2019, 10, 266.                                                   | 2.3  | 32        |
| 29 | m6Acomet: large-scale functional prediction of individual m6A RNA methylation sites from an RNA co-methylation network. BMC Bioinformatics, 2019, 20, 223.                                           | 2.6  | 32        |
| 30 | m6A Reader: Epitranscriptome Target Prediction and Functional Characterization of<br>N6-Methyladenosine (m6A) Readers. Frontiers in Cell and Developmental Biology, 2020, 8, 741.                    | 3.7  | 31        |
| 31 | PIANO: A Web Server for Pseudouridine-Site ( $\hat{\Gamma}$ ) Identification and Functional Annotation. Frontiers in Genetics, 2020, 11, 88.                                                         | 2.3  | 30        |
| 32 | m5UPred: A Web Server for the Prediction of RNA 5-Methyluridine Sites from Sequences. Molecular<br>Therapy - Nucleic Acids, 2020, 22, 742-747.                                                       | 5.1  | 28        |
| 33 | A Deep Learning method for classification of images RSVP events with EEG data. , 2013, , .                                                                                                           |      | 26        |
| 34 | Decomposition of RNA methylome reveals co-methylation patterns induced by latent enzymatic regulators of the epitranscriptome. Molecular BioSystems, 2015, 11, 262-274.                              | 2.9  | 26        |
| 35 | Cancer Progression Prediction Using Gene Interaction Regularized Elastic Net. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 145-154.                                  | 3.0  | 25        |
| 36 | Cortical neurons gradually attain a post-mitotic state. Cell Research, 2016, 26, 1033-1047.                                                                                                          | 12.0 | 24        |

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data.<br>Bioinformatics, 2021, 37, i222-i230.                                          | 4.1 | 24        |
| 38 | Hepatitis B Viral Protein HBx and the Molecular Mechanisms Modulating the Hallmarks of Hepatocellular Carcinoma: A Comprehensive Review. Cells, 2022, 11, 741.              | 4.1 | 24        |
| 39 | WITMSC: Large-scale Prediction of Human Intronic m6A RNA Methylation Sites from Sequence and Genomic Features. Current Genomics, 2020, 21, 67-76.                           | 1.6 | 21        |
| 40 | Predict Epitranscriptome Targets and Regulatory Functions of N6-Methyladenosine (m6A) Writers and Erasers. Evolutionary Bioinformatics, 2019, 15, 117693431987129.          | 1.2 | 19        |
| 41 | Enrichment constrained time-dependent clustering analysis for finding meaningful temporal transcription modules. Bioinformatics, 2009, 25, 1521-1527.                       | 4.1 | 18        |
| 42 | DRME: Count-based differential RNA methylation analysis at small sample size scenario. Analytical<br>Biochemistry, 2016, 499, 15-23.                                        | 2.4 | 18        |
| 43 | Characterization and Robust Classification of EEG Signal from Image RSVP Events with Independent<br>Time-Frequency Features. PLoS ONE, 2012, 7, e44464.                     | 2.5 | 17        |
| 44 | A hierarchical model for clustering m6A methylation peaks in MeRIP-seq data. BMC Genomics, 2016, 17,<br>520.                                                                | 2.8 | 17        |
| 45 | Topological Characterization of Human and Mouse m <sup>5</sup> C Epitranscriptome Revealed by<br>Bisulfite Sequencing. International Journal of Genomics, 2018, 2018, 1-19. | 1.6 | 17        |
| 46 | LITHOPHONE: Improving IncRNA Methylation Site Prediction Using an Ensemble Predictor. Frontiers in Genetics, 2020, 11, 545.                                                 | 2.3 | 16        |
| 47 | HEPeak: an HMM-based exome peak-finding package for RNA epigenome sequencing data. BMC Genomics, 2015, 16, S2.                                                              | 2.8 | 15        |
| 48 | m6AmPred: Identifying RNA N6, 2′-O-dimethyladenosine (m6Am) sites based on sequence-derived information. Methods, 2021, , .                                                 | 3.8 | 15        |
| 49 | Recent advances in functional annotation and prediction of the epitranscriptome. Computational and Structural Biotechnology Journal, 2021, 19, 3015-3026.                   | 4.1 | 13        |
| 50 | Dynamics of m6A RNA Methylome on the Hallmarks of Hepatocellular Carcinoma. Frontiers in Cell and<br>Developmental Biology, 2021, 9, 642443.                                | 3.7 | 13        |
| 51 | Clustering Count-based RNA Methylation Data Using a Nonparametric Generative Model. Current<br>Bioinformatics, 2018, 14, 11-23.                                             | 1.5 | 13        |
| 52 | A nonparametric Bayesian approach for clustering bisulfate-based DNA methylation profiles. BMC<br>Genomics, 2012, 13, S20.                                                  | 2.8 | 12        |
| 53 | PSI-MOUSE: Predicting Mouse Pseudouridine Sites From Sequence and Genome-Derived Features.<br>Evolutionary Bioinformatics, 2020, 16, 117693432092575.                       | 1.2 | 12        |
| 54 | Spatially Enhanced Differential RNA Methylation Analysis from Affinity-Based Sequencing Data with<br>Hidden Markov Model. BioMed Research International, 2015, 2015, 1-12.  | 1.9 | 11        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | ISGm1A: Integration of Sequence Features and Genomic Features to Improve the Prediction of Human m <sub>1</sub> A RNA Methylation Sites. IEEE Access, 2020, 8, 81971-81977.                              | 4.2 | 11        |
| 56 | trumpet: transcriptome-guided quality assessment of m6A-seq data. BMC Bioinformatics, 2018, 19, 260.                                                                                                     | 2.6 | 10        |
| 57 | Enhancing Epitranscriptome Module Detection from m6A-Seq Data Using Threshold-Based<br>Measurement Weighting Strategy. BioMed Research International, 2018, 2018, 1-15.                                  | 1.9 | 10        |
| 58 | MetaTX: deciphering the distribution of mRNA-related features in the presence of isoform ambiguity, with applications in epitranscriptome analysis. Bioinformatics, 2021, 37, 1285-1291.                 | 4.1 | 10        |
| 59 | WHISTLE: A Functionally Annotated High-Accuracy Map of Human m6A Epitranscriptome. Methods in<br>Molecular Biology, 2021, 2284, 519-529.                                                                 | 0.9 | 9         |
| 60 | A bag-of-words model for task-load prediction from EEG in complex environments. , 2013, , .                                                                                                              |     | 8         |
| 61 | Bayesian non-negative factor analysis for reconstructing transcription factor mediated regulatory networks. Proteome Science, 2011, 9, S9.                                                               | 1.7 | 7         |
| 62 | Uncover cooperative gene regulations by microRNAs and transcription factors in glioblastoma using a nonnegative hybrid factor model. , 2011, , .                                                         |     | 7         |
| 63 | Understanding MicroRNA Regulation: A computational perspective. IEEE Signal Processing Magazine, 2012, 29, 77-88.                                                                                        | 5.6 | 7         |
| 64 | FBCwPlaid: A Functional Biclustering Analysis of Epi-Transcriptome Profiling Data Via a Weighted<br>Plaid Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 1640-1650. | 3.0 | 7         |
| 65 | Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model. Eurasip Journal on<br>Advances in Signal Processing, 2010, 2010, .                                                       | 1.7 | 6         |
| 66 | Unveiling the dynamics in RNA epigenetic regulations. , 2013, , .                                                                                                                                        |     | 6         |
| 67 | REW-ISA: unveiling local functional blocks in epi-transcriptome profiling data via an RNA expression-weighted iterative signature algorithm. BMC Bioinformatics, 2020, 21, 447.                          | 2.6 | 5         |
| 68 | Autophagy Induced by Simian Retrovirus Infection Controls Viral Replication and Apoptosis of Jurkat T<br>Lymphocytes. Viruses, 2020, 12, 381.                                                            | 3.3 | 4         |
| 69 | Funm6AViewer: a web server and R package for functional analysis of context-specific m6A RNA methylation. Bioinformatics, 2021, 37, 4277-4279.                                                           | 4.1 | 4         |
| 70 | Classification of Imperfectly Time-Locked Image RSVP Events with EEG Device. Neuroinformatics, 2014, 12, 261-275.                                                                                        | 2.8 | 3         |
| 71 | Functional examination of novel kisspeptin phosphinic peptides. PLoS ONE, 2018, 13, e0195089.                                                                                                            | 2.5 | 3         |
| 72 | Prediction of RNA Methylation Status From Gene Expression Data Using Classification and Regression<br>Methods. Evolutionary Bioinformatics, 2020, 16, 117693432091570.                                   | 1.2 | 3         |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Robust inference of the context specific structure and temporal dynamics of gene regulatory network. BMC Genomics, 2010, 11, S11.                                                      | 2.8 | 2         |
| 74 | Uncovering transcriptional regulatory networks by sparse Bayesian factor model. , 2010, , .                                                                                            |     | 2         |
| 75 | Clustering DNA methylation expressions using nonparametric beta mixture model. , 2011, , .                                                                                             |     | 2         |
| 76 | Detecting differentially methylated mRNA from MeRIP-Seq with likelihood ratio test. , 2014, , .                                                                                        |     | 2         |
| 77 | MeT-DB V2.0: Elucidating Context-Specific Functions of N6-Methyl-Adenosine Methyltranscriptome.<br>Methods in Molecular Biology, 2021, 2284, 507-518.                                  | 0.9 | 2         |
| 78 | Biclustering of Time Series Microarray Data. Methods in Molecular Biology, 2012, 802, 87-100.                                                                                          | 0.9 | 2         |
| 79 | Exploiting correlated discriminant features in time frequency and space for characterization and robust classification of image RSVP events with EEG data. , 2012, , .                 |     | 1         |
| 80 | UNCOVER CONTEXT-SPECIFIC GENE REGULATION BY TRANSCRIPTION FACTORS AND microRNAs USING BAYESIAN SPARSE NONNEGATIVE FACTOR REGRESSION. Journal of Biological Systems, 2012, 20, 377-402. | 1.4 | 1         |
| 81 | Classification of EEG recordings without perfectly time-locked events. , 2012, , .                                                                                                     |     | 1         |
| 82 | Novel numerical and computational techniques for remote sensor based monitoring of freshwater quality. , 2016, , .                                                                     |     | 1         |
| 83 | An iterative time windowed signature algorith for time-dependent transcription module discovery. , 2008, 2008, 1-4.                                                                    |     | 0         |
| 84 | An Iterated Conditional Modes solution for sparse Bayesian factor modeling of transcriptional regulatory networks. , 2010, , .                                                         |     | 0         |
| 85 | An iterated conditional mode solution for Bayesian factor modeling of transcriptional regulatory networks. , 2010, , .                                                                 |     | 0         |
| 86 | Bayesian non-negative factor analysis for reconstructing transcriptional regulatory network. , 2011, ,                                                                                 |     | 0         |
| 87 | Uncover transcription factor mediated gene regulations using Bayesian nonnegative factor models. , 2011, , .                                                                           |     | 0         |
| 88 | Basis-expansion factor models for uncovering transcription factor regulatory network. , 2012, , .                                                                                      |     | 0         |
| 89 | Differential analysis of rna methylation sequencing data. , 2013, , .                                                                                                                  |     | 0         |
| 90 | Integration of gene expression, genome wide DNA methylation, and gene networks for clinical outcome prediction in ovarian cancer. , 2013, , .                                          |     | 0         |

| #   | Article                                                                                                          | IF | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------|----|-----------|
| 91  | An HMM-based Exome Peak-finding package for RNA epigenome sequencing data. , 2013, , .                           |    | Ο         |
| 92  | Differential analysis of RNA methylome with improved spatial resolution. , 2014, , .                             |    | 0         |
| 93  | Sketching the distribution of transcriptomic features on RNA transcripts with Travis coordinates. , 2015, , .    |    | Ο         |
| 94  | Modeling of replicates variances for detecting RNA methylation site in MERIP-SEQ data. , 2015, , .               |    | 0         |
| 95  | A Machine Learning Approach for Uncovering N6-methyladenosine-Disease Association. , 2018, , .                   |    | Ο         |
| 96  | Detection of m6A RNA Methylation in Nanopore Sequencing Data Using Support Vector Machine. , 2019,               |    | 0         |
| 97  | Prediction of m6A Reader Substrate Sites Using Deep Convolutional and Recurrent Neural Network. , 2021, , .      |    | Ο         |
| 98  | A Meta-analysis: Evaluating the Effect of METTL3/METTL14 on m6A Level Based on Knockdown Samples. ,<br>2021, , . |    | 0         |
| 99  | An Improved Algorithm for Estimating the Distribution of RNA-related Genomic Features. , 2020, , .               |    | Ο         |
| 100 | Gibbs Sampling Based Banoian Biclustering of Gene Expression Data. , 2020, , .                                   |    | 0         |