
Jose Luis Fernandez-Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8834847/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A single-oral bolus of 100,000 IU of cholecalciferol at hospital admission did not improve outcomes in the COVID-19 disease: the COVID-VIT-D—a randomised multicentre international clinical trial. BMC Medicine, 2022, 20, 83.	5.5	31
2	Bone Fragility Fractures in CKD Patients. Calcified Tissue International, 2021, 108, 539-550.	3.1	25
3	Effects of calcitriol and paricalcitol on renal fibrosis in CKD. Nephrology Dialysis Transplantation, 2021, 36, 793-803.	0.7	26
4	Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. International Journal of Molecular Sciences, 2021, 22, 408.	4.1	125
5	The receptor activator of nuclear factor κΒ ligandÂreceptor leucine-rich repeat-containing G-protein-coupled receptor 4Âcontributes to parathyroid hormone-induced vascular calcification. Nephrology Dialysis Transplantation, 2021, 36, 618-631.	0.7	13
6	Survival with low- and high-flux dialysis. CKJ: Clinical Kidney Journal, 2021, 14, 1915-1923.	2.9	0
7	Serum phosphate optimal timing and range associated with patients survival in haemodialysis: the COSMOS study. Nephrology Dialysis Transplantation, 2019, 34, 673-681.	0.7	23
8	Cardiotrophinâ€1 opposes renal fibrosis in mice: Potential prevention of chronic kidney disease. Acta Physiologica, 2019, 226, e13247.	3.8	11
9	Risk of hospitalization associated with body mass index and weight changes among prevalent haemodialysis patients. Nefrologia, 2018, 38, 520-527.	0.4	3
10	Risk of hospitalization associated with body mass index and weight changes among prevalent haemodialysis patients. Nefrologia, 2018, 38, 520-527.	0.4	3
11	Influencia de la sobrecarga de calcio sobre el metabolismo óseo y mineral en 55 centros de hemodiálisis de Lima. Nefrologia, 2018, 38, 279-285.	0.4	3
12	Impact of calcium overload on bone and mineral metabolism at 55 hemodialysis centers in Lima. Nefrologia, 2018, 38, 279-285.	0.4	1
13	Vascular Calcification Induced by Chronic Kidney Disease Is Mediated by an Increase of 1α-Hydroxylase Expression in Vascular Smooth Muscle Cells. Journal of Bone and Mineral Research, 2016, 31, 1865-1876.	2.8	28
14	COSMOS Project: Haemodialysis scenario in Europe. Nefrologia, 2016, 36, 381-388.	0.4	2
15	Proyecto COSMOS: escenario de la hemodiálisis en Europa. Nefrologia, 2016, 36, 381-388.	0.4	5
16	Lamin A is involved in the development of vascular calcification induced by chronic kidney failure and phosphorus load. Bone, 2016, 84, 160-168.	2.9	18
17	MicroRNAs 29b, 133b, and 211 Regulate Vascular Smooth Muscle Calcification Mediated by High Phosphorus. Journal of the American Society of Nephrology: JASN, 2016, 27, 824-834.	6.1	71
18	Plasma Cardiotrophin-1 as a Marker of Hypertension and Diabetes-Induced Target Organ Damage and Cardiovascular Risk. Medicine (United States), 2015, 94, e1218.	1.0	31

#	Article	IF	CITATIONS
19	Improvement of mineral and bone metabolism markers is associated with better survival in haemodialysis patients: the COSMOS study. Nephrology Dialysis Transplantation, 2015, 30, 1542-1551.	0.7	140
20	COSMOS: the dialysis scenario of CKD–MBD in Europe. Nephrology Dialysis Transplantation, 2013, 28, 1922-1935.	0.7	79
21	Use of phosphate-binding agents is associated with a lower risk of mortality. Kidney International, 2013, 84, 998-1008.	5.2	136
22	Influence of Body Mass Index on the Association of Weight Changes with Mortality in Hemodialysis Patients. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1725-1733.	4.5	49
23	New polymorphisms in human MEF2C gene as potential modifier of hypertrophic cardiomyopathy. Molecular Biology Reports, 2012, 39, 8777-8785.	2.3	13
24	Natural antioxidants and vascular calcification: a possible benefit. Journal of Nephrology, 2011, 24, 669-672.	2.0	18
25	Calcium, phosphorus, PTH and death rates in a large sample of dialysis patients from Latin America. The CORES Study. Nephrology Dialysis Transplantation, 2011, 26, 1938-1947.	0.7	133
26	Residue 826 in the Calcium-Sensing Receptor Is Implicated in the Response to Calcium and to R-568 Calcimimetic Compound. Calcified Tissue International, 2010, 86, 227-233.	3.1	1
27	Lanthanum activates calcium-sensing receptor and enhances sensitivity to calcium. Nephrology Dialysis Transplantation, 2010, 25, 2930-2937.	0.7	23
28	High phosphorus diet induces vascular calcification, a related decrease in bone mass and changes in the aortic gene expression. Bone, 2010, 46, 121-128.	2.9	127
29	Parathyroid gland regulation: contribution of the <i>in vivo</i> and <i>in vitro</i> models. Expert Opinion on Drug Discovery, 2010, 5, 265-275.	5.0	1
30	Indirect Regulation of PTH by Estrogens May Require FGF23. Journal of the American Society of Nephrology: JASN, 2009, 20, 2009-2017.	6.1	89
31	Should cinacalcet be used in patients who are not on dialysis?. Nature Reviews Nephrology, 2009, 5, 307-308.	9.6	7
32	Simultaneous changes in the calcium-sensing receptor and the vitamin D receptor under the influence of calcium and calcitriol. Nephrology Dialysis Transplantation, 2008, 23, 3479-3484.	0.7	49
33	Current management of secondary hyperparathyroidism: a multicenter observational study (COSMOS). Journal of Nephrology, 2008, 21, 290-8.	2.0	21
34	Effects of estradiol, calcitriol and both treatments combined on bone histomorphometry in rats with chronic kidney disease and ovariectomy. Bone, 2007, 41, 614-619.	2.9	15
35	Aluminum posttranscriptional regulation of parathyroid hormone synthesis: A role for the calcium-sensing receptor. Kidney International, 2005, 68, 2484-2496.	5.2	16
36	Long-term response of cultured rat parathyroid glands to calcium and calcitriol: the effect of cryopreservation. Journal of Nephrology, 2005, 18, 141-7.	2.0	9

#	Article	IF	CITATIONS
37	Effect of aluminium on calcium-sensing receptor expression, proliferation, and apoptosis of parathyroid glands from rats with chronic renal failure. Kidney International, 2003, 63, S39-S43.	5.2	18
38	Vitamin D status and secondary hyperparathyroidism: The importance of 25-hydroxyvitamin D cut-off levels. Kidney International, 2003, 63, S44-S48.	5.2	95
39	Advantages of adjusting the initial dose of intravenous calcitriol according to PTH levels. Kidney International, 2003, 63, S79-S82.	5.2	4
40	Effect of VDR gene polymorphisms on osteocalcin secretion in calcitriol-stimulated human osteoblasts. Kidney International, 2003, 63, S23-S27.	5.2	13
41	The clinical impact of aluminium overload in renal failure. Nephrology Dialysis Transplantation, 2002, 17, 9-12.	0.7	78
42	Exploratory investigations on the potential of radiofrequency glow discharge-optical emission spectrometry for the direct elemental analysis of bone. Journal of Analytical Atomic Spectrometry, 2001, 16, 250-255.	3.0	6
43	Reference Values for Trace and Ultratrace Elements in Human Serum Determined by Double-Focusing ICP-MS. Biological Trace Element Research, 2001, 82, 259-272.	3.5	55
44	Bone Aluminum Uptake in Uremic Rats Receiving Intraperitoneal Iron. Biological Trace Element Research, 2001, 84, 129-137.	3.5	1
45	Effect of aluminium load on parathyroid hormone synthesis. Nephrology Dialysis Transplantation, 2001, 16, 742-745.	0.7	42
46	Aluminum Exposure in Chronic Renal Failure in Iberoamerica at the End of the 1990s: Overview and Perspectives. American Journal of the Medical Sciences, 2000, 320, 96-99.	1.1	24
47	Use of ultrafiltration and chromatography to assess aluminum speciation in serum after deferoxamine administration. American Journal of Kidney Diseases, 2000, 36, 969-975.	1.9	5
48	Vitamin D Receptor Gene Polymorphisms, Bone Mass, Bone Loss and Prevalence of Vertebral Fracture: Differences in Postmenopausal Women and Men. Osteoporosis International, 1999, 10, 175-182.	3.1	50
49	Aluminum-Induced Osteogenesis in Osteopenic Rats with Normal Renal Function. Calcified Tissue International, 1999, 64, 534-541.	3.1	23
50	Tumor necrosis factor activates a nuclear inhibitor of vitamin D and retinoid-X receptors. Molecular and Cellular Endocrinology, 1998, 141, 65-72.	3.2	28
51	Prevention of aluminium exposure through dialysis fluids. Analysis of changes in the last 8 years. Nephrology Dialysis Transplantation, 1998, 13, 78-81.	0.7	27
52	Time course and functional correlates of post-transplant aluminium elimination. Nephrology Dialysis Transplantation, 1998, 13, 98-102.	0.7	4
53	Vitamin D receptor gene (VDR) polymorphisms: effect on bone mass, bone loss and parathyroid hormone regulation. Nephrology Dialysis Transplantation, 1998, 13, 73-77.	0.7	11
54	Aluminium removal with the double chamber technique: paired filtration-dialysis (PFD). Nephrology Dialysis Transplantation, 1998, 13, 82-87.	0.7	16

#	Article	IF	CITATIONS
55	Ultrafiltrable aluminium after very low doses of desferrioxamine. Nephrology Dialysis Transplantation, 1998, 13, 1538-1542.	0.7	21
56	Influence of aluminium overload on the course of post-transplant parathyroid function. Nephrology Dialysis Transplantation, 1996, 11, 65-68.	0.7	9
57	Effectiveness of deferiprone (L1) releasing the aluminium bound to plasma proteins in chronic renal failure. Nephrology Dialysis Transplantation, 1996, 11, 1488-1489.	0.7	7
58	Mechanisms of aluminum-induced microcytosis: Lessons from accidental aluminum intoxication. Kidney International, 1995, 47, 164-168.	5.2	35
59	Binding of aluminium to plasma proteins: Comparative effect of desferrioxamine and deferiprone (L1). Clinica Chimica Acta, 1994, 230, 137-145.	1.1	22
60	Role of iron metabolism in absorption and cellular uptake of aluminum. Kidney International, 1991, 39, 799-803.	5.2	64
61	Iron Deficiency and Intestinal Aluminium Absorption: Implications for Erythropoietin and Deferoxamine Therapy. Seminars in Dialysis, 1991, 4, 224-226.	1.3	2
62	Minimizing the Risk of Oral Aluminium Exposure in Chronic Renal Failure1. Contributions To Nephrology, 1989, 71, 81-89.	1.1	4