List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8832234/publications.pdf Version: 2024-02-01

Ερλη<u>δ</u>δοις <u>Ο</u>ςιμρακ

#	Article	IF	CITATIONS
1	The visual encoding of graspable unfamiliar objects. Psychological Research, 2023, 87, 452-461.	1.7	7
2	Great white pelicans (<i>Pelecanus onocrotalus</i>) fail to use tools flexibly in problemâ€solving tasks. Ethology, 2022, 128, 99-110.	1.1	0
3	On the psychological origins of tool use. Neuroscience and Biobehavioral Reviews, 2022, 134, 104521.	6.1	11
4	Exclusion by donkey's ears: Donkeys (Equus asinus) use acoustic information to find hidden food in a two-way object-choice task Journal of Comparative Psychology (Washington, D C: 1983), 2022, 136, 68-78.	0.5	2
5	Technical reasoning bolsters cumulative technological culture through convergent transformations. Science Advances, 2022, 8, eabl7446.	10.3	14
6	Impact of Intrinsic Cognitive Skills and Metacognitive Beliefs on Tool Use Performance. American Journal of Psychology, 2022, 135, 59-68.	0.3	0
7	The cortical thickness of the area PF of the left inferior parietal cortex mediates technical-reasoning skills. Scientific Reports, 2022, 12, .	3.3	16
8	One century after Liepmann's work on apraxia: Where do we go now?. Cortex, 2022, 154, 333-339.	2.4	1
9	Usability and acceptance of truck dashboards designed by drivers: Two participatory design approaches compared to a user-centered design. International Journal of Industrial Ergonomics, 2021, 81, 103073.	2.6	9
10	Dynamic scan paths investigations under manual and highly automated driving. Scientific Reports, 2021, 11, 3776.	3.3	10
11	Extraversion level predicts perceived benefits from social resources and tool use. Scientific Reports, 2021, 11, 12260.	3.3	1
12	Tool acceptance and acceptability: insights from a real tool use activity. Cognitive Processing, 2021, 22, 627-639.	1.4	1
13	Technical reasoning is important for cumulative technological culture. Nature Human Behaviour, 2021, 5, 1643-1651.	12.0	14
14	Semantic and action tool knowledge in the brain: Identifying common and distinct networks. Neuropsychologia, 2021, 159, 107918.	1.6	24
15	Semantic congruency effects of prime words on tool visual exploration. Brain and Cognition, 2021, 152, 105758.	1.8	13
16	Getting a tool gives wings even in schizophrenia: underestimation of tool-related effort in a motor imagery task. NPJ Schizophrenia, 2021, 7, 45.	3.6	2
17	The Toolman effect: Preexisting non-tool-use experience improves subsequent tool-use performance. Acta Psychologica, 2021, 220, 103389.	1.5	2
18	Complex nests but no use of tools: An investigation of problem solving in weaverbirds (Ploceidae). Behavioural Processes, 2021, 192, 104493.	1.1	0

#	Article	IF	CITATIONS
19	Learning versus reasoning to use tools in children. Journal of Experimental Child Psychology, 2021, 211, 105232.	1.4	Ο
20	Daily life activities in patients with Alzheimer's disease or semantic dementia: Multitasking assessment. Neuropsychologia, 2021, 150, 107714.	1.6	5
21	Hazardous tools: the emergence of reasoning in human tool use. Psychological Research, 2021, 85, 3108-3118.	1.7	15
22	On the Neurocognitive Coâ€Evolution of Tool Behavior and Language: Insights from the Massive Redeployment Framework. Topics in Cognitive Science, 2021, 13, 684-707.	1.9	2
23	Editors' Introduction to Tasks, Tools, and Techniques. Topics in Cognitive Science, 2021, 13, 540-547.	1.9	2
24	Pantomime of tool use: looking beyond apraxia. Brain Communications, 2021, 3, fcab263.	3.3	10
25	Physical understanding in neurodegenerative diseases. Cognitive Neuropsychology, 2021, 38, 490-514.	1.1	1
26	Effect of object substitution, spontaneous compensation and repetitive training on reaching movements in a patient with optic ataxia. Neuropsychological Rehabilitation, 2020, 30, 1786-1813.	1.6	3
27	Imitation of meaningless gestures in normal aging. Aging, Neuropsychology, and Cognition, 2020, 27, 729-747.	1.3	7
28	The elephant in the room: What matters cognitively in cumulative technological culture. Behavioral and Brain Sciences, 2020, 43, e156.	0.7	71
29	One century after Liepmann's work on apraxia: Where are we now?. Cortex, 2020, 129, 526-528.	2.4	2
30	Definition: Astereognosia. Cortex, 2020, 127, 399.	2.4	0
31	Using tools effectively despite defective hand posture: A single-case study. Cortex, 2020, 129, 406-422.	2.4	11
32	Four ways of (mis-)conceiving embodiment in tool use. SynthÃ^se, 2020, , 1.	1.1	12
33	On the Temporal Dynamics of Tool Use. Frontiers in Human Neuroscience, 2020, 14, 579378.	2.0	13
34	Tool-number interaction during a prospective memory task. Cognitive Processing, 2020, 21, 501-508.	1.4	2
35	Social learning in great white pelicans (Pelecanus onocrotalus): A preliminary study. Learning and Behavior, 2020, 48, 344-350.	1.0	3
36	Technition: When Tools Come Out of the Closet. Perspectives on Psychological Science, 2020, 15, 880-897.	9.0	30

#	Article	IF	CITATIONS
37	Disembodying (tool-use) action understanding. Neuroscience and Biobehavioral Reviews, 2020, 114, 229-231.	6.1	5
38	The elephant in the China shop: When technical reasoning meets cumulative technological culture. Behavioral and Brain Sciences, 2020, 43, e183.	0.7	7
39	The castaway island: Distinct roles of theory of mind and technical reasoning in cumulative technological culture Journal of Experimental Psychology: General, 2020, 149, 58-66.	2.1	17
40	The Pedagogue, the Engineer, and the Friend. Human Nature, 2020, 31, 462-482.	1.6	2
41	On the nature of eye-hand coordination in natural steering behavior. PLoS ONE, 2020, 15, e0242818.	2.5	10
42	Roles of Technical Reasoning, Theory of Mind, Creativity, and Fluid Cognition in Cumulative Technological Culture. Human Nature, 2019, 30, 326-340.	1.6	22
43	Gauges design for a digital instrument cluster: Efficiency, visual capture, and satisfaction assessment for truck driving. International Journal of Industrial Ergonomics, 2019, 72, 290-297.	2.6	6
44	Thirst for Intention? Grasping a Glass Is a Thirst-Controlled Action. Frontiers in Psychology, 2019, 10, 1248.	2.1	6
45	To Watch is to Work: a Review of NeuroImaging Data on Tool Use Observation Network. Neuropsychology Review, 2019, 29, 484-497.	4.9	39
46	Numerical cognition: A meta-analysis of neuroimaging, transcranial magnetic stimulation and brain-damaged patients studies. NeuroImage: Clinical, 2019, 24, 102053.	2.7	12
47	Is Bodily Experience an Epiphenomenon of Multisensory Integration and Cognition?. Frontiers in Human Neuroscience, 2019, 13, 316.	2.0	3
48	The – weak – role of memory in tool use: Evidence from neurodegenerative diseases. Neuropsychologia, 2019, 129, 117-132.	1.6	12
49	Driving Under the Influence: How Music Listening Affects Driving Behaviors. Journal of Visualized Experiments, 2019, , .	0.3	9
50	Is There Really a Loss of Agency in Patients With Apraxia of Tool Use?. Frontiers in Psychology, 2019, 10, 87.	2.1	1
51	Male yellow-crowned bishops (Euplectes afer afer) acquire a novel foraging behaviour by social learning. Journal of Ethology, 2019, 37, 235-239.	0.8	4
52	Which cognitive tools do we prefer to use, and is that preference rational?. Cognition, 2019, 186, 108-114.	2.2	4
53	Highly Automated Driving Impact on Drivers' Gaze Behaviors during a Car-Following Task. International Journal of Human-Computer Interaction, 2019, 35, 1008-1017.	4.8	22
54	Ground-hornbills (Bucorvus) show means-end understanding in a horizontal two-string discrimination task. Journal of Ethology, 2019, 37, 117-122.	0.8	11

#	Article	IF	CITATIONS
55	Age differences in maximization. Psychologie Francaise, 2019, 64, 47-54.	0.4	0
56	Mechanical knowledge does matter to tool use even when assessed with a nonâ€production task: Evidence from left brainâ€damaged patients. Journal of Neuropsychology, 2019, 13, 198-213.	1.4	9
57	Does the Tempo of Music Impact Human Behavior Behind the Wheel?. Human Factors, 2018, 60, 556-574.	3.5	19
58	Acceptance and acceptability criteria: a literature review. Cognition, Technology and Work, 2018, 20, 165-177.	3.0	70
59	Novel Tool Selection in Left Brain-Damaged Patients With Apraxia of Tool Use: A Study of Three Cases. Journal of the International Neuropsychological Society, 2018, 24, 524-529.	1.8	2
60	Tool use and dexterity: beyond the embodied theory. Animal Behaviour, 2018, 139, e1-e4.	1.9	4
61	Tool use in neurodegenerative diseases: Planning or technical reasoning?. Journal of Neuropsychology, 2018, 12, 409-426.	1.4	15
62	Neuroergonomics of car driving: A critical meta-analysis of neuroimaging data on the human brain behind the wheel. Neuroscience and Biobehavioral Reviews, 2018, 95, 464-479.	6.1	42
63	How Our Cognition Shapes and Is Shaped by Technology: A Common Framework for Understanding Human Tool-Use Interactions in the Past, Present, and Future. Frontiers in Psychology, 2018, 9, 293.	2.1	17
64	Tool Use and Generalized Motor Programs: We All Are Natural Born Poly-Dexters. Scientific Reports, 2018, 8, 10429.	3.3	7
65	Cerebral correlates of imitation of intransitive gestures: An integrative review of neuroimaging data and brain lesion studies. Neuroscience and Biobehavioral Reviews, 2018, 95, 44-60.	6.1	37
66	Looking for intoolligence: A unified framework for the cognitive study of human tool use and technology American Psychologist, 2018, 73, 169-185.	4.2	28
67	Tools don't—and won't—make the man: A cognitive look at the future Journal of Experimental Psychology: General, 2018, 147, 782-788.	2.1	9
68	lmitation and matching of meaningless gestures: distinct involvement from motor and visual imagery. Psychological Research, 2017, 81, 525-537.	1.7	8
69	Automotive HMI design and participatory user involvement: review and perspectives. Ergonomics, 2017, 60, 541-552.	2.1	45
70	The more intelligent people are, the more they use tools. Psychologie Francaise, 2017, 62, 85-91.	0.4	3
71	What is the future for tool-specific generalized motor programs?. Phenomenology and the Cognitive Sciences, 2017, 16, 701-708.	1.8	4
72	Rethinking the Cognitive Mechanisms Underlying Pantomime of Tool Use: Evidence from Alzheimer's Disease and Semantic Dementia. Journal of the International Neuropsychological Society, 2017, 23, 128-138.	1.8	16

#	Article	IF	CITATIONS
73	Definition: Limb apraxia. Cortex, 2017, 93, 228.	2.4	28
74	What is an affordance? 40 years later. Neuroscience and Biobehavioral Reviews, 2017, 77, 403-417.	6.1	152
75	Involvement of the Left Supramarginal Gyrus in Manipulation Judgment Tasks: Contributions to Theories of Tool Use. Journal of the International Neuropsychological Society, 2017, 23, 685-691.	1.8	13
76	Digital, analogue, or redundant speedometers for truck driving: Impact on visual distraction, efficiency and usability. Applied Ergonomics, 2017, 65, 12-22.	3.1	24
77	Creating semantics in tool use. Cognitive Processing, 2017, 18, 129-134.	1.4	4
78	The ideomotor recycling theory for tool use, language, and foresight. Experimental Brain Research, 2017, 235, 365-377.	1.5	18
79	A cognitive-based model of tool use in normal aging. Aging, Neuropsychology, and Cognition, 2017, 24, 363-386.	1.3	13
80	From the Age of 5 Humans Decide Economically, Whereas Crows Exhibit Individual Preferences. Scientific Reports, 2017, 7, 17043.	3.3	11
81	Gestural apraxia. Revue Neurologique, 2017, 173, 430-439.	1.5	7
82	Les fondements cognitifs de la culture et de l'évolution culturelle cumulative : une revue de la littérature. Annee Psychologique, 2017, 117, 351-378.	0.3	0
83	Cognitive Paleoanthropology and Technology: Toward a Parsimonious Theory (PATH). Review of General Psychology, 2017, 21, 292-307.	3.2	12
84	Use of tools and misuse of embodied cognition: Reply to Buxbaum (2017) Psychological Review, 2017, 124, 361-368.	3.8	28
85	Are You Sure You're Faster When Using a Cognitive Tool?. American Journal of Psychology, 2017, 130, 493.	0.3	13
86	Les fondements cognitifs de la culture et de l'évolution culturelle cumulative : une revue de la littérature. Annee Psychologique, 2017, Vol. 117, 351-378.	0.3	0
87	Commentary: Effects of dividing attention on memory for declarative and procedural aspects of tool use. Frontiers in Psychology, 2016, 7, 1488.	2.1	1
88	Involvement of Technical Reasoning More Than Functional Knowledge in Development of Tool Use in Childhood. Frontiers in Psychology, 2016, 7, 1625.	2.1	8
89	Tool use and affordance: Manipulation-based versus reasoning-based approaches Psychological Review, 2016, 123, 534-568.	3.8	146
90	Tool use in left brain damage and <scp>A</scp> lzheimer's disease: What about function and manipulation knowledge?. Journal of Neuropsychology, 2016, 10, 154-159.	1.4	8

#	Article	IF	CITATIONS
91	Tool use disorders in neurodegenerative diseases: Roles of semantic memory and technical reasoning. Cortex, 2016, 82, 119-132.	2.4	38
92	On the neurocognitive origins of human tool use : A critical review of neuroimaging data. Neuroscience and Biobehavioral Reviews, 2016, 64, 421-437.	6.1	116
93	Mechanical problem-solving strategies in Alzheimer's disease and semantic dementia Neuropsychology, 2016, 30, 612-623.	1.3	28
94	Physical intelligence does matter to cumulative technological culture Journal of Experimental Psychology: General, 2016, 145, 941-948.	2.1	36
95	Nos performances de conduite sont-elles sous l'influence du tempo de la musique que nous écoutons� Une étude sur simulateur. Recherche - Transports - Securite, 2016, 2015, 75-85.	0.1	0
96	The lowest common denominator between species for teaching behaviors. Behavioral and Brain Sciences, 2015, 38, e33.	0.7	2
97	Visual objects speak louder than words: Motor planning and weight in tool use and object transport. Acta Psychologica, 2015, 162, 76-80.	1.5	2
98	Neurocognitive bases of tool use. Annals of Physical and Rehabilitation Medicine, 2015, 58, e26.	2.3	0
99	When Do We Use Automatic Tools Rather Than Doing a Task Manually? Influence of Automatic Tool Speed. American Journal of Psychology, 2015, 128, 77-88.	0.3	15
100	Apraxia: a gestural or a cognitive disorder?. Brain, 2015, 138, e333-e333.	7.6	7
101	Validation en langue française des échelles de maximation et de regret de Schwartz et collaborateurs. Psychologie Francaise, 2015, 60, 301-316.	0.4	8
102	Apraxia in neurodegenerative diseases. Annals of Physical and Rehabilitation Medicine, 2015, 58, e28.	2.3	0
103	Mechanical problem-solving and imitation of meaningless postures in left brain damaged patients: Two sides of the same coin?. Cortex, 2015, 63, 214-216.	2.4	4
104	A goal-based mechanism for delayed motor intention: considerations from motor skills, tool use and action memory. Psychological Research, 2015, 79, 345-360.	1.7	39
105	The cognitive and neural bases of human tool use. Frontiers in Psychology, 2014, 5, 1107.	2.1	2
106	Mechanical knowledge, but not manipulation knowledge, might support action prediction. Frontiers in Human Neuroscience, 2014, 8, 737.	2.0	3
107	Transport and use of common objects: Influence of weight on action planning. Visual Cognition, 2014, 22, 1154-1172.	1.6	4
108	Tool use disorders after left brain damage. Frontiers in Psychology, 2014, 5, 473.	2.1	41

#	Article	IF	CITATIONS
109	Pliers, not fingers: Tool-action effect in a motor intention paradigm. Cognition, 2014, 130, 66-73.	2.2	71
110	Tool use and manual actions: The human body as a means versus an end. Cortex, 2014, 57, 281-282.	2.4	6
111	Getting a tool gives wings: overestimation of tool-related benefits in a motor imagery task and a decision task. Psychological Research, 2014, 78, 1-9.	1.7	23
112	What Neuropsychology Tells us About Human Tool Use? The Four Constraints Theory (4CT): Mechanics, Space, Time, and Effort. Neuropsychology Review, 2014, 24, 88-115.	4.9	126
113	What about mechanical knowledge?. Physics of Life Reviews, 2014, 11, 269-270.	2.8	8
114	Within reach but not so reachable: Obstacles matter in visual perception of distances. Psychonomic Bulletin and Review, 2013, 20, 462-467.	2.8	33
115	Apraxia and Alzheimer's Disease: Review and Perspectives. Neuropsychology Review, 2013, 23, 234-256.	4.9	64
116	Mechanical problem-solving strategies in left-brain damaged patients and apraxia of tool use. Neuropsychologia, 2013, 51, 1964-1972.	1.6	56
117	Limb apraxia in neurodegenerative disorders. Neurodegenerative Disease Management, 2013, 3, 353-361.	2.2	2
118	Handing a tool to someone can take more time than using it. Cognition, 2013, 128, 76-81.	2.2	19
119	L'appropriation de l'espace chez les personnes âgées dépendantes résidants en EHPAD. Pratiques Psychologiques, 2013, 19, 135-146.	^S 0.4	2
120	Apraxia of tool use: More evidence for the technical reasoning hypothesis. Cortex, 2013, 49, 2322-2333.	2.4	82
121	Apraxia of tool use is not a matter of affordances. Frontiers in Human Neuroscience, 2013, 7, 890.	2.0	17
122	To Do It or to Let an Automatic Tool Do It?. Experimental Psychology, 2013, 60, 453-468.	0.7	17
123	Make a gesture and I will tell you what you are miming. Pantomime recognition in healthy subjects. Cortex, 2012, 48, 584-592.	2.4	13
124	Tool use and perceived distance: when unreachable becomes spontaneously reachable. Experimental Brain Research, 2012, 218, 331-339.	1.5	56
125	Parcourir la ville sans voirÂ: effet de l'environnement urbain sur la perception et le ressenti des personnes aveugles lors d'un déplacement in situ. Annee Psychologique, 2012, 112, 403-433.	0.3	3
126	Re-examining the gesture engram hypothesis. New perspectives on apraxia of tool use. Neuropsychologia, 2011, 49, 299-312.	1.6	119

#	Article	IF	CITATIONS
127	Grasping the affordances, understanding the reasoning: Toward a dialectical theory of human tool use Psychological Review, 2010, 117, 517-540.	3.8	206
128	Utilization behavior: Clinical and theoretical approaches. Journal of the International Neuropsychological Society, 2010, 16, 453-462.	1.8	21
129	Unusual use of objects after unilateral brain damage. The technical reasoning model. Cortex, 2009, 45, 769-783.	2.4	105
130	Different constraints on grip selection in brain-damaged patients: Object use versus object transport. Neuropsychologia, 2008, 46, 2431-2434.	1.6	37
131	Object utilization and object usage: A single-case study. Neurocase, 2008, 14, 169-183.	0.6	52