Aashish Ranjan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8831183/publications.pdf

Version: 2024-02-01

394421 526287 1,747 28 19 27 citations g-index h-index papers 37 37 37 2463 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Modern Ampelography: A Genetic Basis for Leaf Shape and Venation Patterning in Grape. Plant Physiology, 2014, 164, 259-272.	4.8	233
2	A Quantitative Genetic Basis for Leaf Morphology in a Set of Precisely Defined Tomato Introgression Lines. Plant Cell, 2013, 25, 2465-2481.	6.6	209
3	Domestication selected for deceleration of the circadian clock in cultivated tomato. Nature Genetics, 2016, 48, 89-93.	21.4	165
4	De Novo Assembly and Characterization of the Transcriptome of the Parasitic Weed Dodder Identifies Genes Associated with Plant Parasitism Â. Plant Physiology, 2014, 166, 1186-1199.	4.8	143
5	Enhancing crop yield by optimizing plant developmental features. Development (Cambridge), 2016, 143, 3283-3294.	2.5	134
6	eQTL Regulating Transcript Levels Associated with Diverse Biological Processes in Tomato. Plant Physiology, 2016, 172, 328-340.	4.8	87
7	Sucrose transport in response to drought and salt stress involves ABAâ€mediated induction of <i>OsSWEET13</i> and <i>OsSWEET15</i> in rice. Physiologia Plantarum, 2021, 171, 620-637.	5.2	83
8	Resolving Distinct Genetic Regulators of Tomato Leaf Shape within a Heteroblastic and Ontogenetic Context. Plant Cell, 2014, 26, 3616-3629.	6.6	75
9	Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins. Development (Cambridge), 2014, 141, 3165-3176.	2.5	66
10	Leaf Asymmetry as a Developmental Constraint Imposed by Auxin-Dependent Phyllotactic Patterning. Plant Cell, 2012, 24, 2318-2327.	6.6	64
11	An Intracellular Transcriptomic Atlas of the Giant Coenocyte Caulerpa taxifolia. PLoS Genetics, 2015, 11, e1004900.	3.5	53
12	Light-induced indeterminacy alters shade avoiding tomato leaf morphology. Plant Physiology, 2015, 169, pp.01229.2015.	4.8	49
13	Transcriptomic analysis suggests a key role for <i><scp>SQUAMOSA PROMOTER BINDING PROTEIN LIKE</scp></i> <,ci> <scp>NAC</scp> and <i><scp>YUCCA</scp></i> genes in the heteroblastic development of the temperate rainforest tree <i>Gevuina avellana</i> (Proteaceae). New Phytologist, 2016, 210, 694-708.	7.3	47
14	Functional analysis of COP1 and SPA orthologs from Physcomitrella and rice during photomorphogenesis of transgenic Arabidopsis reveals distinct evolutionary conservation. BMC Plant Biology, 2014, 14, 178.	3.6	44
15	The <i>Arabidopsis</i> repressor of light signaling SPA1 acts in the phloem to regulate seedling de-etiolation, leaf expansion and flowering time. Development (Cambridge), 2011, 138, 1851-1862.	2.5	40
16	Sucrose transport and metabolism control carbon partitioning between stem and grain in rice. Journal of Experimental Botany, 2021, 72, 4355-4372.	4.8	40
17	The tomato genome: implications for plant breeding, genomics and evolution. Genome Biology, 2012, 13, 167.	9.6	37
18	A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification. G3: Genes, Genomes, Genetics, 2016, 6, 3169-3184.	1.8	36

#	Article	IF	CITATIONS
19	The tomato receptor CuRe1 senses a cell wall protein to identify Cuscuta as a pathogen. Nature Communications, 2020, 11, 5299.	12.8	36
20	High photosynthesis rate in two wild rice species is driven by leaf anatomy mediating high Rubisco activity and electron transport rate. Journal of Experimental Botany, 2021, 72, 7119-7135.	4.8	22
21	Drought Stress Exacerbates Fungal Colonization and Endodermal Invasion and Dampens Defense Responses to Increase Dry Root Rot in Chickpea. Molecular Plant-Microbe Interactions, 2022, 35, 583-591.	2.6	18
22	Characterization of <i>spa</i> mutants in the moss <i>Physcomitrella</i> provides evidence for functional divergence of <i><scp>SPA</scp></i> genes during the evolution of land plants. New Phytologist, 2019, 224, 1613-1626.	7.3	17
23	Decoding the gene coexpression network underlying the ability of <i>Gevuina avellana</i> to live in diverse light conditions. New Phytologist, 2018, 220, 278-287.	7.3	14
24	Spatial control of cell division by GAâ€OsGRF7/8 module in a leaf explaining the leaf length variation between cultivated and wild rice. New Phytologist, 2022, 234, 867-883.	7.3	9
25	Production and cytological characterization of a synthetic amphiploid derived from a cross between <i>Oryza sativa</i> and <i>Oryza punctata</i> . Genome, 2019, 62, 705-714.	2.0	5
26	Genetic diversity of farmer-preferred cassava landraces in Tanzania based on morphological descriptors and single nucleotide polymorphisms. Plant Genetic Resources: Characterisation and Utilisation, 2017, 15, 138-146.	0.8	4
27	Regulatory sequences of the Arabidopsis thaliana Rps19, a nuclear gene encoding mitochondrial ribosomal protein subunit, extend into the upstream gene. Journal of Plant Biochemistry and Biotechnology, 2017, 26, 302-309.	1.7	1
28	Interaction of Light and Temperature Signaling at the Plant Interphase: From Cue to Stress. , 2017, , 111-132.		1