Eric R Strieter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8831144/publications.pdf

Version: 2024-02-01

37 papers

2,622 citations

361413 20 h-index 330143 37 g-index

44 all docs

44 docs citations

44 times ranked 3022 citing authors

#	Article	IF	CITATIONS
1	A Strategy for Accessing Nanobody-Based Electrochemical Sensors for Analyte Detection in Complex Media. , 2022, 1, 010601.		84
2	A cryptic K48 ubiquitin chain binding site on UCH37 is required for its role in proteasomal degradation. ELife, 2022, 11 , .	6.0	9
3	Immobilization of Nanobodies with Vapor-Deposited Polymer Encapsulation for Robust Biosensors. ACS Applied Polymer Materials, 2021, 3, 2561-2567.	4.4	7
4	Realâ€Time and Labelâ€Free Measurement of Deubiquitinase Activity with a MspA Nanopore. ChemBioChem, 2021, 22, 2688-2692.	2.6	10
5	The ubiquitin proteoform problem. Current Opinion in Chemical Biology, 2021, 63, 95-104.	6.1	12
6	(Invited) Immobilization of Nanobodies with Vapor-Deposited Polymer Encapsulation for Robust Biosensors. ECS Meeting Abstracts, 2021, MA2021-02, 1645-1645.	0.0	0
7	Proteasome-Bound UCH37/UCHL5 Debranches Ubiquitin Chains to Promote Degradation. Molecular Cell, 2020, 80, 796-809.e9.	9.7	46
8	Quantitative Middle-Down MS Analysis of Parkin-Mediated Ubiquitin Chain Assembly. Journal of the American Society for Mass Spectrometry, 2020, 31, 1132-1139.	2.8	16
9	Synthesis of Branched Triubiquitin Active-Site Directed Probes. Organic Letters, 2019, 21, 6790-6794.	4.6	13
10	Enzymatic Logic of Ubiquitin Chain Assembly. Frontiers in Physiology, 2019, 10, 835.	2.8	81
11	A fluorescence polarization-based competition assay for measuring interactions between unlabeled ubiquitin chains and UCH37•RPN13. Analytical Biochemistry, 2018, 550, 84-89.	2.4	7
12	Reprogramming a Deubiquitinase into a Transamidase. ACS Chemical Biology, 2018, 13, 2808-2818.	3.4	4
13	Determining Atomistic SAXS Models of Tri-Ubiquitin Chains from Bayesian Analysis of Accelerated Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2017, 13, 2418-2429.	5.3	16
14	Ubiquitin Chain Enrichment Middle-Down Mass Spectrometry Enables Characterization of Branched Ubiquitin Chains in Cellulo. Analytical Chemistry, 2017, 89, 4428-4434.	6.5	41
15	Ubiquitin Chain Enrichment Middle-Down Mass Spectrometry (UbiChEM-MS) Reveals Cell-Cycle Dependent Formation of Lys 11 /Lys48 Branched Ubiquitin Chains. Journal of Proteome Research, 2017, 16, 3363-3369.	3.7	22
16	Comparison of native and non-native ubiquitin oligomers reveals analogous structures and reactivities. Protein Science, 2016, 25, 456-471.	7.6	18
17	Subunitâ€Specific Labeling of Ubiquitin Chains by Using Sortase: Insights into the Selectivity of Deubiquitinases. ChemBioChem, 2016, 17, 1525-1531.	2.6	6
18	Selenocysteine as a Latent Bioorthogonal Electrophilic Probe for Deubiquitylating Enzymes. Journal of the American Chemical Society, 2016, 138, 13774-13777.	13.7	35

#	Article	IF	CITATIONS
19	Restricting the Ï [^] Torsion Angle Has Stereoelectronic Consequences on a Scissile Bond: An Electronic Structure Analysis. Biochemistry, 2015, 54, 5748-5756.	2.5	4
20	Peeling away the layers of ubiquitin signaling complexities with synthetic ubiquitin–protein conjugates. Current Opinion in Chemical Biology, 2015, 28, 57-65.	6.1	20
21	Chemoenzymatic Synthesis of Bifunctional Polyubiquitin Substrates for Monitoring Ubiquitin Chain Remodeling. ChemBioChem, 2014, 15, 1563-1568.	2.6	10
22	Middle-Down Mass Spectrometry Enables Characterization of Branched Ubiquitin Chains. Biochemistry, 2014, 53, 4979-4989.	2.5	79
23	Simultaneous Detection of Distinct Ubiquitin Chain Topologies by ¹⁹ F NMR. ACS Chemical Biology, 2014, 9, 2229-2236.	3.4	11
24	Neutron-encoded mass signatures for multiplexed proteome quantification. Nature Methods, 2013, 10, 332-334.	19.0	165
25	Nonenzymatic Polymerization of Ubiquitin: Singleâ€Step Synthesis and Isolation of Discrete Ubiquitin Oligomers. Angewandte Chemie - International Edition, 2012, 51, 13085-13088.	13.8	55
26	Unraveling the Complexity of Ubiquitin Signaling. ACS Chemical Biology, 2012, 7, 52-63.	3.4	62
27	Forging Isopeptide Bonds Using Thiol–Ene Chemistry: Site-Specific Coupling of Ubiquitin Molecules for Studying the Activity of Isopeptidases. Journal of the American Chemical Society, 2012, 134, 6916-6919.	13.7	115
28	Mechanistic Studies on the Copper-Catalyzed <i>N-</i> Arylation of Amides. Journal of the American Chemical Society, 2009, 131, 78-88.	13.7	283
29	Cascade Reactions during Coronafacic Acid Biosynthesis: Elongation, Cyclization, and Functionalization during Cfa7-Catalyzed Condensation. Journal of the American Chemical Society, 2009, 131, 2113-2115.	13.7	17
30	Structural basis for the selectivity of the external thioesterase of the surfactin synthetase. Nature, 2008, 454, 907-911.	27.8	112
31	Water-Mediated Catalyst Preactivation: An Efficient Protocol for Câ^'N Cross-Coupling Reactions. Organic Letters, 2008, 10, 3505-3508.	4.6	235
32	Reevaluation of the Mechanism of the Amination of Aryl Halides Catalyzed by BINAP-Ligated Palladium Complexes. Journal of the American Chemical Society, 2006, 128, 3584-3591.	13.7	264
33	New Insights into Xantphos/Pd-Catalyzed Câ^'N Bond Forming Reactions:Â A Structural and Kinetic Study. Organometallics, 2006, 25, 82-91.	2.3	80
34	The Role of Chelating Diamine Ligands in the Goldberg Reaction:Â A Kinetic Study on the Copper-Catalyzed Amidation of Aryl lodides. Journal of the American Chemical Society, 2005, 127, 4120-4121.	13.7	250
35	Insights into the Origin of High Activity and Stability of Catalysts Derived from Bulky, Electron-Rich Monophosphinobiaryl Ligands in the Pd-Catalyzed Câ^'N Bond Formation. Journal of the American Chemical Society, 2003, 125, 13978-13980.	13.7	235
36	Dioxolane-to-Bridged Acetal-to-Spiroketal via Ring-Closing Metathesis and Rearrangement:  A Novel Route to 1,7- Dioxaspiro[5.5]undecanes. Organic Letters, 2002, 4, 467-470.	4.6	38

#	Article	IF	CITATIONS
37	Mechanistic Insights into the Pd(BINAP)-Catalyzed Amination of Aryl Bromides:Â Kinetic Studies under Synthetically Relevant Conditions. Journal of the American Chemical Society, 2002, 124, 14104-14114.	13.7	145