Katusaki Konishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8830190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aggregation-induced chirality amplification of optically active fluorescent polyurethane and a cyclic dimer in the ground and excited states. Chemical Communications, 2022, 58, 1029-1032.	4.1	6
2	Catalytic Synthesis of Oxazolidinones from a Chitin-Derived Sugar Alcohol. Bulletin of the Chemical Society of Japan, 2022, 95, 1054-1059.	3.2	3
3	Chiral Gold Clusters with Crosslinking Ligands: Geometric Structures and Chiroptical Activities. ChemNanoMat, 2022, 8, .	2.8	3
4	Self-promoted solid-state covalent networking of Au ₂₅ (SR) ₁₈ through reversible disulfide bonds. A critical effect of the nanocluster in oxidation processes. Nanoscale, 2021, 13, 9971-9977.	5.6	11
5	Chiroptical activity of Au ₁₃ clusters: experimental and theoretical understanding of the origin of helical charge movements. Nanoscale Advances, 2021, 3, 1005-1011.	4.6	20
6	Diarsine- vs diphosphine-protected Au13 clusters: Effect of subtle geometric differences on optical property and electronic structure. Journal of Chemical Physics, 2021, 155, 054301.	3.0	7
7	Synthesis and stereochemistry of helical polyurethanes based on 2,2′-dihydroxy-1,1′-binaphthyl and diisocyanatobenzenes. Polymer Chemistry, 2020, 11, 1134-1144.	3.9	2
8	Aggregation-Mode-Dependent Optical Properties of Cationic Gold Clusters: Formation of Ordered Assemblies in Solution and Unique Optical Responses. Journal of Physical Chemistry C, 2020, 124, 16209-16215.	3.1	11
9	Terahertz Raman Spectroscopy of Ligand-Protected Au ₈ Clusters. Journal of Physical Chemistry Letters, 2020, 11, 7996-8001.	4.6	19
10	Self-assembling-directed Growth and PL Evolution of a Soluble Gold Thiolate Coordination Polymer. Chemistry Letters, 2020, 49, 1228-1231.	1.3	1
11	Catalytic Conversion of a Chitin-Derived Sugar Alcohol to an Amide-Containing Isosorbide Analog. ACS Sustainable Chemistry and Engineering, 2019, 7, 14883-14888.	6.7	22
12	Mixed-halide perovskite synthesis by chemical reaction and crystal nucleation under an optical potential. NPG Asia Materials, 2019, 11, .	7.9	17
13	Unusual Attractive Au–π Interactions in Small Diacetyleneâ€Modified Gold Clusters. Angewandte Chemie, 2019, 131, 2465-2469.	2.0	5
14	Photoluminescence Properties of [Core+ <i>exo</i>]-Type Au ₆ Clusters: Insights into the Effect of Ligand Environments on the Excitation Dynamics. Journal of Physical Chemistry C, 2019, 123, 6934-6939.	3.1	14
15	Unusual Attractive Auâ€"ï€ Interactions in Small Diacetyleneâ€Modified Gold Clusters. Angewandte Chemie - International Edition, 2019, 58, 2443-2447.	13.8	22
16	Phosphine-Ligated Gold Clusters with Core+ <i>exo</i> Geometries: Unique Properties and Interactions at the Ligand–Cluster Interface. Accounts of Chemical Research, 2018, 51, 3125-3133.	15.6	144
17	Preparation of Carbodiimides with One-Handed Axial Chirality. Journal of the American Chemical Society, 2018, 140, 15577-15581.	13.7	18
18	An Inherently Chiral Au ₂₄ Framework with Doubleâ€Helical Hexagold Strands. Angewandte Chemie, 2018, 130, 7981-7985.	2.0	32

Katusaki Konishi

#	Article	IF	CITATIONS
19	An Inherently Chiral Au ₂₄ Framework with Doubleâ€Helical Hexagold Strands. Angewandte Chemie - International Edition, 2018, 57, 7855-7859.	13.8	121
20	Hydrogen bonds to Au atoms in coordinated gold clusters. Nature Communications, 2017, 8, 576.	12.8	92
21	Aggregation-Induced Fluorescence-to-Phosphorescence Switching of Molecular Gold Clusters. Journal of the American Chemical Society, 2017, 139, 17731-17734.	13.7	169
22	Facile Diastereoseparation of Glycosyl Sulfoxides by Chiral Stationary Phase. Chirality, 2016, 28, 534-539.	2.6	2
23	Hexanuclear Platinum(II) Thiolate Macrocyclic Host: Charge-Transfer-Driven Inclusion of a Ag ^I Ion Guest. Inorganic Chemistry, 2016, 55, 9147-9149.	4.0	8
24	The relationship between magneto-optical properties and molecular chirality. NPG Asia Materials, 2016, 8, e251-e251.	7.9	11
25	Facile modulation of optical properties of octagold clusters through the control of ligand-mediated interactions. Physical Chemistry Chemical Physics, 2016, 18, 19433-19439.	2.8	19
26	Ligand-Based Toolboxes for Tuning of the Optical Properties of Subnanometer Gold Clusters. Journal of Physical Chemistry Letters, 2016, 7, 4267-4274.	4.6	50
27	Impact of Skeletal Isomerization of Ultrasmall Gold Clusters on Electrochemical Properties: Voltammetric Profiles of Nonspoked Octanuclear Clusters Journal of Physical Chemistry C, 2015, 119, 10995-10999.	3.1	19
28	Clusterâ€"ï€ electronic interaction in a superatomic Au ₁₃ cluster bearing σ-bonded acetylide ligands. Chemical Communications, 2015, 51, 13519-13522.	4.1	93
29	Chiral Polyurethane Synthesis Leading to π-Stacked 2/1-Helical Polymer and Cyclic Compounds. ACS Macro Letters, 2015, 4, 901-906.	4.8	19
30	Unexpected electronic perturbation effects of simple PEG environments on the optical properties of small cadmium chalcogenide clusters. Nanoscale, 2015, 7, 20557-20563.	5.6	8
31	Phosphine-Coordinated Pure-Gold Clusters: Diverse Geometrical Structures and Unique Optical Properties/Responses. Structure and Bonding, 2014, , 49-86.	1.0	101
32	[Au ₇] ³⁺ : A Missing Link in the Four-Electron Gold Cluster Family. Journal of the American Chemical Society, 2014, 136, 12892-12895.	13.7	81
33	Protonation-Induced Chromism of Pyridylethynyl-Appended [core+ <i>exo</i>]-Type Au ₈ Clusters. Resonance-Coupled Electronic Perturbation through π-Conjugated Group. Journal of the American Chemical Society, 2013, 135, 16078-16081.	13.7	117
34	Electronic Properties of [Core+ <i>exo</i>]-type Gold Clusters: Factors Affecting the Unique Optical Transitions. Inorganic Chemistry, 2013, 52, 6570-6575.	4.0	43
35	Unique [core+two] structure and optical property of a dodeca-ligated undecagold cluster: critical contribution of the exo gold atoms to the electronic structure. Chemical Communications, 2012, 48, 7559.	4.1	80
36	Facile synthesis and optical properties of magic-number Au13 clusters. Nanoscale, 2012, 4, 4125.	5.6	122

ΚΑΤUSAKI KONISHI

#	Article	IF	CITATIONS
37	Surface-Functionalized CdS Clusters with Recognition Sites near the Interface: Selective Luminescence Response to Lipophilic Phenols. Langmuir, 2011, 27, 1332-1335.	3.5	3
38	A photoâ€degradable helix: Synthesis, structure, and photolysis of optically active poly[2,7â€bis(4â€ <i>t</i> â€butylphenyl)â€9â€methylfluorenâ€9â€yl acrylate]. Journal of Polymer Science Part A, 49, 945-956.	2011,	5
39	Generation of Small Gold Clusters with Unique Geometries through Clusterâ€toâ€Cluster Transformations: Octanuclear Clusters with Edgeâ€sharing Gold Tetrahedron Motifs. Angewandte Chemie - International Edition, 2011, 50, 7442-7445.	13.8	135
40	HClâ€Induced Nuclearity Convergence in Diphosphineâ€Protected Ultrasmall Gold Clusters: A Novel Synthetic Route to "Magicâ€Number―Au ₁₃ Clusters. Small, 2010, 6, 1216-1220.	10.0	255
41	Mechanistic insights into the co-catalyst effect of Au clusters in Mn-porphyrin-catalyzed olefin oxidation. New Journal of Chemistry, 2008, 32, 2134.	2.8	8
42	Functionalization of Inorganic Nanoclusters based on the Molecular Recognition Events at the Heterogeneous Interface. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2008, 66, 239-248.	0.1	1
43	Size- and Stereo-specific Accommodation of Alkanes and Alkenes in Calixarene-based Microporous Solids. Chemistry Letters, 2007, 36, 246-247.	1.3	7
44	Remarkable Co-catalyst Effect of Gold Nanoclusters on Olefin Oxidation Catalyzed by a Manganeseâ^'Porphyrin Complex. Journal of the American Chemical Society, 2007, 129, 14401-14407.	13.7	53
45	Electric-Field-Induced Changes in Absorption and Emission Spectra of CdS Nanoparticles Doped in a Polymer Film. Journal of Physical Chemistry B, 2006, 110, 20927-20936.	2.6	26
46	Cation–π-driven Fluorescence Signalling of Ammonium Cations by Naphthyl-substituted Zn10S16and Cd10S16Clusters. Chemistry Letters, 2006, 35, 184-185.	1.3	8
47	High Catalytic Activity of Manganese–Porphyrin Cage Confining a Metal Nanocluster in Styrene Epoxidation. Chemistry Letters, 2006, 35, 476-477.	1.3	9
48	Turn-On and Selective Luminescence Sensing of Copper Ions by a Water-Soluble Cd10S16 Molecular Cluster. Angewandte Chemie - International Edition, 2006, 45, 5191-5194.	13.8	70
49	Porous Organic–Inorganic Assemblies Constructed from Keggin Polyoxometalate Anions and Calix[4]arene–Na+ Complexes: Structures and Guest-Sorption Profiles. Angewandte Chemie - International Edition, 2004, 43, 2702-2705.	13.8	171
50	Surface-Cap-Mediated Host-Guest Chemistry of Semiconductor CdS: Intercalative Cation Accumulation around a Phenyl-Capped CdS Cluster and Its Notable Effects on the Cluster Photoluminescence. Angewandte Chemie - International Edition, 2004, 43, 5943-5946.	13.8	41
51	Gold nanocluster confined within a cage: template-directed formation of a hexaporphyrin cage and its confinement capability. Chemical Communications, 2003, , 1282.	4.1	56
52	Supramolecular acid/base catalysis via multiple hydrogen bonding interaction. Chemical Communications, 2002, , 1690-1691.	4.1	9
53	Enantioselective hydrolysis of amino acid esters by apomyoglobin: perfect kinetic resolution of a phenylalanine derivative. Chemical Communications, 2001, , 133-134.	4.1	5
54	A Photocrosslinkable Dendrimer Consisting of a Nucleobase. Chemistry Letters, 2000, 29, 374-375.	1.3	8

ΚΑΤUSAKI KONISHI

#	Article	IF	CITATIONS
55	Nucleobase dendrimer as a multidentate ligand for a rare-earth metal ion. Chemical Communications, 2000, , 719-720.	4.1	19
56	Metal Bisporphyrinate Double-Decker Complexes as Redox-Responsive Rotating Modules. Studies on Ligand Rotation Activities of the Reduced and Oxidized Forms Using Chirality as a Probe. Journal of the American Chemical Society, 2000, 122, 7921-7926.	13.7	142
57	The first chiral phosphorous porphyrins with molecular asymmetry: conformation studies on porphyrin macrocycles in solution. Tetrahedron Letters, 1999, 40, 6951-6955.	1.4	4
58	Template Catalysis:Â Catalytic Metalation of Porphyrins by Apocytochromeb562. Journal of the American Chemical Society, 1999, 121, 7947-7948.	13.7	6
59	Catalysis of Nucleobase via Multiple Hydrogen-Bonding Interactions:  Acceleration of Aminolysis of 6-Chloropurine Derivatives by Uracils. Journal of the American Chemical Society, 1999, 121, 7704-7705.	13.7	12
60	Apocytochromeb562 as a Novel Chiral Host Molecule: The First Enantioselective Reconstitution. Chemistry - A European Journal, 1998, 4, 1148-1153.	3.3	10
61	Rotational oscillation of two interlocked porphyrins in cerium bis(5,15-diarylporphyrinate) double-deckers. Chemical Communications, 1998, , 1121-1122.	4.1	42
62	A Photoresponsive Silicon Radical within a Porphyrin π-Cloud:  Photolysis of Organo- and Nitroxysilicon Porphyrins with Visible Light. Journal of the American Chemical Society, 1998, 120, 9838-9843.	13.7	29
63	Crystallographic Studies of Organosilicon Porphyrins:Â Stereoelectronic Effects of Axial Groups on the Nonplanarity of the Porphyrin Ring. Inorganic Chemistry, 1998, 37, 2591-2594.	4.0	33
64	A Novel Photocatalysis of Phosphorous Porphyrins for Hydration of Benzonitrile. Chemistry Letters, 1998, 27, 1039-1040.	1.3	3
65	Dioxygen Insertion into the Axial Si-C Bonds of Organosilicon Porphyrins. Chemistry Letters, 1998, 27, 453-454.	1.3	11
66	Design and Applications of Chiral Porphyrins Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1998, 56, 201-209.	0.1	3
67	Guest-selective binding of Z-amino acids by a strapped metalloporphyrin receptor with a hydrogen-bonding capability. Tetrahedron, 1997, 53, 9115-9122.	1.9	25
68	Enantiomeric Resolution of Chiral Metallobis(porphyrin)s: Studies on Rotatability of Electronically Coupled Porphyrin Ligands. Angewandte Chemie International Edition in English, 1997, 36, 856-858.	4.4	94
69	Erkennung der GÄ ¤ gigkeit von Polypeptidhelices durch einen chiralen Metalloporphyrinrezeptor. Angewandte Chemie, 1996, 108, 3001-3003.	2.0	2
70	Recognition of the Helical Sense of Polypeptides by a Chiral Metalloporphyrin Receptor. Angewandte Chemie International Edition in English, 1996, 35, 2823-2825.	4.4	20
71	Free bases of chiral N-substituted porphyrins as catalysts for asymmetric reaction. Tetrahedron Letters, 1996, 37, 2585-2588.	1.4	34
72	Conformational Flexibility of Metalloporphyrin Skeletons As Studied by Racemization Profiles of Chiral meso-Substituted Metalloporphyrins with Molecular Asymmetry. Inorganic Chemistry, 1995, 34, 1292-1294.	4.0	6

ΚΑΤUSAKI KONISHI

#	Article	IF	CITATIONS
73	A Novel Anion-Binding Chiral Receptor Based on a Metalloporphyrin with Molecular Asymmetry. Highly Enantioselective Recognition of Amino Acid Derivatives. Journal of the American Chemical Society, 1994, 116, 1337-1344.	13.7	122
74	Chiral N-substituted porphyrins related to heme inactivation products. First crystallographic determination of absolute stereochemistry and correlation with circular dichroism. Journal of the American Chemical Society, 1993, 115, 1169-1170.	13.7	31
75	Asymmetric oxidation of sulfides catalysed by an iron complex of C 2-chiral strapped porphyrin as a conceptually new P-450 model catalyst. Journal of the Chemical Society Chemical Communications, 1992, , 254.	2.0	47
76	Asymmetric epoxidation of olefins catalyzed by manganese complexes of chiral "strapped" porphyrins with diastereotopic faces. A novel strategy for stereochemical modeling of the active site of cytochrome P-450. Journal of the American Chemical Society, 1992, 114, 1313-1317.	13.7	146
77	Selective synthesis with metalloporphyrin catalysts. Journal of Molecular Catalysis, 1992, 74, 121-129.	1.2	15
78	Stereochemical studies on reversible metal-nitrogen transfer of alkyl and aryl groups in chiral cobalt(III) porphyrins. Relevance to the mechanism of a metabolic heme inactivation process. Journal of the American Chemical Society, 1991, 113, 6487-6491.	13.7	21
79	Photoinduced conformational ruffling of distorted porphyrin. Optical resolution and photochemical behavior of chiral "single-armed" porphyrin complexes. Journal of the American Chemical Society, 1990, 112, 5639-5640.	13.7	30
80	Hydrogen transfer from alcohols to carbonyl compounds catalyzed by aluminum porphyrins. Stereochemical aspects. Journal of Organic Chemistry, 1990, 55, 816-820.	3.2	15
81	Highly stereoselective hydrogen transfer from alcohols to carbonyl compounds catalysed by aluminium porphyrins. Journal of the Chemical Society Chemical Communications, 1988, , 643.	2.0	26