List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8828634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clobal convergence in the vulnerability of forests to drought. Nature, 2012, 491, 752-755.	27.8	1,944
2	Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 2010, 259, 698-709.	3.2	1,684
3	The human footprint in the carbon cycle of temperate and boreal forests. Nature, 2007, 447, 849-851.	27.8	868
4	Facilitation in plant communities: the past, the present, and the future. Journal of Ecology, 2008, 96, 18-34.	4.0	788
5	Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 2017, 20, 1437-1447.	6.4	486
6	Weak tradeoff between xylem safety and xylemâ€specific hydraulic efficiency across the world's woody plant species. New Phytologist, 2016, 209, 123-136.	7.3	466
7	Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management?. Journal of Environmental Management, 2014, 146, 69-83.	7.8	460
8	Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiology, 2013, 33, 672-683.	3.1	406
9	A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23, 1675-1690.	9.5	394
10	Drought effects on damage by forest insects and pathogens: a metaâ€analysis. Global Change Biology, 2012, 18, 267-276.	9.5	381
11	Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses?. Agricultural and Forest Meteorology, 2009, 149, 735-744.	4.8	324
12	Methods for measuring plant vulnerability to cavitation: a critical review. Journal of Experimental Botany, 2013, 64, 4779-4791.	4.8	319
13	Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology, 2011, 151, 969-980.	4.8	286
14	Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytologist, 2010, 188, 533-542.	7.3	284
15	Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Canadian Journal of Forest Research, 2009, 39, 1259-1269.	1.7	253
16	Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia, 2009, 161, 187-198.	2.0	248
17	Mechanism of waterâ€stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillaryâ€seeding. Plant, Cell and Environment, 2010, 33, 2101-2111.	5.7	216
18	Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine (Pinus pinaster Ait.). Plant, Cell and Environment, 2002, 25, 1155-1165.	5.7	208

#	Article	IF	CITATIONS
19	Quantifying phenological plasticity to temperature in two temperate tree species. Functional Ecology, 2010, 24, 1211-1218.	3.6	203
20	How adaptable is the hydraulic system of European beech in the face of climate changeâ€related precipitation reduction?. New Phytologist, 2016, 210, 443-458.	7.3	178
21	Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a <scp>M</scp> editerranean pine. New Phytologist, 2014, 201, 874-886.	7.3	170
22	Reviewing the Science and Implementation of Climate Change Adaptation Measures in European Forestry. Forests, 2011, 2, 961-982.	2.1	169
23	Age-related decline in stand water use: sap flow and transpiration in a pine forest chronosequence. Agricultural and Forest Meteorology, 2005, 129, 105-119.	4.8	165
24	<scp>X</scp> â€ray microtomography (microâ€ <scp>CT</scp>): a reference technology for highâ€resolution quantification of xylem embolism in trees. Plant, Cell and Environment, 2015, 38, 201-206.	5.7	160
25	Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin. New Phytologist, 2014, 203, 355-358.	7.3	158
26	To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech?. Tree Physiology, 2011, 31, 1164-1174.	3.1	157
27	Direct X-Ray Microtomography Observation Confirms the Induction of Embolism upon Xylem Cutting under Tension. Plant Physiology, 2015, 167, 40-43.	4.8	156
28	Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?. Environmental Research Letters, 2017, 12, 034027.	5.2	142
29	MuSICA , a CO2 , water and energy multilayer, multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis. Global Change Biology, 2003, 9, 697-717.	9.5	139
30	Isotopic evidence for oligotrophication of terrestrial ecosystems. Nature Ecology and Evolution, 2018, 2, 1735-1744.	7.8	138
31	A broad survey of hydraulic and mechanical safety in the xylem of conifers. Journal of Experimental Botany, 2014, 65, 4419-4431.	4.8	135
32	Noninvasive Measurement of Vulnerability to Drought-Induced Embolism by X-Ray Microtomography. Plant Physiology, 2016, 170, 273-282.	4.8	133
33	Evidence for Hydraulic Vulnerability Segmentation and Lack of Xylem Refilling under Tension. Plant Physiology, 2016, 172, 1657-1668.	4.8	132
34	Aridity drove the evolution of extreme embolism resistance and the radiation ofÂconifer genus <i>Callitris</i> . New Phytologist, 2017, 215, 97-112.	7.3	132
35	Uniform Selection as a Primary Force Reducing Population Genetic Differentiation of Cavitation Resistance across a Species Range. PLoS ONE, 2011, 6, e23476.	2.5	129
36	Masting in whitebark pine (<i>Pinus albicaulis</i>) depletes stored nutrients. New Phytologist, 2012, 196, 189-199.	7.3	127

#	Article	IF	CITATIONS
37	Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiology, 2004, 24, 1285-1293.	3.1	123
38	Tree invasions: a comparative test of the dominant hypotheses and functional traits. Biological Invasions, 2011, 13, 1969-1989.	2.4	123
39	Hydraulic responses to height growth in maritime pine trees. Plant, Cell and Environment, 2004, 27, 1077-1087.	5.7	120
40	Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient. Journal of Evolutionary Biology, 2011, 24, 1442-1454.	1.7	119
41	Hydraulic failure and repair are not routine in trees. Annals of Forest Science, 2013, 70, 659-661.	2.0	117
42	Adaptive introgression as a driver of local adaptation to climate in European white oaks. New Phytologist, 2020, 226, 1171-1182.	7.3	117
43	Drought will not leave your glass empty: Low risk of hydraulic failure revealed by long-term drought observations in world's top wine regions. Science Advances, 2018, 4, eaao6969.	10.3	107
44	Genetic divergence in forest trees: understanding the consequences of climate change. Functional Ecology, 2014, 28, 22-36.	3.6	105
45	New Insights into the Mechanisms of Water-Stress-Induced Cavitation in Conifers. Plant Physiology, 2009, 151, 949-954.	4.8	97
46	Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure. Tree Physiology, 2019, 39, 910-924.	3.1	96
47	Variation in xylem vulnerability to embolism in European beech from geographically marginal populations. Tree Physiology, 2018, 38, 173-185.	3.1	93
48	Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance. Tree Physiology, 2008, 28, 265-276.	3.1	92
49	Adaptive and plastic responses of <i>Quercus petraea</i> populations to climate across Europe. Global Change Biology, 2017, 23, 2831-2847.	9.5	92
50	Assessing inter- and intraspecific variability of xylem vulnerability to embolism in oaks. Forest Ecology and Management, 2018, 424, 53-61.	3.2	84
51	Toward an index of desiccation time to tree mortality under drought. Plant, Cell and Environment, 2016, 39, 2342-2345.	5.7	83
52	Intraspecific Variation in Wood Anatomical, Hydraulic, and Foliar Traits in Ten European Beech Provenances Differing in Growth Yield. Frontiers in Plant Science, 2016, 7, 791.	3.6	80
53	Optical Measurement of Stem Xylem Vulnerability. Plant Physiology, 2017, 174, 2054-2061.	4.8	80
54	How reliable are methods to assess xylem vulnerability to cavitation? The issue of 'open vessel' artifact in oaks. Tree Physiology, 2014, 34, 894-905.	3.1	78

#	Article	IF	CITATIONS
55	New insight into leaf drought tolerance. Functional Ecology, 2015, 29, 1247-1249.	3.6	77
56	Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series. Remote Sensing of Environment, 2011, 115, 615-627.	11.0	76
57	Chilling and heat requirements for leaf unfolding in European beech and sessile oak populations at the southern limit of their distribution range. International Journal of Biometeorology, 2014, 58, 1853-1864.	3.0	75
58	Are needles of <i>Pinus pinaster</i> more vulnerable to xylem embolism than branches? New insights from Xâ€ray computed tomography. Plant, Cell and Environment, 2016, 39, 860-870.	5.7	74
59	Increasing spring temperatures favor oak seed production in temperate areas. Scientific Reports, 2017, 7, 8555.	3.3	73
60	Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.) Populations under Extreme Drought Conditions. Frontiers in Plant Science, 2016, 7, 751.	3.6	72
61	A framework for modeling adaptive forest management and decision making under climate change. Ecology and Society, 2017, 22, .	2.3	72
62	Xylem embolism in leaves does not occur with open stomata: evidence from direct observations using the optical visualization technique. Journal of Experimental Botany, 2020, 71, 1151-1159.	4.8	71
63	Herbaceous angiosperms are not more vulnerable to drought-induced embolism than angiosperm trees. Plant Physiology, 2016, 172, pp.00829.2016.	4.8	70
64	Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island. Plant, Cell and Environment, 2017, 40, 277-289.	5.7	67
65	The sequence and thresholds of leaf hydraulic traits underlying grapevine varietal differences in drought tolerance. Journal of Experimental Botany, 2020, 71, 4333-4344.	4.8	67
66	Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem. Plant, Cell and Environment, 2012, 35, 1109-1120.	5.7	66
67	Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus. Tree Physiology, 2014, 34, 744-756.	3.1	66
68	The enigma of the rise of angiosperms: can we untie the knot?. Ecology Letters, 2014, 17, 1326-1338.	6.4	66
69	The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 2022, 13, 28.	12.8	66
70	The role of biotic interactions in altering tree seedling responses to an extreme climatic event. Journal of Vegetation Science, 2009, 20, 403-414.	2.2	62
71	Osmolality and Non-Structural Carbohydrate Composition in the Secondary Phloem of Trees across a Latitudinal Gradient in Europe. Frontiers in Plant Science, 2016, 7, 726.	3.6	60
72	Tomography and imaging at the PSICHE beam line of the SOLEIL synchrotron. Review of Scientific Instruments, 2016, 87, 093704.	1.3	59

#	Article	IF	CITATIONS
73	Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat. Plant, Cell and Environment, 2020, 43, 854-865.	5.7	59
74	Xylem resistance to embolism: presenting a simple diagnostic test for the open vessel artefact. New Phytologist, 2017, 215, 489-499.	7.3	56
75	Escape of spring frost and disease through phenological variations in oak populations along elevation gradients. Journal of Ecology, 2015, 103, 1044-1056.	4.0	55
76	Heritability and genetic architecture of reproduction-related traits in a temperate oak species. Tree Genetics and Genomes, 2019, 15, 1.	1.6	55
77	Advanced vascular function discovered in a widespread moss. Nature Plants, 2020, 6, 273-279.	9.3	54
78	The high vulnerability of Quercus robur to droughtÂat its southern margin paves the way for Quercus ilex. Plant Ecology, 2015, 216, 177-187.	1.6	53
79	An inconvenient truth about xylem resistance to embolism in the model species for refilling Laurus nobilis L Annals of Forest Science, 2018, 75, 1.	2.0	53
80	How do drought and warming influence survival and wood traits of Picea mariana saplings?. Journal of Experimental Botany, 2015, 66, 377-389.	4.8	52
81	Extreme Aridity Pushes Trees to Their Physical Limits. Plant Physiology, 2015, 168, 804-807.	4.8	51
82	Indirect Evidence for Genetic Differentiation in Vulnerability to Embolism in Pinus halepensis. Frontiers in Plant Science, 2016, 7, 768.	3.6	49
83	Evolutionary dynamics of the leaf phenological cycle in an oak metapopulation along an elevation gradient. Journal of Evolutionary Biology, 2017, 30, 2116-2131.	1.7	49
84	Linking droughtâ€induced xylem embolism resistance to wood anatomical traits in Neotropical trees. New Phytologist, 2021, 229, 1453-1466.	7.3	49
85	Pollen limitation as a main driver of fruiting dynamics in oak populations. Ecology Letters, 2019, 22, 98-107.	6.4	48
86	Testing the plant pneumatic method to estimate xylem embolism resistance in stems of temperate trees. Tree Physiology, 2018, 38, 1016-1025.	3.1	47
87	Maternal effects shape the seed mycobiome in <i>Quercus petraea</i> . New Phytologist, 2021, 230, 1594-1608.	7.3	47
88	Insular woody daisies (<i>Argyranthemum,</i> Asteraceae) are more resistant to droughtâ€induced hydraulic failure than their herbaceous relatives. Functional Ecology, 2018, 32, 1467-1478.	3.6	46
89	Is xylem of angiosperm leaves less resistant to embolism than branches? Insights from microCT, hydraulics, and anatomy. Journal of Experimental Botany, 2018, 69, 5611-5623.	4.8	46
90	No role for xylem embolism or carbohydrate shortage in temperate trees during the severe 2015 drought. Journal of Ecology, 2019, 107, 334-349.	4.0	46

#	Article	IF	CITATIONS
91	Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across Neotropical trees. New Phytologist, 2020, 228, 512-524.	7.3	46
92	Inferring shifts in tree species distribution using asymmetric distribution curves: a case study in the Iberian mountains. Journal of Vegetation Science, 2014, 25, 147-159.	2.2	45
93	Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity. BMC Ecology, 2011, 11, 28.	3.0	43
94	Field Evidence of Colonisation by Holm Oak, at the Northern Margin of Its Distribution Range, during the Anthropocene Period. PLoS ONE, 2013, 8, e80443.	2.5	42
95	Is there tree senescence? The fecundity evidence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
96	Stem xylem resistance to cavitation is related to xylem structure but not to growth and water-use efficiency at the within-population level in <i>Populus nigra</i> L Journal of Experimental Botany, 2015, 66, 4643-4652.	4.8	41
97	Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
98	Hydraulic efficiency and safety of vascular and non-vascular components in Pinus pinaster leaves. Tree Physiology, 2012, 32, 1161-1170.	3.1	39
99	Genetic differentiation and phenotypic plasticity in life-history traits between native and introduced populations of invasive maple trees. Biological Invasions, 2015, 17, 1109-1122.	2.4	39
100	Large hydraulic safety margins protect Neotropical canopy rainforest tree species against hydraulic failure during drought. Annals of Forest Science, 2019, 76, 1.	2.0	39
101	A comparison of five methods to assess embolism resistance in trees. Forest Ecology and Management, 2020, 468, 118175.	3.2	39
102	Are plant pathogen populations adapted for encounter with their host? A case study of phenological synchrony between oak and an obligate fungal parasite along an altitudinal gradient. Journal of Evolutionary Biology, 2010, 23, 87-97.	1.7	38
103	Genetic differentiation in functional traits among European sessile oak populations. Tree Physiology, 2019, 39, 1736-1749.	3.1	38
104	Visual and hydraulic techniques produce similar estimates of cavitation resistance in woody species. New Phytologist, 2020, 228, 884-897.	7.3	37
105	The legacy of water deficit on populations having experienced negative hydraulic safety margin. Global Ecology and Biogeography, 2018, 27, 346-356.	5.8	36
106	Where is the optimum? Predicting the variation of selection along climatic gradients and the adaptive value of plasticity. A case study on tree phenology. Evolution Letters, 2020, 4, 109-123.	3.3	36
107	A Test for Pre-Adapted Phenotypic Plasticity in the Invasive Tree Acer negundo L PLoS ONE, 2013, 8, e74239.	2.5	35
108	Scalariform-to-simple transition in vessel perforation plates triggered by differences in climate during the evolution of Adoxaceae. Annals of Botany, 2016, 118, 1043-1056.	2.9	34

#	Article	IF	CITATIONS
109	Nighttime transpiration represents a negligible part of water loss and does not increase the risk of water stress in grapevine. Plant, Cell and Environment, 2021, 44, 387-398.	5.7	33
110	Sex determines xylem anatomy in a dioecious conifer: hydraulic consequences in a drier world. Tree Physiology, 2017, 37, 1493-1502.	3.1	32
111	Exploring the Hydraulic Failure Hypothesis of Esca Leaf Symptom Formation. Plant Physiology, 2019, 181, 1163-1174.	4.8	32
112	Embolism resistance in stems of herbaceous Brassicaceae and Asteraceae is linked to differences in woodiness and precipitation. Annals of Botany, 2019, 124, 1-14.	2.9	32
113	What do you mean "functional―in ecology? Patterns versus processes. Ecology and Evolution, 2020, 10, 11875-11885.	1.9	32
114	How does increasing mast seeding frequency affect population dynamics of seed consumers? Wild boar as a case study. Ecological Applications, 2020, 30, e02134.	3.8	32
115	Integrating interactive effects of chilling and photoperiod in phenological process-based models. A case study with two European tree species: Fagus sylvatica and Quercus petraea. Agricultural and Forest Meteorology, 2017, 244-245, 9-20.	4.8	31
116	<scp><i>Q</i>_{ST}</scp> _Â <Â <scp><i>F</i>_{ST}</scp> As a signature of canalization. Molecular Ecology, 2012, 21, 5646-5655.	3.9	30
117	Genetic variation of drought-induced cavitation resistance among Pinus hartwegii populations from an altitudinal gradient. Acta Physiologiae Plantarum, 2013, 35, 2905-2913.	2.1	30
118	Similar hydraulic efficiency and safety across vesselless angiosperms and vessel-bearing species with scalariform perforation plates. Journal of Experimental Botany, 2019, 70, 3227-3240.	4.8	29
119	Climatic limits of temperate rainforest tree species are explained by xylem embolism resistance among angiosperms but not among conifers. New Phytologist, 2020, 226, 727-740.	7.3	29
120	Augmentation de la capacité photosynthétique avec l'altitude: mesures d'échanges gazeux à pres partielles de CO2 ambiante et constante. Annals of Forest Science, 2009, 66, 505-505.	sions 2.0	27
121	Direct observation and modelling of embolism spread between xylem conduits: a case study in Scots pine. Plant, Cell and Environment, 2016, 39, 2774-2785.	5.7	27
122	Fruiting Strategies of Perennial Plants: A Resource Budget Model to Couple Mast Seeding to Pollination Efficiency and Resource Allocation Strategies. American Naturalist, 2016, 188, 66-75.	2.1	26
123	Flower phenology as a disruptor of the fruiting dynamics in temperate oak species. New Phytologist, 2020, 225, 1181-1192.	7.3	26
124	Lack of vulnerability segmentation in four angiosperm tree species: evidence from direct X-ray microtomography observation. Annals of Forest Science, 2020, 77, 1.	2.0	26
125	The impact of drought-induced root and root hair shrinkage on root–soil contact. Plant Physiology, 2022, 189, 1232-1236.	4.8	26
126	Quantifying in situ phenotypic variability in the hydraulic properties of four tree species across their distribution range in Europe. PLoS ONE, 2018, 13, e0196075.	2.5	25

#	Article	IF	CITATIONS
127	Variation of the photosynthetic capacity across a chronosequence of maritime pine correlates with needle phosphorus concentration. Annals of Forest Science, 2005, 62, 537-543.	2.0	24
128	Overâ€accumulation of abscisic acid in transgenic tomato plants increases the risk of hydraulic failure. Plant, Cell and Environment, 2020, 43, 548-562.	5.7	24
129	Intervessel pit membrane thickness best explains variation in embolism resistance amongst stems of <i>Arabidopsis thaliana</i> accessions. Annals of Botany, 2021, 128, 171-182.	2.9	23
130	Pit and tracheid anatomy explain hydraulic safety but not hydraulic efficiency of 28 conifer species. Journal of Experimental Botany, 2022, 73, 1033-1048.	4.8	22
131	On research priorities to advance understanding of the safety–efficiency tradeoff in xylem. New Phytologist, 2016, 211, 1156-1158.	7.3	21
132	Testing the â€~microbubble effect' using the Cavitron technique to measure xylem water extraction curves. AoB PLANTS, 2016, 8, .	2.3	21
133	Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nature Communications, 2022, 13, 2381.	12.8	21
134	Magnani et al. reply. Nature, 2008, 451, E3-E4.	27.8	20
135	Micro-evolutionary patterns of juvenile wood density in a pine species. Plant Ecology, 2012, 213, 1781-1792.	1.6	19
136	Low intra-tree variability in resistance to embolism in four Pinaceae species. Annals of Forest Science, 2016, 73, 681-689.	2.0	19
137	Towards a statistically robust determination of minimum water potential and hydraulic risk in plants. New Phytologist, 2021, 232, 404-417.	7.3	19
138	Tree differences in primary and secondary growth drive convergent scaling in leaf area to sapwood area across Europe. New Phytologist, 2018, 218, 1383-1392.	7.3	18
139	How does contemporary selection shape oak phenotypes?. Evolutionary Applications, 2020, 13, 2772-2790.	3.1	18
140	Droughtâ€induced lacuna formation in the stem causes hydraulic conductance to decline before xylem embolism in <i>Selaginella</i> . New Phytologist, 2020, 227, 1804-1817.	7.3	18
141	The within-population variability of leaf spring and autumn phenology is influenced by temperature in temperate deciduous trees. International Journal of Biometeorology, 2021, 65, 369-379.	3.0	18
142	Responses of plant leaf economic and hydraulic traits mediate the effects of early- and late-season drought on grassland productivity. AoB PLANTS, 2019, 11, plz023.	2.3	17
143	Understanding the genetic bases of adaptation to soil water deficit in trees through the examination of water use efficiency and cavitation resistance: maritime pine as a case study. The Journal of Plant Hydraulics, 0, 3, e008.	1.0	17
144	High variation in hydraulic efficiency but not xylem safety between roots and branches in four temperate broadâ€leaved tree species. Functional Ecology, 2022, 36, 699-712.	3.6	17

#	Article	IF	CITATIONS
145	Biogeographical contrasts to assess local and regional patterns of invasion: a case study with two reciprocally introduced exotic maple trees. Ecography, 2012, 35, 803-810.	4.5	16
146	Intraspecific variation in embolism resistance and stem anatomy across four sunflower (<scp><i>Helianthus annuus</i></scp> L.) accessions. Physiologia Plantarum, 2018, 163, 59-72.	5.2	16
147	Seasonal and long-term consequences of esca grapevine disease on stem xylem integrity. Journal of Experimental Botany, 2021, 72, 3914-3928.	4.8	16
148	The paradox of defoliation: Declining tree water status with increasing soil water content. Agricultural and Forest Meteorology, 2020, 290, 108025.	4.8	16
149	Is There Variability for Xylem Vulnerability to Cavitation in Walnut Tree Cultivars and Species (Juglans) Tj ETQq1	1 0,784314 1.0	ŀrgβT /Overl
150	Host range expansion is density dependent. Oecologia, 2016, 182, 779-788.	2.0	12
151	Embolism resistance of conifer roots can be accurately measured with the flow-centrifuge method. The Journal of Plant Hydraulics, 0, 2, e002.	1.0	12
152	A meta-analysis of the ecological significance of density in tree invasions. Community Ecology, 2011, 12, 171-178.	0.9	11
153	The ground plot counting method: A valid and reliable assessment tool for quantifying seed production in temperate oak forests?. Forest Ecology and Management, 2018, 430, 143-149.	3.2	11
154	Embolism resistance in petioles and leaflets of palms. Annals of Botany, 2019, 124, 1173-1183.	2.9	11
155	Mexican conifers differ in their capacity to face climate change. The Journal of Plant Hydraulics, 0, 4, e003.	1.0	11
156	Post-drought conditions and hydraulic dysfunction determine tree resilience and mortality across Mediterranean Aleppo pine (<i>Pinus halepensis</i>) populations after an extreme drought event. Tree Physiology, 2022, 42, 1364-1376.	3.1	11
157	Temperature rather than individual growing period length determines radial growth of sessile oak in the Pyrenees. Agricultural and Forest Meteorology, 2022, 317, 108885.	4.8	11
158	Globally, tree fecundity exceeds productivity gradients. Ecology Letters, 2022, 25, 1471-1482.	6.4	11
159	Hurricanes increase tropical forest vulnerability to drought. New Phytologist, 2022, 235, 1005-1017.	7.3	10
160	In situ estimation of genetic variation of functional and ecological traits in Quercus petraea and Q. robur. Tree Genetics and Genomes, 2020, 16, 1.	1.6	9
161	Drought avoidance and vulnerability in the Australian Araucariaceae. Tree Physiology, 2016, 36, tpv111.	3.1	8
162	Higher needle anatomic plasticity is related to better water-use efficiency and higher resistance to embolism in fast-growing Pinus pinaster families under water scarcity. Trees - Structure and Function, 2021, 35, 287-306.	1.9	8

#	Article	IF	CITATIONS
163	Change in water loss regulation after canopy clearcut of a dominant shrub in Sahelian agrosystems, Guiera senegalensis J. F. Gmel. Trees - Structure and Function, 2013, 27, 1011-1022.	1.9	6
164	Distribution of endemic bark beetle attacks and their physiological consequences on Pinus halepensis. Forest Ecology and Management, 2020, 469, 118187.	3.2	6
165	Cross-validation of the high-capacity tensiometer and thermocouple psychrometer for continuous monitoring of xylem water potential in saplings. Journal of Experimental Botany, 2022, 73, 400-412.	4.8	6
166	Measuring xylem hydraulic vulnerability for long-vessel species: an improved methodology with the flow centrifugation technique. Annals of Forest Science, 2022, 79, .	2.0	6
167	A paleobiogeographical scenario for the Taxaceae based on a revised fossil wood record and embolism resistance. Review of Palaeobotany and Palynology, 2019, 263, 147-158.	1.5	5
168	Hydraulic traits are coupled with plant anatomical traits under drought–rewatering cycles in <i>Ginkgo biloba</i> L Tree Physiology, 2022, 42, 1216-1227.	3.1	5
169	Reply to: Data do not support large-scale oligotrophication of terrestrial ecosystems. Nature Ecology and Evolution, 2019, 3, 1287-1288.	7.8	4
170	Counterâ€gradient variation of reproductive effort in a widely distributed temperate oak. Functional Ecology, 2021, 35, 1745-1755.	3.6	3
171	Let plant hydraulics catch the wave. The Journal of Plant Hydraulics, 0, 3, e002.	1.0	3
172	Monitoring Xylem Hydraulic Pressure in Woody Plants. Bio-protocol, 2017, 7, e2580.	0.4	3
173	Near-surface remote sensing observations for monitoring deciduous broadleaf forest species phenology. , 2014, , .		1
174	Potential ability of tobacco (Nicotiana tabacum L.) to phytomanage an urban brownfield soil. Environmental Science and Pollution Research, 2021, , 1.	5.3	1
175	Birds girdling activity on exotic tree species as a form of adaptive behavior?. Contemporary Problems of Ecology, 2017, 10, 193-202.	0.7	0