W P M H Heemels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8827960/publications.pdf

Version: 2024-02-01

376 papers 16,220 citations

54 h-index 22832 112 g-index

377 all docs

377 docs citations

times ranked

377

6100 citing authors

#	Article	IF	Citations
1	Explaining the "Mystery―of Periodicity in Inter-Transmission Times in Two-Dimensional Event-Triggered Controlled Systems. IEEE Transactions on Automatic Control, 2023, 68, 912-927.	5 . 7	6
2	Reset PID Design for Motion Systems With Stribeck Friction. IEEE Transactions on Control Systems Technology, 2022, 30, 294-310.	5.2	8
3	Filtered Split-Path Nonlinear Integrator: A Hybrid Controller for Transient Performance Improvement. IEEE Transactions on Control Systems Technology, 2022, 30, 451-463.	5.2	3
4	Optimal Irrigation Allocation for Large-Scale Arable Farming. IEEE Transactions on Control Systems Technology, 2022, 30, 1484-1493.	5.2	1
5	Stability and performance analysis of hybrid integrator–gain systems: A linear matrix inequality approach. Nonlinear Analysis: Hybrid Systems, 2022, 45, 101192.	3.5	2
6	POD–Kalman filtering for improving noninvasive 3D temperature monitoring in MRâ€guided hyperthermia. Medical Physics, 2022, 49, 4955-4970.	3.0	3
7	Offset-Free Model Predictive Temperature Control for Ultrasound-Based Hyperthermia Cancer Treatments. IEEE Transactions on Control Systems Technology, 2021, 29, 2351-2365.	5.2	9
8	An Average Allowable Transmission Interval Condition for the Stability of Networked Control Systems. IEEE Transactions on Automatic Control, 2021, 66, 2526-2541.	5.7	15
9	\$mathcal {L}_2\$-Gain Analysis of Periodic Event-Triggered Control and Self-Triggered Control Using Lifting. IEEE Transactions on Automatic Control, 2021, 66, 3749-3756.	5.7	14
10	Data science at farm level: Explaining and predicting within-farm variability in potato growth and yield. European Journal of Agronomy, 2021, 123, 126220.	4.1	11
11	Control Allocation for an Industrial High-Precision Transportation and Positioning System. IEEE Transactions on Control Systems Technology, 2021, 29, 876-883.	5.2	6
12	Overcoming Performance Limitations of Linear Control with Hybrid Integrator-Gain Systems. IFAC-PapersOnLine, 2021, 54, 289-294.	0.9	6
13	Visualization of thermal washout due to spatiotemporally heterogenous perfusion in the application of a model-based control algorithm for MR-HIFU mediated hyperthermia. International Journal of Hyperthermia, 2021, 38, 1174-1187.	2.5	9
14	Event-Triggered and Self-Triggered Control. , 2021, , 724-730.		7
15	Constraint-adaptive MPC for large-scale systems: Satisfying state constraints without imposing them. IFAC-PapersOnLine, 2021, 54, 232-237.	0.9	1
16	Opportunities for control engineering in arable precision agriculture. Annual Reviews in Control, 2021, 51, 47-55.	7.9	9
17	A Closed-Loop Perspective on Fault Detection for Precision Motion Control: With Application to an Overactuated System., 2021,,.		3

An <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e171" altimg="si10.svg"><mml:msub><mml:mrow><mml:mi>â,,"</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mn>2</mmbron></mml:mrow><event-triggered control policy for linear systems. Automatica, 2021, 125, 109412.

#	Article	IF	CITATIONS
19	Closed-loop Aspects in MIMO Fault Diagnosis with Application to Precision Mechatronics. , 2021, , .		3
20	On the Equivalence of Extended and Oblique Projected Dynamics with Applications to Hybrid Integrator-Gain Systems. , 2021, , .		3
21	Urgency-aware optimal routing in repeated games through artificial currencies. European Journal of Control, 2021, 62, 22-32.	2.6	8
22	Projection-based integrators for improved motion control: Formalization, well-posedness and stability of hybrid integrator-gain systems. Automatica, 2021, 133, 109830.	5.0	13
23	Novel Bounds on the Probability of Misclassification in Majority Voting: Leveraging the Majority Size. , 2021, 5, 1513-1518.		1
24	A solution to gain loss in hybrid integrator-gain systems. , 2021, , .		1
25	Joint Parameter and State Estimation of Noisy Discrete-Time Nonlinear Systems: A Supervisory Multi-Observer Approach., 2021,,.		2
26	Constraint Removal for MPC with Performance Preservation and a Hyperthermia Cancer Treatment Case Study., 2021,,.		2
27	Event-Triggered State Estimation with Multiple Noisy Sensor Nodes. , 2021, , .		4
28	Hybrid Systems with Continuous-time Inputs: Subtleties in Solution Concepts and Existence Results. , 2021, , .		5
29	Event-triggered observer design for linear systems. , 2021, , .		5
30	Beyond Performance/Cost Tradeoffs in Motion Control: A Multirate Feedforward Design With Application to a Dual-Stage Wafer System. IEEE Transactions on Control Systems Technology, 2020, 28, 448-461.	5.2	16
31	Periodic Event-Triggered Control for Nonlinear Networked Control Systems. IEEE Transactions on Automatic Control, 2020, 65, 620-635.	5 . 7	104
32	Event- and Deadline-Driven Control of a Self-Localizing Robot With Vision-Induced Delays. IEEE Transactions on Industrial Electronics, 2020, 67, 1212-1221.	7.9	4
33	On the graphical stability of hybrid solutions with non-matching jump times. Automatica, 2020, 111, 108662.	5.0	0
34	Image-based feedback control for drift compensation in an electron microscope. IFAC Journal of Systems and Control, 2020, 11, 100074.	1.7	2
35	Reconfigurable pipelined control systems. IEEE Design and Test, 2020, , 1-1.	1.2	0
36	To stick or to slip: A reset PID control perspective on positioning systems with friction. Annual Reviews in Control, 2020, 49, 37-63.	7.9	17

3

#	Article	IF	Citations
37	Oblique Projected Dynamical Systems and Incremental Stability Under State Constraints. , 2020, 4, 1060-1065.		8
38	Hybrid Integrator-Gain Systems: A Remedy for Overshoot Limitations in Linear Control?. , 2020, 4, 1042-1047.		24
39	A unifying event-triggered control framework based on a hybrid small-gain theorem. , 2020, , .		3
40	Event-Triggered Control in Presence of Measurement Noise: A Space-Regularization Approach., 2020,,.		3
41	Towards the Coarsest Quantized Controller under Denial-of-Service Attacks. IFAC-PapersOnLine, 2020, 53, 3496-3501.	0.9	1
42	Mixed-integer model predictive control for large-area MR-HIFU hyperthermia in cancer therapy. IFAC-PapersOnLine, 2020, 53, 6637-6643.	0.9	1
43	Decision making for autonomous vehicles: Combining safety and optimality. IFAC-PapersOnLine, 2020, 53, 15380-15387.	0.9	1
44	Periodic Event-Triggered Sampling and Dual-Rate Control for a Wireless Networked Control System With Applications to UAVs. IEEE Transactions on Industrial Electronics, 2019, 66, 3157-3166.	7.9	72
45	Reset integral control for improved settling of PID-based motion systems with friction. Automatica, 2019, 107, 483-492.	5.0	29
46	Model-based real-time plasma electron density profile estimation and control on ASDEX Upgrade and TCV. Fusion Engineering and Design, 2019, 147, 111211.	1.9	16
47	Switched LQG control for linear systems with multiple sensing methods. Automatica, 2019, 103, 217-229.	5.0	6
48	Practical Stabilization of Switched Affine Systems With Dwell-Time Guarantees. IEEE Transactions on Automatic Control, 2019, 64, 4811-4817.	5.7	65
49	Event-Triggered Quantized Control for Input-to-State Stabilization of Linear Systems With Distributed Output Sensors. IEEE Transactions on Automatic Control, 2019, 64, 4952-4967.	5.7	41
50	State-feedback event-holding control for nonlinear systems. , 2019, , .		2
51	Hybrid Integral Reset Control with Application to a Lens Motion System. , 2019, , .		2
52	Inter-event Times Analysis for Planar Linear Event-triggered Controlled Systems. , 2019, , .		16
53	Event-Triggered Consensus for Multi-Agent Systems with Guaranteed Robust Positive Minimum Inter-Event Times. , 2019, , .		3
54	Extended Projected Dynamical Systems with Applications to Hybrid Integrator-Gain Systems. , 2019, , .		12

#	Article	IF	CITATIONS
55	A System-Theoretic Approach to Construct a Banded Null Basis to Efficiently Solve MPC-Based QP Problems. , 2019, , .		4
56	Optimal irrigation management for large-scale arable farming using model predictive control. IFAC-PapersOnLine, 2019, 52, 56-61.	0.9	5
57	Hybrid model formulation and stability analysis of a PID-controlled motion system with Coulomb friction. IFAC-PapersOnLine, 2019, 52, 84-89.	0.9	1
58	Consensus and Reliability: The Case of Two Binary Classifiers. IFAC-PapersOnLine, 2019, 52, 73-78.	0.9	2
59	Hybrid Integrator-Gain System for Active Vibration Isolation with Improved Transient Response. IFAC-PapersOnLine, 2019, 52, 454-459.	0.9	10
60	Model predictive control for MR-HIFU-mediated, uniform hyperthermia. International Journal of Hyperthermia, 2019, 36, 1039-1049.	2.5	18
61	Event-triggered and self-triggered control for linear systems based on reachable sets. Automatica, 2019, 101, 15-26.	5.0	33
62	Observability and Controllability Analysis of Linear Systems Subject to Data Losses. IEEE Transactions on Automatic Control, 2018, 63, 3361-3376.	5.7	28
63	Systematic Model-Based Design and Implementation of Supervisors for Advanced Driver Assistance Systems. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 533-544.	8.0	32
64	Incremental Stability of Hybrid Dynamical Systems. IEEE Transactions on Automatic Control, 2018, 63, 4094-4109.	5.7	10
65	Event-Driven Control With Deadline Optimization for Linear Systems With Stochastic Delays. IEEE Transactions on Control of Network Systems, 2018, 5, 1819-1829.	3.7	4
66	Bandwidth-on-Demand Motion Control. IEEE Transactions on Control Systems Technology, 2018, 26, 265-273.	5.2	5
67	Scheduled Controller Design for Systems With Varying Sensor Configurations: A Frequency-Domain Approach. IEEE Transactions on Control Systems Technology, 2018, 26, 523-534.	5.2	6
68	Riccati-Based Design of Event-Triggered Controllers for Linear Systems With Delays. IEEE Transactions on Automatic Control, 2018, 63, 174-188.	5.7	70
69	Control-oriented modeling of the plasma particle density in tokamaks and application to real-time density profile reconstruction. Fusion Engineering and Design, 2018, 126, 87-103.	1.9	23
70	Co-design of output feedback laws and event-triggering conditions for the <mml:math altimg="si14.gif" display="inline" id="mml14" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="script">L</mml:mi></mml:mrow><mml:mrow><mml:mrow>2</mml:mrow></mml:mrow></mml:msub><td>5.0 <td>52 ath>-stabilizat</td></td></mml:math>	5.0 <td>52 ath>-stabilizat</td>	52 ath>-stabilizat
71	of linear systems. Automatica, 2018, 87, 337-344. Periodic event-triggered output feedback control of nonlinear systems., 2018,,.		9
72	Similarity-Based Adaptive Complementary Filter for IMU Fusion. , 2018, , .		2

#	Article	IF	Citations
73	POD-Based Recursive Temperature Estimation for MR-Guided RF Hyperthermia Cancer Treatment: A Pilot Study. , $2018, , .$		6
74	Control allocation for a high-precision linear transport system. , 2018, , .		2
75	A switched system approach to optimize mixing of fluids. IFAC-PapersOnLine, 2018, 51, 31-36.	0.9	2
76	Offset-free model predictive control for enhancing MR-HIFU hyperthermia in cancer treatment. IFAC-PapersOnLine, 2018, 51, 191-196.	0.9	4
77	Singularly Perturbed Networked Control Systems. IFAC-PapersOnLine, 2018, 51, 106-111.	0.9	5
78	Heterogeneous multi-agent resource allocation through multi-bidding with applications to precision agriculture. IFAC-PapersOnLine, 2018, 51, 194-199.	0.9	7
79	Offset-Free MPC for Resource Sharing on a Nonlinear SCARA Robot. IFAC-PapersOnLine, 2018, 51, 265-272.	0.9	1
80	Periodic event-triggered control of nonlinear systems using overapproximation techniques. Automatica, 2018, 94, 81-87.	5.0	67
81	Stability analysis of networked linear control systems with direct-feedthrough terms. Automatica, 2018, 96, 186-200.	5.0	6
82	Hybrid PID control for transient performance improvement of motion systems with friction., 2018,,.		2
83	Time-Regularized and Periodic Event-Triggered Control for Linear Systems. Lecture Notes in Control and Information Sciences, 2018, , 121-149.	1.0	5
84	A Consistent Threshold-Based Policy for Event-Triggered Control. , 2018, 2, 447-452.		23
85	Periodic Event-Triggered Control. , 2018, , 104-120.		10
86	Output-Based and Decentralized Dynamic Event-Triggered Control With Guaranteed \mathbf{L}_{p}^{-1} Gain Performance and Zeno-Freeness. IEEE Transactions on Automatic Control, 2017, 62, 34-49.	5.7	360
87	Optimal control for integrated emission management in diesel engines. Control Engineering Practice, 2017, 61, 206-216.	5.5	30
88	Resource-aware MPC for constrained linear systems: Two rollout approaches. Journal of Process Control, 2017, 51, 68-83.	3.3	15
89	Output-Based Event-Triggered Control with Performance Guarantees. IEEE Transactions on Automatic Control, 2017, 62, 3646-3652.	5.7	66
90	Stability and Performance Analysis of Spatially Invariant Systems with Networked Communication. IEEE Transactions on Automatic Control, 2017, 62, 4994-5009.	5.7	24

6

#	Article	lF	CITATIONS
91	Frequency-domain tools for stability analysis of reset control systems. Automatica, 2017, 82, 101-108.	5.0	50
92	Robust Event-Triggered MPC With Guaranteed Asymptotic Bound and Average Sampling Rate. IEEE Transactions on Automatic Control, 2017, 62, 5694-5709.	5.7	74
93	Computing Minimal and Maximal Allowable Transmission Intervals for Networked Control Systems Using the Hybrid Systems Approach. , 2017, 1, 56-61.		24
94	Event-triggered control systems under packet losses. Automatica, 2017, 80, 143-155.	5.0	112
95	Computation of periodic solutions in maximal monotone dynamical systems with guaranteed consistency. Nonlinear Analysis: Hybrid Systems, 2017, 24, 100-114.	3.5	6
96	Switched control of a SCARA robot with shared actuation resources * *This research is supported by the Dutch Technology Foundation STW, carries out as a part of the CHAMeleon project "Hybrid solutions for cost-aware high-performance motion control―(no. 13896). IFAC-PapersOnLine, 2017, 50, 1931-1936.	0.9	5
97	Event-Triggered Control for String-Stable Vehicle Platooning. IEEE Transactions on Intelligent Transportation Systems, 2017, 18, 3486-3500.	8.0	160
98	Self-triggered and event-driven control for linear systems with stochastic delays. , 2017, , .		5
99	Hybrid integrator design for enhanced tracking in motion control. , 2017, , .		24
100	On Lyapunov-Metzler Inequalities and S-Procedure Characterizations for the Stabilization of Switched Linear Systems. IEEE Transactions on Automatic Control, 2017, 62, 4593-4597.	5.7	28
101	Tradeoffs between quality-of-control and quality-of-service in large-scale nonlinear networked control systems. Nonlinear Analysis: Hybrid Systems, 2017, 23, 142-165.	3.5	20
102	Event-Triggered Control Systems Under Denial-of-Service Attacks. IEEE Transactions on Control of Network Systems, 2017, 4, 93-105.	3.7	300
103	Event-triggered Consensus Seeking under Non-uniform Time-Varying Delays. IFAC-PapersOnLine, 2017, 50, 10096-10101. Stabilization of discrete-time switched linear systems: Lyapunov-Metzler inequalities versus	0.9	11
104	S-procedure characterizations * *This work was carried out during Atreyee Kundu's Postdoctoral research at TU/Eindhoven. Atreyee Kundu and Maurice Heemels were supported by the Innovational Research Incentives Scheme under the VICI grant "Wireless control systems: A new frontier in automation―(No. 11382) awarded by NWO (The Netherlands Organisation for Scientific Research) and	0.9	1
105	STW (Dutch Technology Foundation). IFAC PapersOnLine, 2017, 50, 3412-3417, * *This research is Set-point Control of Motion Systems with Uncertain Set-valued Stribeck Friction * *This research is supported by the Dutch Technology Foundation (STW, project 13896). IFAC-PapersOnLine, 2017, 50, 2965-2970. Design of periodic event-triggered control for polynomial systems: A delay system approach * *E.	0.9	4
106	Aranda-Escolástico, M. Guinaldo and S. Dormido supported by Spanish Ministry of Economy and Competitiveness under projects DPI2012-31303 and DPI2014-55932-C2-2-R and by the Universidad Nacional de Educación a Distancia under the project 2014-007-UNED-PROY.M. Abdelrahim and W.P.M.H. Heemels are supported by the Dutch Science Foundation (STW) and the Dutch Organization for Scientic	0.9	8
107	Research (NWO) under the VICI gr. IFAC-PapersOnLine, 2017, 50, 7887-7892. Suboptimal event-triggered control over unreliable communication links with experimental validation., 2017,,.		1

108

Optimal control of a wave energy converter., 2017,,.

#	Article	Citations
109	Coverage control for outbreak dynamics. , 2017, , .	О
110	MAX-consensus in open multi-agent systems with gossip interactions. , 2017, , .	18
111	L <inf>2</inf> -gain analysis of periodic event-triggered systems with varying delays using lifting techniques., 2017,,.	O
112	Filtered Split-Path Nonlinear Integrator (F-SPANI) for improved transient performance., 2017,,.	1
113	Sample-drop firmness analysis of TDMA-scheduled control applications. , 2016, , .	2
114	On the potential of lifted domain feedforward controllers with a periodic sampling sequence. , 2016, ,	6
115	Input-to-state stabilizing event-triggered control for linear systems with output quantization. , 2016, , .	14
116	\hat{I}^3 -invasive event-triggered and self-triggered control for perturbed linear systems. , 2016, , .	2
117	Dynamic event-triggered control with time regularization for linear systems. , 2016, , .	12
118	Stability analysis of networked control systems with direct-feedthrough terms: Part II - the linear case. , $2016,$	5
119	Switching data-processing methods in a control loop: Trade-off between delay and probability of data acquisition. IFAC-PapersOnLine, 2016, 49, 274-279.	2
120	Solution Concepts and Analysis of Spatially Invariant Hybrid Systems: Exploring Zeno and beyond**This work is supported by the Innovational Research Incentives Scheme under the VICI grant "Wireless control systems: A new frontier in automation―(No. 11382) awarded by STW (Dutch Science) Tj ETQ¶0 0	0 rgBT /Overlo
121	German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/2) at the University of Stuttgart. The authors would also like to thank the DFG for their financial support within the research grant AL 316/9-1. This work is also supported by the Innovational Research Incentives Scheme under the VICI grant "Wireless	3
122	control systems: A new f. IFAC-PapersOnLine, 2016, 49, 151-156. Stability analysis of networked control systems with direct-feedthrough terms: Part I - the nonlinear case., 2016,,.	4
123	Constructions of Lyapunov functions for large-scale networked control systems with packet-based communication. , 2016, , .	1
124	Dynamic thresholds in robust event-triggered control for discrete-time linear systems. , 2016, , .	4
125	Performance analysis and controller improvement for linear systems with (m, k)-firm data losses. , 2016, , .	21
126	Stabilization of nonlinear systems using state-feedback periodic event-triggered controllers. , 2016, , .	18

#	Article	IF	CITATIONS
127	Pacing control of sawtooth and ELM oscillations in tokamaks. Plasma Physics and Controlled Fusion, 2016, 58, 124004.	2.1	3
128	Reference-dependent variable-gain control for a nano-positioning motion system**This research is financially supported by the Dutch Technology Foundation (STW) under the project "HyperMotion: Hybrid Control for Performance Improvement of Linear Motion Systems" (no. 10953) IFAC-PapersOnLine, 2016, 49, 70-75.	0.9	0
129	Distance function design and Lyapunov techniques for the stability of hybrid trajectories. Automatica, 2016, 73, 38-46.	5.0	16
130	Robust self-triggered MPC for constrained linear systems: A tube-based approach. Automatica, 2016, 72, 73-83.	5.0	97
131	Experimental Evaluation of Reset Control for Improved Stage Performance. IFAC-PapersOnLine, 2016, 49, 93-98.	0.9	9
132	Experimental validation of an event-triggered policy for remote sensing and control with performance guarantees. , $2016, , .$		2
133	Stability analysis of spatially invariant systems with event-triggered communication., 2016,,.		2
134	A smallâ€gain approach to networked control systems with asynchronous communication. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 809-810.	0.2	0
135	<inline-formula> <tex-math notation="LaTeX">\$mathcal{L}_{2}\$</tex-math> </inline-formula> -Gain Analysis for a Class of Hybrid Systems With Applications to Reset and Event-Triggered Control: A Lifting Approach. IEEE Transactions on Automatic Control, 2016, 61, 2766-2781.	5.7	58
136	Split-path nonlinear integral control for transient performance improvement. Automatica, 2016, 66, 262-270.	5.0	15
137	The Impact of Deadline Misses on the Control Performance of High-End Motion Control Systems. IEEE Transactions on Industrial Electronics, 2016, 63, 1218-1229.	7.9	11
138	Frequency-Domain Analysis of Control Loops With Intermittent Data Losses. IEEE Transactions on Automatic Control, 2016, 61, 2295-2300.	5.7	10
139	Output-based event-triggered control systems under Denial-of-Service attacks. , 2015, , .		19
140	Resource-aware set-valued estimation for discrete-time linear systems. , 2015, , .		9
141	On observability in networked control systems with packet losses. , 2015, , .		1
142	Rollout strategies for output-based event-triggered control. , 2015, , .		2
143	Set-based MPC with an Application to Enhanced Local Hyperthermia for Cancer Treatment. IFAC-PapersOnLine, 2015, 48, 477-482. Controllability of linear systems subject to packet losses**Raphael is supported by the Communaut_e	0.9	2
144	francaise de Belgique - Actions de Recherche Concert_ees, and by the Belgian Programme on Interuniversity Attraction Poles and by the †Actions de Recherches Concert_ees' Programme. He is a F.R.SFNRS Research Associate. Maurice is supported by the Innovational Research Incentives Scheme under the VICI grant "Wireless control systems: A new frontier in automation―(no. 11382) awarded by		

#	ARTICLE RODUST Event-Triggered MPC for Constrained Linear Discrete-Time Systems with Guaranteed Average	IF	CITATIONS
145	Sampling Rate**The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/2) at the University of Stuttgart. The authors would also like to thank the DFG for their financial support Communication Scheduling in Robust Self-Triggereds MRC for Linear Discrete Timer Systems a Cha^—The authors	0.9	13
146	would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/2) at the University of Stuttgart. The authors would also like to thank the DFG for their financial support within the research grant AL 316/9-1. This work is also supported by the Innovational Research Incentives Scheme under the VICI	0.9	8
147	grant Wireless. IFAC-Papers OnLine, 2015, 48, 132-137. Modeling, observer design and robust control of the particle density profile in tokamak plasmas., 2015, , .		3
148	Robust self-triggered model predictive control for constrained discrete-time LTI systems based on homothetic tubes. , 2015 , , .		20
149	An event-triggered policy for remote sensing and control with performance guarantees. , 2015, , .		4
150	Definitions of incremental stability for hybrid systems. , 2015, , .		7
151	Feedforward for multi-rate motion control: Enhanced performance and cost-effectiveness., 2015,,.		5
152	Switching data-processing methods for feedback control: Breaking the speed versus accuracy trade-off. , $2015, \ldots$		4
153	Constructing distance functions and piecewise quadratic Lyapunov functions for stability of hybrid trajectories. , 2015, , .		1
154	A lifting approach to \hat{a} , \hat{a} , \hat{b} ,		2
155	Stability Analysis of Spatially Invariant Interconnected Systems with Networked Communication. IFAC-PapersOnLine, 2015, 48, 221-226.	0.9	7
156	Scheduled controller design for systems with two switching sensor configurations: A frequency-domain approach**This work is supported by the Dutch Technology Foundation (STW) under project "HyperMotion: Hybrid Control for Performance Improvement of Linear Motion Systems― (no. 10953) IFAC-PapersOnLine, 2015, 48, 99-104.	0.9	1
157	Robust Global Stabilization of the DC-DC Boost Converter via Hybrid Control. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62, 1052-1061.	5.4	82
158	Resource-aware MPC for constrained nonlinear systems: A self-triggered control approach. Systems and Control Letters, 2015, 79, 59-67.	2.3	75
159	Dynamic event-triggered control under packet losses: The case with acknowledgements. , 2015, , .		15
160	Frequency-domain analysis of real-time and networked control systems with stochastic delays and data drops. , $2015, , .$		3
161	Design of a variable gain integrator with reset. , 2015, , .		9
162	Resource-Aware Control and Dynamic Scheduling in CPS. Lecture Notes in Computer Science, 2015, , 1-7.	1.3	0

#	Article	ΙF	Citations
163	Root locus analysis for randomly sampled systems. , 2014, , .		1
164	Rollout Event-Triggered Control: Beyond Periodic Control Performance. IEEE Transactions on Automatic Control, 2014, 59, 3296-3311.	5.7	125
165	Time-stepping methods for constructing periodic solutions in maximally monotone set-valued dynamical systems. , 2014, , .		1
166	Improved & Description of the control of the contro		7
167	Performance analysis of a class of linear quadratic regulators for switched linear systems. , 2014, , .		4
168	Dynamic event-triggered control: Tradeoffs between transmission intervals and performance. , 2014, , .		37
169	An embedding approach for the design of stateâ€feedback tracking controllers for references with jumps. International Journal of Robust and Nonlinear Control, 2014, 24, 1585-1608.	3.7	30
170	Transient performance improvement of linear systems using a split-path nonlinear integrator. , 2014, , .		7
171	Event-separation properties of event-triggered control systems. IEEE Transactions on Automatic Control, 2014, 59, 2644-2656.	5.7	389
172	Tracking Control for Nonlinear Networked Control Systems. IEEE Transactions on Automatic Control, 2014, 59, 1539-1554.	5.7	94
173	Self-triggered linear quadratic control. Automatica, 2014, 50, 1279-1287.	5.0	138
174	Robust self-triggered MPC for constrained linear systems. , 2014, , .		25
175	Stabilizing Dynamic Controllers for Hybrid Systems: A Hybrid Control Lyapunov Function Approach. IEEE Transactions on Automatic Control, 2014, 59, 2629-2643.	5.7	22
176	Minimum attention control for linear systems. Discrete Event Dynamic Systems: Theory and Applications, 2014, 24, 199-218.	1.5	33
177	Output-Based Controller Synthesis for Networked Control Systems with Periodic Protocols and Time-Varying Transmission Intervals and Delays. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 6478-6483.	0.4	4
178	Dynamic Programming for Integrated Emission Management in Diesel Engines. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 11860-11865.	0.4	6
179	Model-based periodic event-triggered control for linear systems. Automatica, 2013, 49, 698-711.	5.0	510
180	Compensation-based control for lossy communication networks. International Journal of Control, 2013, 86, 1880-1897.	1.9	20

#	Article	IF	CITATIONS
181	Stability analysis of networked and quantized linear control systems. Nonlinear Analysis: Hybrid Systems, 2013, 10, 111-125.	3.5	36
182	Stability analysis of nonlinear networked control systems with asynchronous communication: A small-gain approach. , 2013, , .		31
183	Switching Control in Vibration Isolation Systems. IEEE Transactions on Control Systems Technology, 2013, 21, 626-635.	5.2	25
184	Controllability of a class of bimodal discrete-time piecewise linear systems. Systems and Control Letters, 2013, 62, 338-344.	2.3	7
185	Special issue on Analysis and Design of Hybrid and Networked Control Systems. Nonlinear Analysis: Hybrid Systems, 2013, 10, 1-3.	3.5	2
186	Further Input-to-State Stability Subtleties for Discrete-Time Systems. IEEE Transactions on Automatic Control, 2013, 58, 1609-1613.	5.7	25
187	Periodic Event-Triggered Control for Linear Systems. IEEE Transactions on Automatic Control, 2013, 58, 847-861.	5.7	1,046
188	Tracking Control for Hybrid Systems With State-Triggered Jumps. IEEE Transactions on Automatic Control, 2013, 58, 876-890.	5.7	75
189	Decentralized observer-based control via networked communication. Automatica, 2013, 49, 2074-2086.	5.0	64
190	Hybrid control lyapunov functions for the stabilization of hybridsystems. , 2013, , .		0
191	Observer design for a class of piecewise affine hybrid systems. , 2013, , .		0
192	Hybrid control of the boost converter: Robust global stabilization. , 2013, , .		4
193	Periodic event-triggered control for nonlinear systems. , 2013, , .		62
194	Event-Triggered and Self-Triggered Control. , 2013, , 1-10.		3
195	On minimum inter-event times in event-triggered control. , 2013, , .		5
196	Extension and evaluation of model-based periodic event-triggered control. , 2013, , .		4
197	Controllability of a class of bimodal discrete-time piecewise linear systems. , 2013, , .		0
198	Dynamic programming formulation of periodic event-triggered control: Performance Guarantees and co-design. , 2012, , .		35

#	Article	IF	Citations
199	String stability of interconnected vehicles under communication constraints., 2012,,.		68
200	Tracking control of mechanical systems with impacts. , 2012, , .		1
201	Scheduling measurements and controls over networks & amp; $\#x2014$; Part I: Rollout strategies for protocol design., 2012,,.		11
202	Tracking control of mechanical systems with a unilateral position constraint inducing dissipative impacts. , 2012, , .		9
203	Emulation-based tracking solutions for nonlinear networked control systems. , 2012, , .		4
204	Compensation-based control for lossy communication networks., 2012,,.		5
205	Decentralized static output-feedback control via networked communication. , 2012, , .		6
206	A unified numerical scheme for linear-quadratic optimal control problems with joint control and state constraints. Optimization Methods and Software, 2012, 27, 761-799.	2.4	13
207	Scheduling measurements and controls over networks & amp; $\#x2014$; Part II: Rollout strategies for simultaneous protocol and controller design., 2012 ,,.		8
208	Nonlinear control for stabilization of small neoclassical tearing modes in ITER. Nuclear Fusion, 2012, 52, 063007.	3.5	3
209	Stability analysis of networked control systems with periodic protocols and uniform quantizers. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 186-191.	0.4	3
210	Self-triggered MPC for constrained linear systems and quadratic costs. IFAC Postprint Volumes IPPV International Federation of Automatic Control, 2012, 45, 342-348.	0.4	49
211	Networked Control Systems Toolbox: Robust Stability Analysis Made Easy. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 55-60.	0.4	8
212	MOBY-DIC: A MATLAB Toolbox for Circuit-Oriented Design of Explicit MPC. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 218-225.	0.4	10
213	Approximation of explicit model predictive control using regular piecewise affine functions: an input-to-state stability approach. IET Control Theory and Applications, 2012, 6, 1015-1028.	2.1	19
214	FPGA Implementations of Piecewise Affine Functions Based on Multi-Resolution Hyperrectangular Partitions. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 2920-2933.	5.4	21
215	Output-Based Event-Triggered Control With Guaranteed \${cal L}_{infty}\$-Gain and Improved and Decentralized Event-Triggering. IEEE Transactions on Automatic Control, 2012, 57, 1362-1376.	5.7	737
216	Stability analysis of networked control systems: A sum of squares approach. Automatica, 2012, 48, 1514-1524.	5.0	60

#	Article	lF	CITATIONS
217	An introduction to event-triggered and self-triggered control. , 2012, , .		1,273
218	Linear control of time-domain constrained systems. Automatica, 2012, 48, 736-746.	5.0	6
219	Stability analysis of stochastic networked control systems. Automatica, 2012, 48, 917-925.	5.0	196
220	A discrete-time framework for stability analysis of nonlinear networked control systems. Automatica, 2012, 48, 1144-1153.	5.0	76
221	Disturbance decoupling of switched linear systems. Systems and Control Letters, 2012, 61, 69-78.	2.3	36
222	IFAC Newsletter. Automatika, 2012, 53, 406-411.	2.0	0
223	Stability Analysis of Networked Control Systems Using a Switched Linear Systems Approach. IEEE Transactions on Automatic Control, 2011, 56, 2101-2115.	5.7	458
224	Approximation of PWA Control Laws Using Regular Partitions: An ISS Approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 4540-4545.	0.4	5
225	Delay-varying repetitive control with application to a walking piezo actuator. Automatica, 2011, 47, 1737-1743.	5.0	28
226	Observerâ€based control of linear complementarity systems. International Journal of Robust and Nonlinear Control, 2011, 21, 1193-1218.	3.7	38
227	Reconfigurable control of piecewise affine systems with actuator and sensor faults: Stability and tracking. Automatica, 2011, 47, 678-691.	5.0	116
228	Periodic event-triggered control based on state feedback., 2011,,.		63
229	On the minimum attention control problem for linear systems: A linear programming approach. , 2011, , .		15
230	Tracking control for hybrid systems via embedding of known reference trajectories. , 2011, , .		8
231	Synthesis of low-complexity stabilizing piecewise affine controllers: A control-Lyapunov function approach. , $2011, \ldots$		10
232	An upper Riemann-Stieltjes approach to stochastic design problems. , 2011, , .		0
233	Low-complexity approximations of PWA functions: A case study on Adaptive Cruise Control. , 2011, , .		9
234	A Model Predictive Control Approach for Stochastic Networked Control Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 7-12.	0.4	4

#	Article	IF	CITATIONS
235	Alternative frequency-domain stability criteria for discrete-time networked systems with multiple delays. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 73-78.	0.4	1
236	On polytopic inclusions as a modeling framework for systems with time-varying delays. Automatica, 2010, 46, 615-619.	5.0	94
237	Controller synthesis for networked control systems. Automatica, 2010, 46, 1584-1594.	5.0	286
238	Design and implementation of parameterized adaptive cruise control: An explicit model predictive control approach. Control Engineering Practice, 2010, 18, 882-892.	5.5	100
239	Performance analysis of reset control systems. International Journal of Robust and Nonlinear Control, 2010, 20, 1213-1233.	3.7	98
240	Stability analysis and controller synthesis for hybrid dynamical systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4937-4960.	3.4	46
241	Disturbance decoupling of switched linear systems. , 2010, , .		1
242	Stability analysis of stochastic Networked Control Systems. , 2010, , .		21
243	Further input-to-state stability subtleties for discrete-time systems. , 2010, , .		8
244	Reference governors for controlled belt restraint systems. Vehicle System Dynamics, 2010, 48, 831-850.	3.7	7
245	Stability analysis of networked control systems: A sum of squares approach. , 2010, , .		7
246	Output-based event-triggered control with Guaranteed & amp; #x2112; & lt; inf & gt; & amp; #x221E; & lt; / inf & gt; -gain and improved event-triggering., 2010, , .		75
247	On the synthesis of piecewise affine control laws. , 2010, , .		1
248	A Disturbance Attenuation Approach for a Class of Continuous Piecewise Affine Systems: Control Design and Experiments. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2010, 132, .	1.6	2
249	A Model Predictive Control Approach to Design a Parameterized Adaptive Cruise Control. Lecture Notes in Control and Information Sciences, 2010, , 273-284.	1.0	10
250	Networked Control Systems With Communication Constraints: Tradeoffs Between Transmission Intervals, Delays and Performance. IEEE Transactions on Automatic Control, 2010, 55, 1781-1796.	5 . 7	735
251	An approach to observer-based decentralized control under periodic protocols. , 2010, , .		2
252	Convergence of discrete-time approximations of constrained linear-quadratic optimal control problems. , 2010, , .		0

#	Article	IF	Citations
253	Stability analysis for nonlinear Networked Control Systems: A discrete-time approach. , 2010, , .		6
254	Observer-Based Control of Discrete-Time LPV Systems With Uncertain Parameters \$ \$. IEEE Transactions on Automatic Control, 2010, 55, 2130-2135.	5.7	182
255	On dropout modelling for stability analysis of networked control systems. , 2010, , .		13
256	Stability and Stabilization of Networked Control Systems. Lecture Notes in Control and Information Sciences, 2010, , 203-253.	1.0	43
257	On integration of event-based estimation and robust MPC in a feedback loop. , 2010, , .		24
258	Networked and quantized control systems with communication delays. , 2009, , .		34
259	Comparison of stability characterisations for networked control systems. , 2009, , .		10
260	Linear control of time-domain constrained systems. , 2009, , .		1
261	Predictive control of hybrid systems: Input-to-state stability results for sub-optimal solutions. Automatica, 2009, 45, 180-185.	5.0	76
262	Control of mechanical motion systems with non-collocation of actuation and friction: A Popov criterion approach for input-to-state stability and set-valued nonlinearities. Automatica, 2009, 45, 405-415.	5.0	93
263	Design of observer-based controllers for LPV systems with unknown parameters. , 2009, , .		10
264	Stability of Networked Control Systems With Uncertain Time-Varying Delays. IEEE Transactions on Automatic Control, 2009, 54, 1575-1580.	5.7	340
265	Self-optimizing Robust Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, 2009, , 27-40.	1.0	6
266	Observer Design for Lur'e Systems With Multivalued Mappings: A Passivity Approach. IEEE Transactions on Automatic Control, 2009, 54, 1996-2001.	5.7	70
267	Lyapunov Functions, Stability and Input-to-State Stability Subtleties for Discrete-Time Discontinuous Systems. IEEE Transactions on Automatic Control, 2009, 54, 2421-2425.	5.7	55
268	Stability Analysis of Networked Control Systems Using a Switched Linear Systems Approach. Lecture Notes in Computer Science, 2009, , 150-164.	1.3	41
269	Further Results on "Robust MPC Using Linear Matrix Inequalities― Lecture Notes in Control and Information Sciences, 2009, , 89-98.	1.0	8
270	Decoupling-based reconfigurable control of linear systems after actuator faults. , 2009, , .		11

#	Article	IF	CITATIONS
271	Networked control systems with communication constraints: Tradeoffs between transmission intervals and delays. , 2009, , .		9
272	Inputâ€toâ€state stabilizing subâ€optimal NMPC with an application to DC–DC converters. International Journal of Robust and Nonlinear Control, 2008, 18, 890-904.	3.7	54
273	On robustness of constrained discrete-time systems to state measurement errors. Automatica, 2008, 44, 1161-1165.	5.0	23
274	Input-to-state stability and interconnections of discontinuous dynamical systems. Automatica, 2008, 44, 3079-3086.	5.0	67
275	Robust control of piecewise linear systems: A case study in sheet flow control. Control Engineering Practice, 2008, 16, 991-1003.	5.5	21
276	On input-to-state stability of min–max nonlinear model predictive control. Systems and Control Letters, 2008, 57, 39-48.	2.3	134
277	A full characterization of stabilizability of bimodal piecewise linear systems with scalar inputs. Automatica, 2008, 44, 1261-1267.	5.0	30
278	Global input-to-state stability and stabilization of discrete-time piecewise affine systems. Nonlinear Analysis: Hybrid Systems, 2008, 2, 721-734.	3.5	21
279	Analysis of event-driven controllers for linear systems. International Journal of Control, 2008, 81, 571-590.	1.9	680
280	Algebraic Necessary and Sufficient Conditions for the Controllability of Conewise Linear Systems. IEEE Transactions on Automatic Control, 2008, 53, 762-774.	5.7	55
281	Observer Designs for Experimental Non-Smooth and Discontinuous Systems. IEEE Transactions on Control Systems Technology, 2008, 16, 1323-1332.	5.2	43
282	Reference governors for controlled belt restraint systems. , 2008, , .		3
283	An LMI-based L&Itinf>2&It/inf> gain performance analysis for reset control systems. , 2008, , .		3
284	A Control Lyapunov Approach to Predictive Control of Hybrid Systems. Lecture Notes in Computer Science, 2008, , 130-143.	1.3	7
285	Null controllability of discrete-time linear systems with input and state constraints. , 2008, , .		10
286	Observer-based control of discrete-time piecewise affine systems: Exploiting continuity twice. , 2008, , .		6
287	Stabilization of Networked Control Systems with large delays and packet dropouts. , 2008, , .		25
288	Reconfigurable control of PWA systems with actuator and sensor faults: Stability., 2008, , .		14

#	Article	IF	Citations
289	Optimized input-to-state stabilization of discrete-time nonlinear systems with bounded inputs. , 2008, , .		15
290	Tracking control for piecewise linear systems using an error space approach: A case-study in sheet control. , 2008, , .		1
291	Output-feedback control of Lur'e-type systems with set-valued nonlinearities: A Popov-criterion approach. , 2008, , .		8
292	Design of ISS-Lyapunov Functions for Discrete-Time Linear Uncertain Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 1135-1140.	0.4	2
293	Predictive Control of Hybrid Systems: Stability results for sub-optimal solutions. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 11196-11201.	0.4	1
294	Observer-Based Control of Linear Complementarity Systems. Lecture Notes in Computer Science, 2008, , 259-272.	1.3	6
295	Subtleties in Robust Stability of Discrete-time Piecewise Affine Systems. Proceedings of the American Control Conference, 2007, , .	0.0	6
296	Case Studies in Event-Driven Control. Lecture Notes in Computer Science, 2007, , 762-765.	1.3	15
297	Controllability of linear systems with input and state constraints. , 2007, , .		16
298	Analysis and experimental validation of a sensor-based event-driven controller. Proceedings of the American Control Conference, 2007 , , .	0.0	7
299	New Methods for Computing the Terminal Cost for Min-max Model Predictive Control. Proceedings of the American Control Conference, 2007, , .	0.0	1
300	Output Feedback Control for a Class of Piecewise Linear Systems. Proceedings of the American Control Conference, 2007, , .	0.0	3
301	On interconnections of discontinuous dynamical systems: an input-to-state stability approach., 2007,,		3
302	H <inf>2</inf> performance analysis of reset control systems., 2007,,.		6
303	Effective industrial modeling for highâ€ŧech systems: The example of Happy Flow. Incose International Symposium, 2007, 17, 1758-1769.	0.6	6
304	ASSESSMENT OF NONLINEAR PREDICTIVE CONTROL TECHNIQUES FOR DC-DC CONVERTERS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 395-401.	0.4	2
305	Stability of networked control systems with large delays. , 2007, , .		38
306	Design of stabilizing output feedback nonlinear model predictive controllers with an application to DC-DC converters. , 2007, , .		1

#	Article	IF	CITATIONS
307	Squaring the circle: An algorithm for generating polyhedral invariant sets from ellipsoidal ones. Automatica, 2007, 43, 2096-2103.	5.0	22
308	Observer design for a class of piecewise linear systems. International Journal of Robust and Nonlinear Control, 2007, 17, 1387-1404.	3.7	50
309	Input-to-State Stability of Discontinuous Dynamical Systems with an Observer-Based Control Application., 2007,, 259-272.		11
310	Discrete-Time Non-smooth Nonlinear MPC: Stability and Robustness., 2007,, 93-103.		16
311	Robust Stability of Networked Control Systems with Time-varying Network-induced Delays. , 2006, , .		87
312	Stabilizing Model Predictive Control of Hybrid Systems. IEEE Transactions on Automatic Control, 2006, 51, 1813-1818.	5.7	190
313	Stabilizability of Bimodal Piecewise Linear Systems with Continuous Vector Field. , 2006, , 290-295.		O
314	5.3.2 On the Systematic Use of Budgetâ€Based Design. Incose International Symposium, 2006, 16, 788-803.	0.6	0
315	A NEW DUAL-MODE HYBRID MPC ALGORITHM WITH A ROBUST STABILITY GUARANTEE. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 321-328.	0.4	O
316	6.3.1 Threads of Reasoning: A Case Study. Incose International Symposium, 2006, 16, 895-909.	0.6	0
317	GLOBAL INPUT-TO-STATE STABILITY AND STABILIZATION OF DISCRETE-TIME PIECE-WISE AFFINE SYSTEMS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 296-301.	0.4	3
318	A hybrid MPC approach to the design of a Smart adaptive cruise controller. , 2006, , .		14
319	Analysis and experimental validation of processor load for event-driven controllers., 2006,,.		5
320	Squaring the circle: an algorithm for generating polyhedral invariant sets from ellipsoidal ones., 2006,,.		6
321	Convex Polyhedral Invariant Sets for Closed-Loop Linear MPC Systems. , 2006, , .		7
322	Practical stability of perturbed event-driven controlled linear systems., 2006,,.		1
323	A Stabilizing Output Based Nonlinear Model Predictive Control Scheme. , 2006, , .		3
324	Analysis and experimental validation of processor load for event-driven controllers. , 2006, , .		6

#	Article	IF	CITATIONS
325	Global Input-To-State Stability and Stabilization of Discrete-Time Piece-Wise Affine Systems., 2006,, 296-301.		0
326	A New Dual-Mode Hybrid MPC Algorithm with a Robust Stability Guarantee., 2006,, 321-328.		0
327	SWITCHING OBSERVER DESIGN FOR AN EXPERIMENTAL PIECE-WISE LINEAR BEAM SYSTEM. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 175-180.	0.4	5
328	CONTROL OF PWA SYSTEMS USING A STABLE RECEDING HORIZON METHOD. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 123-128.	0.4	4
329	Comparison of Four Procedures for the Identification of Hybrid Systems. Lecture Notes in Computer Science, 2005, , 354-369.	1.3	84
330	Energy Management Strategies for Vehicular Electric Power Systems. IEEE Transactions on Vehicular Technology, 2005, 54, 771-782.	6.3	360
331	Infinity Norms as Lyapunov Functions for Model Predictive Control of Constrained PWA Systems. Lecture Notes in Computer Science, 2005, , 417-432.	1.3	19
332	A Bayesian approach to identification of hybrid systems. IEEE Transactions on Automatic Control, 2005, 50, 1520-1533.	5.7	232
333	Energy management strategies for vehicle power nets. , 2004, , .		7
334	A Bayesian approach to identification of hybrid systems. , 2004, , .		26
335	Data-based hybrid modelling of the component placement process in pick-and-place machines. Control Engineering Practice, 2004, 12, 1241-1252.	5.5	52
336	Stabilization conditions for model predictive control of constrained PWA systems. , 2004, , .		23
337	On the Controllability of Bimodal Piecewise Linear Systems. Lecture Notes in Computer Science, 2004, , 250-264.	1.3	20
338	On solution concepts and well-posedness of linear relay systems. Automatica, 2003, 39, 2139-2147.	5.0	42
339	The Complementarity Class of Hybrid Dynamical Systems. European Journal of Control, 2003, 9, 322-360.	2.6	55
340	Control of quantized systems based on discrete event models. International Journal of Control, 2003, 76, 277-294.	1.9	6
341	A Multi Target Track Before Detect Application. , 2003, , .		12
342	Switched networks and complementarity. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2003, 50, 1036-1046.	0.1	62

#	Article	IF	CITATIONS
343	Identification of an Experimental Hybrid System 1. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2003, 36, 39-44.	0.4	2
344	A semi-explicit MPC set-up for constrained piecewise affine systems. , 2003, , .		4
345	MAX-PLUS-ALGEBRAIC PROBLEMS AND THE EXTENDED LINEAR COMPLEMENTARITY PROBLEM — ALGORITHMIC ASPECTS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 151-156.	0.4	3
346	SOLUTION CONCEPTS FOR HYBRID DYNAMICAL SYSTEMS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 415-420.	0.4	2
347	WELL-POSEDNESS OF THE COMPLEMENTARITY CLASS OF HYBRID SYSTEMS. IFAC Postprint Volumes IPPV International Federation of Automatic Control, 2002, 35, 421-426.	0.4	2
348	On Linear Passive Complementarity Systems. European Journal of Control, 2002, 8, 220-237.	2.6	97
349	On hybrid systems and closed-loop MPC systems. IEEE Transactions on Automatic Control, 2002, 47, 863-869.	5.7	78
350	On the dynamic analysis of piecewise-linear networks. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2002, 49, 315-327.	0.1	70
351	Consistency of a time-stepping method for a class of piecewise-linear networks. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2002, 49, 349-357.	0.1	53
352	On the equivalence of linear complementarity problems. Operations Research Letters, 2002, 30, 211-222.	0.7	23
353	Positive feedback stabilization of centrifugal compressor surge. Automatica, 2002, 38, 311-318.	5.0	32
354	On Well-Posedness of Relay Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2001, 34, 1451-1456.	0.4	3
355	Equivalence of hybrid dynamical models. Automatica, 2001, 37, 1085-1091.	5.0	624
356	Asynchronous measurement and control: motor synchronization for mailing systems. , 2001, , .		0
357	Projected dynamical systems in a complementarity formalism. Operations Research Letters, 2000, 27, 83-91.	0.7	39
358	Linear Complementarity Systems. SIAM Journal on Applied Mathematics, 2000, 60, 1234-1269.	1.8	221
359	Applications of complementarity systems. , 1999, , .		7
360	The rational complementarity problem. Linear Algebra and Its Applications, 1999, 294, 93-135.	0.9	42

#	Article	IF	Citations
361	Asynchronous measurement and control: a case study on motor synchronization. Control Engineering Practice, 1999, 7, 1467-1482.	5.5	103
362	Complementarity problems in linear complementarity systems. , 1998, , .		9
363	Linear quadratic regulator problem with positive controls. International Journal of Control, 1998, 70, 551-578.	1.9	48
364	Linear quadratic regulator problem with positive controls., 1997,,.		0
365	Well-posedness of linear complementarity systems. , 0, , .		9
366	The nature of solutions to linear passive complementarity systems. , 0, , .		3
367	From Lipschitzian to non-Lipschitzian characteristics: continuity of behaviors. , 0, , .		3
368	A time-stepping method for relay systems. , 0, , .		9
369	On hybrid systems and closed-loop MPC systems. , 0, , .		1
370	On the equivalence of classes of hybrid dynamical models. , 0, , .		17
371	Observer design for a class of piece-wise affine systems. , 0, , .		42
372	Stability and controllability of planar bimodal linear complementarity systems., 0,,.		20
373	Control of quantized linear systems: an l/sub 1/-optimal control approach. , 0, , .		5
374	Comparison of three procedures for the identification of hybrid systems. , 0, , .		9
375	On the stability of quadratic forms based model predictive control of constrained PWA systems. , 0, , .		7
376	Event-driven control as an opportunity in the multidisciplinary development of embedded controllers. , 0, , .		38