List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8827946/publications.pdf Version: 2024-02-01

ΥΔΝΟΠΔΝ ΟΔΙ

#	Article	IF	CITATIONS
1	Stimulated Brillouin Scattering and Longitudinal Strain Performance of BOTDA-Based Nonuniform As\$_{2}\$Se\$_{3}\$-PMMA Tapered Fibers. Journal of Lightwave Technology, 2023, 41, 4359-4365.	4.6	0
2	A novel mid-infrared thermal emitter with ultra-narrow bandwidth and large spectral tunability based on the bound state in the continuum. Journal Physics D: Applied Physics, 2022, 55, 025104.	2.8	7
3	Experimental synthesis of partially coherent beam with controllable twist phase and measuring its orbital angular momentum. Nanophotonics, 2022, 11, 689-696.	6.0	23
4	Analysis and experimental demonstration of propagation features of radially polarized specific non-uniformly correlated beams. Optics Letters, 2022, 47, 305.	3.3	6
5	Remote Dual-Cavity Enhanced Second Harmonic Generation in a Hybrid Plasmonic Waveguide. Nano Letters, 2022, 22, 688-694.	9.1	13
6	Imaging Through Random Scatterer with Spatial Coherence Structure Measurement. Frontiers in Physics, 2022, 9, .	2.1	4
7	Self-Focusing Property of Partially Coherent Beam With Non-Uniform Correlation Structure in Non-Linear Media. Frontiers in Physics, 2022, 9, .	2.1	2
8	Abruptly autofocusing of generalized circular Airy derivative beams. Optics Express, 2022, 30, 3804.	3.4	26
9	Rotation of degree of coherence and redistribution of transverse energy flux induced by non-circular degree of coherence of twisted partially coherent sources. Optics Express, 2022, 30, 3913.	3.4	2
10	Enhanced fiber-coupling efficiency via high-order partially coherent flat-topped beams for free-space optical communications. Optics Express, 2022, 30, 5634.	3.4	6
11	On-Chip Detection of Multiwavelength Surface Plasmon Polaritons Based on Plasmonic Demultiplexers. ACS Photonics, 2022, 9, 391-397.	6.6	12
12	Radially polarized twisted partially coherent vortex beams. Optics Express, 2022, 30, 7511.	3.4	12
13	Low-threshold random lasers enhanced by titanium nitride nanoparticles suspended randomly in gain solutions. Optics Express, 2022, 30, 8222.	3.4	8
14	Robust Far-Field Optical Image Transmission with Structured Random Light Beams. Physical Review Applied, 2022, 17, .	3.8	25
15	Scattering of Partially Coherent Vector Beams by a Deterministic Medium Having Parity-Time Symmetry. Photonics, 2022, 9, 140.	2.0	6
16	Noncentrosymmetric far-zone spectral density induced by light scattering with random media having parity-time symmetry. Physical Review A, 2022, 105, .	2.5	3
17	Propagation Properties of a Twisted Hermite-Gaussian Correlated Schell-Model Beam in Free Space. Frontiers in Physics, 2022, 10, .	2.1	6
18	Massive Parallel Sorting of Particles Using Unwound Polygonal Vortex Beams. Frontiers in Physics, 2022, 10, .	2.1	1

#	Article	IF	CITATIONS
19	Orientation-selective sub-Rayleigh imaging with spatial coherence lattices. Optics Express, 2022, 30, 9548.	3.4	5
20	A Review of Sensitivity Enhancement in Interferometer-Based Fiber Sensors. Sensors, 2022, 22, 2506.	3.8	4
21	Real-time imaging of ultrafast light springs: A new approach from pump detection to single-shot compression measurement. Scientia Sinica: Physica, Mechanica Et Astronomica, 2022, 52, 264231.	0.4	1
22	Review on fractional vortex beam. Nanophotonics, 2022, 11, 241-273.	6.0	76
23	Partially coherent light beam shaping via complex spatial coherence structure engineering. Advances in Physics: X, 2022, 7, .	4.1	33
24	Optical coherence structure: A novel tool for light manipulation. Science China Technological Sciences, 2022, 65, 740-742.	4.0	3
25	Fast calculation of orbital angular momentum flux density of partially coherent Schell-model beams on propagation. Optics Express, 2022, 30, 16856.	3.4	2
26	Three-Dimensional Manipulation for Self-Focusing Behavior via the State of Polarization. Frontiers in Physics, 2022, 10, .	2.1	0
27	Compact generation of robust Airy beam pattern with spatial coherence engineering. Optics Letters, 2022, 47, 2846.	3.3	8
28	Complex and phase screen methods for studying arbitrary genuine Schell-model partially coherent pulses in nonlinear media. Optics Express, 2022, 30, 24222.	3.4	7
29	High-power picosecond structured optical vortices directly generated in an all-solid-state laser. Optics and Laser Technology, 2022, 155, 108396.	4.6	4
30	Effect of Degree of Polarization on Localized Spin Density in Tightly Focusing of Vortex Beams. IEEE Photonics Journal, 2022, 14, 1-8.	2.0	2
31	Partially coherent vortex beams: Fundamentals and applications. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	49
32	Measurements of atmospheric aerosol hygroscopic growth based on multi-channel Raman-Mie lidar. Atmospheric Environment, 2021, 246, 118076.	4.1	5
33	Sub-diffraction-limit realization and micro-displacement measurements via complex Gaussian-correlated beam. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 258, 107397.	2.3	5
34	Microscopic phase reconstruction of cervical exfoliated cell under partially coherent illumination. Journal of Biophotonics, 2021, 14, e202000401.	2.3	5
35	Concentration monitoring of volatile organic compounds and ozone in Xi'an based on PTR-TOF-MS and differential absorption lidar. Atmospheric Environment, 2021, 245, 118045.	4.1	8
36	Optimizing illumination's complex coherence state for overcoming Rayleigh's resolution limit. Chinese Optics Letters, 2021, 19, 052601.	2.9	15

#	Article	IF	CITATIONS
37	Near-infrared lasing and tunable upconversion from femtosecond laser inscribed Nd,Gd:CaF2 waveguides. Chinese Optics Letters, 2021, 19, 081301.	2.9	13
38	Theoretical analysis of periodically poled LiNbO3 nonlinear mirror and its application in a passively mode-locked Nd:YSAG laser. Chinese Optics Letters, 2021, 19, 091403.	2.9	2
39	Young's interference experiment for generating light with non-uniform coherence states. Optics Letters, 2021, 46, 693.	3.3	1
40	Periodic properties of Laguerre-Gaussian correlated Schell-model beams in a gradient-index fiber. Optik, 2021, 228, 165755.	2.9	1
41	All-optical wavelength conversion based on dual-polarization SOAs for a 112Gbps PDM-16QAM signal using parallel dual-pump. OSA Continuum, 2021, 4, 1125.	1.8	7
42	Effects of transmission loss on two-mode squeezed vacuum state quantum lidar. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1004.	2.1	0
43	Trapping two types of Rayleigh particles simultaneously by a focused rotational elliptical Laguerre–Gaussian correlated Schell-model beam. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 262, 107518.	2.3	15
44	High order plasmonic vortex generation based on spiral nanoslits. New Journal of Physics, 2021, 23, 033013.	2.9	9
45	Propagation of a Modified Complex Lorentz–Gaussian-Correlated Beam in a Marine Atmosphere. Photonics, 2021, 8, 82.	2.0	7
46	Enhanced fifth-order nonlinearity with competing linear and nonlinear susceptibility via Fano interference. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1392.	2.1	3
47	Optical coherence encryption with structured random light. PhotoniX, 2021, 2, 6.	13.5	93
48	Propagation properties of Laguerre-Gaussian Schell-model beams with a twist phase. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 264, 107556.	2.3	15
49	Synthesis of vector nonuniformly correlated light beams by a single digital mirror device. Optics Letters, 2021, 46, 2996.	3.3	18
50	Propagation properties of phase-locked radially-polarized vector fields array in turbulent atmosphere. Optics Express, 2021, 29, 16833.	3.4	12
51	Diode-Pumped Fluorescence in Visible Range From Femtosecond Laser Inscribed Pr:LuAG Waveguides. Frontiers in Physics, 2021, 9, .	2.1	3
52	Measuring refractive indices of a uniaxial crystal by structured light with non-uniform correlation. Optics Letters, 2021, 46, 2268.	3.3	8
53	Optical image reconstruction in 4 <i>f</i> imaging system: Role of spatial coherence structure engineering. Applied Physics Letters, 2021, 118, .	3.3	18
54	Direct generation of optical vortex arrays by rotating in an all-solid-state Yb:CALGO laser. Optical Materials Express, 2021, 11, 1594.	3.0	11

#	Article	IF	CITATIONS
55	Structure of transverse spin in focused random light. Physical Review A, 2021, 104, .	2.5	14
56	Temporal Boundary Solitons and Extreme Superthermal Light Statistics. Physical Review Letters, 2021, 127, 053901.	7.8	7
57	Constructing light with high precision using source coherence. Applied Physics Letters, 2021, 119, .	3.3	7
58	Experimental realization of scalar and vector perfect Laguerre–Gaussian beams. Applied Physics Letters, 2021, 119, 021105.	3.3	21
59	Thermal blooming induced phase change and its compensation of a Gaussian beam propagation in an absorbing medium. Optics Letters, 2021, 46, 4304.	3.3	12
60	Three modal decompositions of Gaussian Schell-model sources: comparative analysis. Optics Express, 2021, 29, 29676.	3.4	19
61	Nondestructive Structural Investigation of Yttria-Stabilized Zirconia Fiber Insulation Tile by Synchrotron X-ray In-Line Phase-Contrast Microtomography. Photonics, 2021, 8, 338.	2.0	0
62	Measuring the complete complex correlation matrix of a partially coherent vector beam via self-referencing holography. Applied Physics Letters, 2021, 119, .	3.3	4
63	Optical PAM-4 generation via electromagnetically induced transparency in nitrogen-vacancy centers. Results in Physics, 2021, 30, 104802.	4.1	3
64	Passively Q-Switched Yb:CALGO Laser Based on Mo:BiVO4 Absorber. Nanomaterials, 2021, 11, 2364.	4.1	2
65	Simultaneous measurement of orbital angular momentum spectra in a turbulent atmosphere without probe beam compensation. Optics Express, 2021, 29, 30666.	3.4	9
66	Thermal blooming induced phase change and its compensation of a Gaussian beam propagation in an absorbing medium: publisher's note. Optics Letters, 2021, 46, 4641.	3.3	0
67	Perfect optical coherence lattices. Applied Physics Letters, 2021, 119, .	3.3	6
68	Enhancing the self-reconstruction ability of the degree of coherence of a light beam via manipulating the cross-phase structure. Applied Physics Letters, 2021, 119, .	3.3	13
69	Broadly tunable optical vortex beam in a diode-pumped Yb:CALGO laser. Optics and Laser Technology, 2021, 141, 107134.	4.6	7
70	Second-order statistical properties of conjugate mode "double-H―partially coherent beams in turbulence. Optics Express, 2021, 29, 30809.	3.4	2
71	Generating non-uniformly correlated twisted sources. Optics Letters, 2021, 46, 5100.	3.3	13
72	Multi-band THz white light cavity in Landau-quantized graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114832.	2.7	0

#	Article	IF	CITATIONS
73	All-optical self-switching with ultralow incident laser intensity assisted by a bound state in the continuum. Optics Letters, 2021, 46, 524.	3.3	13
74	Flexible autofocusing properties of ring Pearcey beams by means of a cross phase. Optics Letters, 2021, 46, 70.	3.3	31
75	Significantly enhanced second-harmonic generations with all-dielectric antenna array working in the quasi-bound states in the continuum and excited by linearly polarized plane waves. Nanophotonics, 2021, 10, 1189-1196.	6.0	37
76	Partially coherent perfect vortex beam generated by an axicon phase. Applied Physics Letters, 2021, 119, .	3.3	5
77	Ultra-narrowband and highly-directional THz thermal emitters based on the bound state in the continuum. Nanophotonics, 2021, 10, 4035-4043.	6.0	17
78	Generation and Propagation of Partially Coherent Power-Exponent-Phase Vortex Beam. Frontiers in Physics, 2021, 9, .	2.1	7
79	Mo:BiVO4 Nanoparticles-Based Optical Modulator and Its Application in a 2-μm Pulsed Laser. Nanomaterials, 2021, 11, 3243.	4.1	3
80	Generating a twisted Gaussian Schell-model beam with a coherent-mode superposition. Optics Express, 2021, 29, 41964.	3.4	9
81	Robust far-field imaging by spatial coherence engineering. Opto-Electronic Advances, 2021, .	13.3	3
82	Robust far-field imaging by spatial coherence engineering. Opto-Electronic Advances, 2021, 4, 210027-210027.	13.3	57
83	Experimental synthesis of random light sources with circular coherence by digital micro-mirror device. Applied Physics Letters, 2020, 117, .	3.3	24
84	Wavelength-Tunable Nonlinear Mirror Mode-Locked Laser Based on MgO-Doped Lithium Niobate. Crystals, 2020, 10, 861.	2.2	1
85	Generating approximate non-diffractive three dimensional micro-size optical potentials by superposition. Optics Communications, 2020, 477, 126297.	2.1	3
86	Comparative Study of Spiral Spectrum of Elegant and Standard Laguerre–Gaussian Beams in Atmospheric Turbulence. Journal of Russian Laser Research, 2020, 41, 364-372.	0.6	6
87	Application of self-healing property of partially coherent beams to ghost imaging. Applied Physics Letters, 2020, 117, 171104.	3.3	10
88	VOC Monitoring and Ozone Generation Potential Analysis Based on a Single-Photon Ionization Time-of-Flight Mass Spectrometer. Photonics, 2020, 7, 61.	2.0	1
89	Correlation-induced orbital angular momentum changes. Physical Review A, 2020, 102, .	2.5	18
90	Reducing orbital angular momentum crosstalk of the Bessel–Gaussian beam for underwater optical communications. Journal of Optics (United Kingdom), 2020, 22, 065702.	2.2	8

#	Article	IF	CITATIONS
91	Polarimetric dimension and nonregularity of tightly focused light beams. Physical Review A, 2020, 101,	2.5	16
92	Diode-pumped passively mode-locked Nd:GYSGG laser at 1061 nm with periodically poled LiNbO3 nonlinear mirror. Journal of Modern Optics, 2020, 67, 552-555.	1.3	0
93	Non-Gaussian statistics of partially coherent light in atmospheric turbulence*. Chinese Physics B, 2020, 29, 064203.	1.4	6
94	Statistical Characteristics of a Twisted Anisotropic Gaussian Schell-Model Beam in Turbulent Ocean. Photonics, 2020, 7, 37.	2.0	9
95	Measuring Complex Degree of Coherence of Random Light Fields with Generalized Hanbury Brown–Twiss Experiment. Physical Review Applied, 2020, 13, .	3.8	28
96	Partially coherent vortex beams of arbitrary radial order and a van Cittert–Zernike theorem for vortices. Physical Review A, 2020, 101, .	2.5	19
97	Optical vortex with multi-fractional orders. Applied Physics Letters, 2020, 116, .	3.3	23
98	Anomalous multi-ramp fractional vortex beams with arbitrary topological charge jumps. Applied Physics Letters, 2020, 117, 241103.	3.3	10
99	Determining the topological charge of an obstructed vortex beam via reconstructed phase distribution. Applied Physics Letters, 2020, 117, .	3.3	10
100	Triple charge-coupled device cameras combined backscatter lidar for retrieving PM2.5 from aerosol extinction coefficient. Applied Optics, 2020, 59, 10369.	1.8	7
101	Twisted elliptical multi-Gaussian Schell-model beams and their propagation properties. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 89.	1.5	12
102	Statistical properties of a partially coherent radially polarized vortex beam propagating in a uniaxial crystal. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 1806.	1.5	4
103	Strong second-harmonic generation in dielectric optical nanoantennas resulting from the hybridization of magnetic dipoles and lattice resonances. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 3146.	2.1	10
104	Self-healing properties of Hermite-Gaussian correlated Schell-model beams. Optics Express, 2020, 28, 2828.	3.4	30
105	Fast calculation of tightly focused random electromagnetic beams: controlling the focal field by spatial coherence. Optics Express, 2020, 28, 9713.	3.4	18
106	Vortex preserving statistical optical beams. Optics Express, 2020, 28, 8475.	3.4	17
107	The evolution of spectral intensity and orbital angular momentum of twisted Hermite Gaussian Schell model beams in turbulence. Optics Express, 2020, 28, 7152.	3.4	17
108	Random source for generating Airy-like spectral density in the far field. Optics Express, 2020, 28, 7182.	3.4	12

#	Article	IF	CITATIONS
109	Generation of novel partially coherent truncated Airy beams via Fourier phase processing. Optics Express, 2020, 28, 9777.	3.4	9
110	Partially coherent radially polarized fractional vortex beam. Optics Express, 2020, 28, 11493.	3.4	35
111	Measuring complex correlation matrix of partially coherent vector light via a generalized Hanbury Brownâ€ ^e Twiss experiment. Optics Express, 2020, 28, 20634.	3.4	13
112	Propagation of radially polarized Hermite non-uniformly correlated beams in a turbulent atmosphere. Optics Express, 2020, 28, 27238.	3.4	25
113	Self-reconstruction of twisted Laguerre-Gaussian Schell-model beams partially blocked by an opaque obstacle. Optics Express, 2020, 28, 31510.	3.4	16
114	Spectral polarization of Gaussian Schell-model beams. Optics Express, 2020, 28, 35937.	3.4	4
115	Young's double-slit experiment with a partially coherent vortex beam. Optics Express, 2020, 28, 38106.	3.4	9
116	Universal self-similar asymptotic behavior of optical bump spreading in random medium atop incoherent background. Optics Letters, 2020, 45, 698.	3.3	11
117	Experimental synthesis of partially coherent sources. Optics Letters, 2020, 45, 1874.	3.3	21
118	Inverse design of a spatial filter in edge enhanced imaging. Optics Letters, 2020, 45, 2542.	3.3	8
119	Vector partially coherent beams with prescribed non-uniform correlation structure. Optics Letters, 2020, 45, 3824.	3.3	26
120	Customizing twisted Schell-model beams. Optics Letters, 2020, 45, 5880.	3.3	19
121	Effects of source spatial partial coherence on intensity statistics of optical beams in mono-static turbulent channels. Optics Express, 2020, 28, 20135.	3.4	2
122	Detection of a Semi-Rough Target in Turbulent Atmosphere by an Electromagnetic Gaussian Schell-Model Beam. Applied Sciences (Switzerland), 2019, 9, 2790.	2.5	2
123	Review on vortex beams with low spatial coherence. Advances in Physics: X, 2019, 4, 1626766.	4.1	27
124	Ghost Imaging with a Partially Coherent Beam Carrying Twist Phase in a Turbulent Ocean: A Numerical Approach. Applied Sciences (Switzerland), 2019, 9, 3023.	2.5	11
125	Nonlinear-mirror mode-locked 1052Ânm Yb:CALGO laser. Optical and Quantum Electronics, 2019, 51, 1.	3.3	2
126	Novel Terahertz Sources in the Form of Multispectral Resonators Boosted by Both Pump Light Local Field Enhancement and Terahertz Purcell Effect. ACS Photonics, 2019, 6, 2223-2230.	6.6	0

#	Article	IF	CITATIONS
127	Reducing the cross-talk among different orbital angular momentum modes in turbulent atmosphere by using a focusing mirror. Optics Express, 2019, 27, 10280.	3.4	23
128	Numerical Approach for Studying the Evolution of the Degrees of Coherence of Partially Coherent Beams Propagation through an ABCD Optical System. Applied Sciences (Switzerland), 2019, 9, 2084.	2.5	20
129	Phase detection of coherence singularities and determination of the topological charge of a partially coherent vortex beam. Applied Physics Letters, 2019, 114, .	3.3	34
130	Review on partially coherent vortex beams. Frontiers of Optoelectronics, 2019, 12, 229-248.	3.7	31
131	Nonparaxial Propagation Properties of Specially Correlated Radially Polarized Beams in Free Space. Applied Sciences (Switzerland), 2019, 9, 997.	2.5	3
132	Correlation of Intensity Fluctuations for Scattering of a Partially Coherent Plane-Wave Pulse. Applied Sciences (Switzerland), 2019, 9, 244.	2.5	3
133	Partially Coherent Flat-Topped Beam Generated by an Axicon. Applied Sciences (Switzerland), 2019, 9, 1499.	2.5	4
134	Centrosymmetric Optical Vortex. Applied Sciences (Switzerland), 2019, 9, 1429.	2.5	8
135	Enhanced backscatter of vortex beams in double-pass optical links with atmospheric turbulence. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 228, 1-10.	2.3	10
136	Generation of an Adjustable Optical Cage through Focusing an Apertured Bessel-Gaussian Correlated Schell-Model Beam. Applied Sciences (Switzerland), 2019, 9, 550.	2.5	3
137	Generation and Propagation of a Hermite-Gaussian Correlated Schell-Model LGOl Beam. Applied Sciences (Switzerland), 2019, 9, 610.	2.5	12
138	Rogue waves, self-similar statistics, and self-similar intermediate asymptotics. Physical Review A, 2019, 100, .	2.5	1
139	Second-order statistical properties of a J0-correlated Schell-model beam in a turbulent atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224, 185-191.	2.3	5
140	Propagation and radiation forces of a partially coherent beam generated by a quasi-homogeneous source with defect. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224, 171-175.	2.3	5
141	Vortex beam generation with variable topological charge based on a spiral slit. Nanophotonics, 2019, 8, 317-324.	6.0	98
142	Partially coherent vortex beam with periodical coherence properties. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 222-223, 138-144.	2.3	16
143	Modulating the statistical properties of a vector partially coherent beam by a 4f optical system. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 222-223, 145-153.	2.3	6
144	Fabrication of the photonic lattices with the method of multiple groups of double beam alternate interference. Optik, 2019, 178, 938-943.	2.9	0

#	Article	IF	CITATIONS
145	Noniterative spatially partially coherent diffractive imaging using pinhole array mask. Advanced Photonics, 2019, 1, 1.	11.8	36
146	Self-steering partially coherent vector beams. Optics Express, 2019, 27, 14353.	3.4	35
147	Grafted optical vortex with controllable orbital angular momentum distribution. Optics Express, 2019, 27, 22930.	3.4	58
148	Spiral spectrum of a Laguerre-Gaussian beam propagating in anisotropic non-Kolmogorov turbulent atmosphere along horizontal path. Optics Express, 2019, 27, 25342.	3.4	42
149	Scintillation properties of a partially coherent vector beam with vortex phase in turbulent atmosphere. Optics Express, 2019, 27, 26676.	3.4	47
150	Optical vortex shaping via a phase jump factor. Optics Letters, 2019, 44, 1379.	3.3	46
151	Experimental realization of dark and antidark diffraction-free beams. Optics Letters, 2019, 44, 2260.	3.3	38
152	Control of orbital angular momentum with partially coherent vortex beams. Optics Letters, 2019, 44, 3617.	3.3	16
153	Generating bona fide twisted Gaussian Schell-model beams. Optics Letters, 2019, 44, 3709.	3.3	42
154	Simultaneous measurement of the radial and azimuthal mode indices of a higher-order partially coherent vortex beam based on phase detection. Optics Letters, 2019, 44, 3881.	3.3	15
155	Experimental study of reducing beam wander by modulating the coherence structure of structured light beams. Optics Letters, 2019, 44, 4371.	3.3	15
156	Beam wander of coherent and partially coherent Airy beam arrays in a turbulent atmosphere. Optics Communications, 2018, 415, 48-55.	2.1	26
157	Anomalous Bessel vortex beam: modulating orbital angular momentum with propagation. Nanophotonics, 2018, 7, 677-682.	6.0	67
158	Experimental generation of two-index Bessel–Gauss beams by engineering their angular spectrum functions. Optics Communications, 2018, 407, 107-111.	2.1	0
159	High-order nonuniformly correlated beams. Optics and Laser Technology, 2018, 99, 230-237.	4.6	21
160	Partially coherent fractional vortex beam. Optics Express, 2018, 26, 26830.	3.4	31
161	Propagation of Optical Coherence Vortex Lattices in Turbulent Atmosphere. Applied Sciences (Switzerland), 2018, 8, 2476.	2.5	11
162	Twisted partially coherent array sources and their transmission in anisotropic turbulence. Optics Express, 2018, 26, 25974.	3.4	26

#	Article	IF	CITATIONS
163	Coupling Efficiency of a Partially Coherent Radially Polarized Vortex Beam into a Single-Mode Fiber. Applied Sciences (Switzerland), 2018, 8, 1313.	2.5	10
164	Effects of Atmospheric Turbulence on Lensless Ghost Imaging with Partially Coherent Light. Applied Sciences (Switzerland), 2018, 8, 1479.	2.5	14
165	Transmission of a polychromatic electromagnetic multi-Gaussian Schell-model beam in an inhomogeneous gradient-index fiber. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 1604.	1.5	5
166	Spatial coherence measurement and partially coherent diffractive imaging using self-referencing holography. Optics Express, 2018, 26, 4479.	3.4	28
167	Propagation properties of Hermite non-uniformly correlated beams in turbulence. Optics Express, 2018, 26, 16333.	3.4	39
168	Generation of a flexible far-field anomalous hollow beam spot through superposition of two partially coherent sources with different degrees of coherence. Optics Communications, 2018, 428, 69-76.	2.1	7
169	High-quality partially coherent Bessel beam array generation. Optics Letters, 2018, 43, 3188.	3.3	36
170	Laser arrays of partially coherent beams with multi-Gaussian correlation function. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 218, 1-11.	2.3	14
171	Optimization of the probability of orbital angular momentum for Laguerre-Gaussian beam in Kolmogorov and non-Kolmogorov turbulence. Optics Express, 2018, 26, 21861.	3.4	32
172	Rectangular Hermite non-uniformly correlated beams and its propagation properties. Optics Express, 2018, 26, 27894.	3.4	36
173	Measuring topological charge of partially coherent elegant Laguerre-Gaussian beam. Optics Express, 2018, 26, 33035.	3.4	19
174	Twisted Laguerre-Gaussian Schell-model beam and its orbital angular moment. Optics Express, 2018, 26, 33956.	3.4	43
175	Generation and Propagation of Anomalous Bessel Vortex Beam. , 2018, , .		Ο
176	Self-steering partially coherent beams. Scientific Reports, 2017, 7, 39957.	3.3	46
177	Statistical properties of a radially polarized twisted Gaussian Schell-model beam in an underwater turbulent medium. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 133.	1.5	30
178	Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle. Applied Physics Letters, 2017, 110, .	3.3	59
179	Statistical properties of a radially polarized twisted Gaussian Schell-model beam in a uniaxial crystal. Journal of Modern Optics, 2017, 64, 698-708.	1.3	9
180	Nonparaxial propagation properties of an anomalous hollow beam with orbital angular momentum. Journal of Modern Optics, 2017, 64, 1960-1970.	1.3	1

#	Article	IF	CITATIONS
181	Kurtosis parameter <i>K</i> of arbitrary electromagnetic beams propagating through non-Kolmogorov turbulence. Journal of Modern Optics, 2017, 64, 1976-1987.	1.3	17
182	Shaping the intensity and degree of coherence of a partially coherent beam by a 4foptical system with an amplitude filter. Journal of Optics (United Kingdom), 2017, 19, 124010.	2.2	12
183	Propagation of Correlation Singularities of a Partially Coherent Laguerre–Gaussian Electromagnetic Beam in a Uniaxial Crystal. IEEE Photonics Journal, 2017, 9, 1-13.	2.0	6
184	Generation of Partially Coherent Beams. Progress in Optics, 2017, 62, 157-223.	0.6	114
185	Changes of intensity distribution of a tightly focused plane-wave pulse induced by lens dispersion. Journal of Modern Optics, 2017, 64, 515-520.	1.3	0
186	Hermite-Gaussian correlated Schell-model pulsed beam. , 2017, , .		0
187	The statistical properties of a Hermite-Gaussian correlated Schell-model beam in a gradient-index fiber. , 2017, , .		0
188	Complex Gaussian representations of partially coherent beams with nonconventional degrees of coherence. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 1824.	1.5	7
189	Vector optical coherence lattices generating controllable far-field beam profiles. Optics Express, 2017, 25, 9872.	3.4	34
190	Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources. Optics Express, 2017, 25, 28352.	3.4	46
191	Radially polarized multi-Gaussian Schell-model beam and its tight focusing properties. Optics Express, 2017, 25, 32475.	3.4	65
192	Efficient tensor approach for simulating paraxial propagation of arbitrary partially coherent beams. Optics Express, 2017, 25, 24780.	3.4	8
193	Complex degree of coherence measurement for classical statistical fields. Optics Letters, 2017, 42, 77.	3.3	13
194	Generation and propagation of a partially coherent beam. , 2016, , .		0
195	Twist phase-induced changes of the polarization degree and state of a stochastic electromagnetic beam. , 2016, , .		0
196	Self-reconstruction of partially coherent light beams scattered by opaque obstacles. Optics Express, 2016, 24, 23735.	3.4	48
197	Experimental generation of optical coherence lattices. Applied Physics Letters, 2016, 109, .	3.3	76
198	Generation of arbitrary radially polarized array beams by manipulating correlation structure. Applied Physics Letters, 2016, 109, 161904.	3.3	35

#	Article	IF	CITATIONS
199	Propagation properties of partially coherent dark hollow beam in inhomogeneous atmospheric turbulence. Journal of Modern Optics, 2016, 63, 2186-2197.	1.3	10
200	Propagation of optical coherence lattices in the turbulent atmosphere. Optics Letters, 2016, 41, 4182.	3.3	44
201	Vector Hermite-Gaussian correlated Schell-model beam. Optics Express, 2016, 24, 15232.	3.4	32
202	Second-order statistics of a radially polarized cosine-Gaussian correlated Schell-model beam in anisotropic turbulence. Optics Express, 2016, 24, 11626.	3.4	41
203	Propagation of a radially polarized twisted Gaussian Schell-model beam in turbulent atmosphere. Journal of Optics (United Kingdom), 2016, 18, 125601.	2.2	26
204	Simultaneous determination of the sign and the magnitude of the topological charge of a partially coherent vortex beam. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	20
205	Correlation-induced self-focusing and self-shaping effect of a partially coherent beam. High Power Laser Science and Engineering, 2016, 4, .	4.6	8
206	Focal shift of a focused partially coherent Laguerre-Gaussian beam of all orders. Journal of Modern Optics, 2016, 63, 2226-2234.	1.3	7
207	Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam. Optics Express, 2016, 24, 13714.	3.4	42
208	Correlation-induced changes of the degree of paraxiality of a partially coherent beam. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 251.	1.5	7
209	Effects of biological tissues on the propagation properties of anomalous hollow beams. Optik, 2016, 127, 1842-1847.	2.9	27
210	Theoretical and experimental studies of a rectangular Laguerre–Gaussian-correlated Schell-model beam. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	19
211	Effect of the correlation function on the focal shift of a partially coherent beam. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 2509.	1.5	4
212	Nonuniform Laguerre-Gaussian Correlated Partially Coherent Beam. , 2016, , .		0
213	Generation and propagation of an electromagnetic Gaussian Schell-model vortex beam. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 2058.	1.5	31
214	PROPAGATION OF PARTIALLY COHERENT BEAM IN TURBULENT ATMOSPHERE: A REVIEW (Invited Review). Progress in Electromagnetics Research, 2015, 150, 123-143.	4.4	152
215	Orbital angular moment of an electromagnetic Gaussian Schell-model beam with a twist phase. Optics Express, 2015, 23, 30283.	3.4	29
216	Twist phase-induced changes of the statistical properties of a stochastic electromagnetic beam propagating in a uniaxial crystal. Optics Express, 2015, 23, 12454.	3.4	21

#	Article	IF	CITATIONS
217	Generation and propagation of a vector cosine-Gaussian correlated beam with radial polarization. Optics Express, 2015, 23, 33099.	3.4	44
218	Evolution properties of a Laguerre–Gaussian correlated Schell-model beam propagating in uniaxial crystals orthogonal to the optical axis. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 374.	1.5	37
219	Statistical properties of an anomalous hollow beam with orbital angular momentum. Journal of Modern Optics, 2015, 62, 179-185.	1.3	14
220	Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam. Physical Review A, 2015, 91, .	2.5	124
221	Propagation of a Laguerre–Gaussian correlated Schell-model beam beyond the paraxial approximation. Optics Communications, 2015, 352, 127-134.	2.1	9
222	Effect of the atmospheric turbulence on a special correlated radially polarized beam on propagation. Optics Communications, 2015, 354, 353-361.	2.1	12
223	Correlation singularities in a partially coherent electromagnetic beam with initially radial polarization. Optics Express, 2015, 23, 11483.	3.4	14
224	Experimental demonstration of ghost imaging with an electromagnetic Gaussian Schell-model beam. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 910.	1.5	23
225	Statistical properties of a partially coherent cylindrical vector beam in oceanic turbulence. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 894.	1.5	45
226	Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell-model beam in Kolmogorov and non-Kolmogorov turbulence. Optics Express, 2015, 23, 13467.	3.4	68
227	Experimental verification of significant reduction of turbulence-induced scintillation in a full Poincaré beam. Optics Express, 2015, 23, 24331.	3.4	29
228	Dependence of the beam wander of an airy beam on its kurtosis parameter in a turbulent atmosphere. Optics and Laser Technology, 2015, 68, 6-10.	4.6	22
229	Degree of polarization of a tightly focused, partially coherent anomalous hollow beam. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 2753.	1.5	19
230	Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [Invited]. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 2083.	1.5	204
231	Generalized multi-Gaussian correlated Schell-model beam: from theory to experiment. Optics Express, 2014, 22, 23456.	3.4	77
232	Second-order moments of an electromagnetic Gaussian Schell-model beam in a uniaxial crystal. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 238.	1.5	20
233	Autocorrelation properties of fully coherent beam with and without orbital angular momentum. Optics Express, 2014, 22, 2925.	3.4	15
234	Elliptical Laguerre-Gaussian correlated Schell-model beam. Optics Express, 2014, 22, 13975.	3.4	69

#	Article	IF	CITATIONS
235	Statistical properties in Young's interference pattern formed with a radially polarized beam with controllable spatial coherence. Optics Express, 2014, 22, 28697.	3.4	15
236	Orbital angular moment of a partially coherent beam propagating through an astigmatic ABCD optical system with loss or gain. Optics Letters, 2014, 39, 1968.	3.3	36
237	Reduction or annihilation of aberrations of an optical system by balancing ghost-imaging technique and optimal imaging of a pure weak phase object. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 48.	1.5	3
238	Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry. Optics Letters, 2014, 39, 769.	3.3	134
239	Propagation properties of partially coherent anomalous hollow beams in uniaxial crystals. Journal of Modern Optics, 2014, 61, 688-696.	1.3	10
240	Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam. Optics Letters, 2014, 39, 3336.	3.3	51
241	A new method for generating a hollow Gaussian beam. Applied Physics B: Lasers and Optics, 2014, 115, 55-60.	2.2	34
242	Multi-Gaussian Schell-model vortex beam. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 750-754.	2.1	52
243	Average intensity and spectral shifts of a partially coherent standard or elegant Laguerre-Gaussian beam beyond paraxial approximation. Optical and Quantum Electronics, 2014, 46, 365-379.	3.3	6
244	Generation of a controllable optical cage by focusing a Laguerre–Gaussian correlated Schell-model beam. Optics Letters, 2014, 39, 2549.	3.3	68
245	Experimental study of the fractional Fourier transform for a hollow Gaussian beam. Optics and Laser Technology, 2014, 56, 92-98.	4.6	15
246	Propagation of Airy beam passing through the misaligned optical system with hard aperture. Optics Communications, 2014, 313, 350-355.	2.1	19
247	Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere. Optics Express, 2014, 22, 1871.	3.4	58
248	Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam. Optics Express, 2014, 22, 5826.	3.4	93
249	Degree of paraxiality of cylindrical vector partially coherent Laguerre–Gaussian beams. Optics Communications, 2014, 333, 237-242.	2.1	8
250	Generation and propagation of a partially coherent vector beam with special correlation functions. Physical Review A, 2014, 89, .	2.5	117
251	Generation and tight-focusing properties of cylindrical vector circular Airy beams. Applied Physics B: Lasers and Optics, 2014, 117, 905-913.	2.2	37
252	Generation and self-healing of a radially polarized Bessel-Gauss beam. Physical Review A, 2014, 89, .	2.5	78

#	Article	IF	CITATIONS
253	Statistical properties of a partially coherent radially polarized beam propagating through an astigmatic optical system. Optics Communications, 2014, 316, 132-139.	2.1	6
254	Propagation of a twist Gaussian–Schell model beam in non-Kolmogorov turbulence. Optics Communications, 2014, 324, 108-113.	2.1	17
255	Random source generating far field with elliptical flat-topped beam profile. Journal of Optics (United) Tj ETQq1 1	0.784314 2.2	rgBT /Overld
256	Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence. Applied Physics Letters, 2013, 103, .	3.3	72
257	Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere. Applied Physics B: Lasers and Optics, 2013, 112, 247-259.	2.2	34
258	Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere. Optics Communications, 2013, 305, 57-65.	2.1	87
259	Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere. Optics and Laser Technology, 2013, 50, 14-19.	4.6	49
260	Experimental generation of a polychromatic partially coherent dark hollow beam. Optik, 2013, 124, 5271-5273.	2.9	5
261	Stochastic electromagnetic plane-wave pulse with non-uniform correlation distribution. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1563-1565.	2.1	13
262	Effect of spatial coherence on the scintillation properties of a dark hollow beam in turbulent atmosphere. Applied Physics B: Lasers and Optics, 2013, 110, 519-529.	2.2	5
263	Hollow vortex Gaussian beams. Science China: Physics, Mechanics and Astronomy, 2013, 56, 896-903.	5.1	20
264	Spectral shift of a partially coherent standard or elegant Laguerre–Gaussian beam in turbulent atmosphere. Journal of Modern Optics, 2013, 60, 422-430.	1.3	3
265	Scintillation properties of a truncated flat-topped beam in a weakly turbulent atmosphere. Optics and Laser Technology, 2013, 45, 587-592.	4.6	9
266	Multisoliton complexes of Bose–Einstein condensates in nonlinear optical lattices. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 691.	2.1	2
267	Generation and propagation of an anomalous vortex beam. Optics Letters, 2013, 38, 5418.	3.3	91
268	Nonparaxial propagation properties of a vector partially coherent dark hollow beam. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 1358.	1.5	15
269	Experimental generation of partially coherent beams with different complex degrees of coherence. Optics Letters, 2013, 38, 1814.	3.3	166
270	Experimental determination of the radius of curvature of an isotropic Gaussian Schell-model beam. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 171.	1.5	4

#	Article	IF	CITATIONS
271	State of polarization and propagation factor of a stochastic electromagnetic beam in a gradient-index fiber. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 2306.	1.5	16
272	Theoretical and experimental studies of the spectral changes of a polychromatic partially coherent radially polarized beam. Optics Express, 2013, 21, 27682.	3.4	28
273	Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam. Optics Letters, 2013, 38, 5323.	3.3	85
274	Twist phase-induced reduction in scintillation of a partially coherent beam in turbulent atmosphere. Optics Letters, 2012, 37, 184.	3.3	77
275	Interdependence between the temporal and spatial longitudinal and transverse degrees of partial coherence and a generalization of the van Cittert–Zernike theorem. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 2542.	1.5	6
276	Statistical properties of a nonparaxial cylindrical vector partially coherent field in free space. Optics Express, 2012, 20, 15908.	3.4	28
277	Coherence and polarization properties of a radially polarized beam with variable spatial coherence. Optics Express, 2012, 20, 28301.	3.4	70
278	Scattering-induced changes in the degree of polarization of a stochastic electromagnetic plane-wave pulse. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 1078.	1.5	14
279	Effect of spatial coherence on determining the topological charge of a vortex beam. Applied Physics Letters, 2012, 101, .	3.3	66
280	Experimental demonstration of coupling of an electromagnetic Gaussian Schell-model beam into a single-mode optical fiber. Applied Physics B: Lasers and Optics, 2012, 108, 891-895.	2.2	10
281	Experimental generation of a partially coherent Laguerre–Gaussian beam. Applied Physics B: Lasers and Optics, 2012, 109, 345-349.	2.2	22
282	Evolution properties of the complex degree of coherence of a partially coherent Laguerre–Gaussian beam in turbulent atmosphere. Journal of Modern Optics, 2012, 59, 372-380.	1.3	16
283	Propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere. Optics Express, 2012, 20, 9897.	3.4	53
284	Scattering of a partially coherent plane-wave pulse on a deterministic sphere. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2697-2702.	2.1	29
285	Field correlations of annular beams in extremely strong turbulence. Optics Communications, 2012, 285, 4171-4174.	2.1	13
286	Hypergeometric Gaussian beam and its propagation in turbulence. Optics Communications, 2012, 285, 4194-4199.	2.1	12
287	Experimental generation of a radially polarized beam with controllable spatial coherence. Applied Physics Letters, 2012, 100, .	3.3	88
288	Effect of spatial coherence on propagation, tight focusing, and radiation forces of an azimuthally polarized beam. Physical Review A, 2012, 86, .	2.5	76

#	Article	IF	CITATIONS
289	Non-Kolmogorov spectrum scintillation aspects of dark hollow and flat topped beams. Optics Communications, 2012, 285, 969-974.	2.1	12
290	Propagation factor of partially coherent flat-topped beam array in free space and turbulent atmosphere. Optics and Lasers in Engineering, 2012, 50, 752-759.	3.8	33
291	Focusing properties of a general-type beam in turbulent atmosphere. Optics and Laser Technology, 2012, 44, 1850-1857.	4.6	1
292	Spectral shift of an electromagnetic Gaussian Schell-model beam propagating through tissue. Journal of Modern Optics, 2011, 58, 38-44.	1.3	15
293	Propagation of partially coherent Lorentz and Lorentz–Gauss beams through a paraxial ABCD optical system in a turbulent atmosphere. Journal of Modern Optics, 2011, 58, 810-818.	1.3	27
294	Scintillation index of a flat-topped beam array in a weakly turbulent atmosphere. Journal of Optics (United Kingdom), 2011, 13, 125701.	2.2	12
295	Generation of various partially coherent beams and their propagation properties in turbulent atmosphere: a review. , 2011, , .		18
296	Statistics properties of a cylindrical vector partially coherent beam. Optics Express, 2011, 19, 5979.	3.4	52
297	Modulation of spectral intensity, polarization and coherence of a stochastic electromagnetic beam. Optics Express, 2011, 19, 8700.	3.4	15
298	Statistical properties of a nonparaxial Gaussian Schell-model beam in a uniaxial crystal. Optics Express, 2011, 19, 13312.	3.4	25
299	Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse. Optics Letters, 2011, 36, 517.	3.3	48
300	Detection of a semirough target in turbulent atmosphere by a partially coherent beam. Optics Letters, 2011, 36, 1939.	3.3	47
301	Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam. Optics Letters, 2011, 36, 2251.	3.3	133
302	Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source. Optics Letters, 2011, 36, 2722.	3.3	30
303	Experimental study of the focusing properties of a Gaussian Schell-model vortex beam. Optics Letters, 2011, 36, 3281.	3.3	48
304	Coincidence fractional Fourier transform with a stochastic electromagnetic Gaussian Schell-model beam. Optics Communications, 2011, 284, 5275-5280.	2.1	4
305	Degree of paraxiality of a stochastic electromagnetic Gaussian Schell-model beam. Optics Communications, 2011, 284, 1111-1117.	2.1	21
306	Propagation of Lorentz and Lorentz–Gauss beams through an apertured fractional Fourier transform optical system. Optics and Lasers in Engineering, 2011, 49, 25-31.	3.8	39

#	Article	IF	CITATIONS
307	Circular partially coherent flattened Gaussian beam. Optics and Lasers in Engineering, 2011, 49, 481-489.	3.8	7
308	Propagation factor of a truncated partially coherent flat-topped beam in turbulent atmosphere. Optics Communications, 2011, 284, 30-37.	2.1	24
309	Shaping the beam profile of a partially coherent beam by a phase aperture. Optics Communications, 2011, 284, 4129-4135.	2.1	5
310	An alternative model for a partially coherent elliptical dark hollow beam. Optics and Laser Technology, 2011, 43, 577-585.	4.6	14
311	Evolution properties of a twisted Gaussian Schell-model beam in a uniaxial crystal. Journal of Modern Optics, 2011, 58, 1224-1232.	1.3	14
312	Intensity fluctuations of partially coherent cos Gaussian and cosh Gaussian beams in atmospheric turbulence. Journal of Optics (United Kingdom), 2011, 13, 055709.	2.2	7
313	Elegant Laguerre–Gaussian beam in a turbulent atmosphere. Optics Communications, 2010, 283, 2772-2781.	2.1	35
314	Spectral shift of a stochastic electromagnetic Gaussian Schell-model beam in a Gaussian cavity. Optics Communications, 2010, 283, 4505-4511.	2.1	6
315	Propagation factors of Hermite–Gaussian beams in turbulent atmosphere. Optics and Laser Technology, 2010, 42, 1344-1348.	4.6	21
316	Ghost imaging with electromagnetic stochastic beams. Optics Communications, 2010, 283, 3838-3845.	2.1	47
317	Propagation of various dark hollow beams through an optical system in turbulent atmosphere. Optics and Lasers in Engineering, 2010, 48, 1019-1026.	3.8	8
318	Propagation factor of a radial laser array beam in turbulent atmosphere. Proceedings of SPIE, 2010, , .	0.8	0
319	Partially coherent off-axis Gaussian beam scintillations. Journal of Modern Optics, 2010, 57, 1221-1227.	1.3	19
320	Propagation factors of laser array beams in turbulent atmosphere. Journal of Modern Optics, 2010, 57, 621-631.	1.3	18
321	Propagation of elegant higher-order Gaussian beams in turbulent atmosphere. Proceedings of SPIE, 2010, , .	0.8	1
322	Beam wander characteristics of flat-topped, dark hollow, cos and cosh-Gaussian, J 0 - and I 0 - Bessel Gaussian beams propagating in turbulent atmosphere: a review. Proceedings of SPIE, 2010, , .	0.8	2
323	Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam. Optics Express, 2010, 18, 12587.	3.4	74
324	Spatio-temporal coupling of random electromagnetic pulses interacting with reflecting gratings. Optics Express, 2010, 18, 22503.	3.4	19

#	Article	IF	CITATIONS
325	Second-order statistics of a twisted Gaussian Schell-model beam in turbulent atmosphere. Optics Express, 2010, 18, 24661.	3.4	83
326	M^2-factor of a stochastic electromagnetic beam in a Gaussian cavity. Optics Express, 2010, 18, 27567.	3.4	19
327	Propagation of a general-type beam through a truncated fractional Fourier transform optical system. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 637.	1.5	16
328	Degree of paraxiality of a partially coherent field. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 1120.	1.5	17
329	Paraxial propagation of Lorentz and Lorentz–Gauss beams in uniaxial crystals orthogonal to the optical axis. Journal of Modern Optics, 2010, 57, 375-384.	1.3	66
330	Tensor Method for Treating the Propagation of Scalar and Electromagnetic Gaussian Schell-Model Beams: A Review~!2009-09-07~!2009-12-02~!2010-03-09~!. The Open Optics Journal, 2010, 4, 1-20.	0.1	14
331	AVERAGE INTENSITY AND SPREADING OF PARTIALLY COHERENT STANDARD AND ELEGANT LAGUERRE-GAUSSIAN BEAMS IN TURBULENT ATMOSPHERE. Progress in Electromagnetics Research, 2010, 103, 33-56.	4.4	70
332	DEGREE OF POLARIZATION OF A TWISTED ELECTROMAGNETIC GAUSSIAN SCHELL-MODEL BEAM IN A GAUSSIAN CAVITY FILLED WITH GAIN MEDIA. Progress in Electromagnetics Research B, 2010, 21, 171-187.	1.0	11
333	Scintillation properties of a rectangular dark hollow beam. Journal of Modern Optics, 2009, 56, 502-507.	1.3	5
334	Generalized tensor ABCD law for an elliptical Gaussian beam passing through an astigmatic optical system in turbulent atmosphere. Applied Physics B: Lasers and Optics, 2009, 94, 319-325.	2.2	12
335	Experimental observation of focal shifts in focused partially coherent beams. Optics Communications, 2009, 282, 3408-3413.	2.1	19
336	Propagation of a decentered astigmatic partially coherent beam in a turbulent atmosphere. Optik, 2009, 120, 146-150.	2.9	2
337	Experimental observation of lensless coincidence fractional Fourier transform with a Gaussian Schell-model beam. Optik, 2009, 120, 457-463.	2.9	1
338	Scintillation index of modified Bessel-Gaussian beams propagating in turbulent media. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, 387.	1.5	50
339	Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle. Optics Express, 2009, 17, 1753.	3.4	104
340	Ghost imaging with twisted Gaussian Schell-model beam. Optics Express, 2009, 17, 2453.	3.4	47
341	Average intensity and spreading of an elegant Hermite–Gaussian beam in turbulent atmosphere. Optics Express, 2009, 17, 11130.	3.4	73
342	M^2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere. Optics Express, 2009, 17, 17344.	3.4	135

#	Article	IF	CITATIONS
343	Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams. Optics Express, 2009, 17, 21472.	3.4	94
344	Partially coherent standard and elegant Laguerre-Gaussian beams of all orders. Optics Express, 2009, 17, 22366.	3.4	103
345	Scintillations of partially coherent multiple Gaussian beams in turbulence. Applied Optics, 2009, 48, 1943.	2.1	115
346	Effect of beam types on the scintillations: a review. , 2009, , .		21
347	Twist phase induced changes of radiation force of a Gaussian Schell-model beam on a Rayleigh dielectric sphere. Proceedings of SPIE, 2009, , .	0.8	0
348	Partially coherent anomalous hollow beam and its paraxial propagation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 4654-4660.	2.1	35
349	Paraxial propagation of a partially coherent flattened Gaussian beam through apertured ABCD optical systems. Optics Communications, 2008, 281, 3221-3229.	2.1	19
350	Propagation properties of anomalous hollow beams in a turbulent atmosphere. Optics Communications, 2008, 281, 5291-5297.	2.1	43
351	Generation of a high-quality partially coherent dark hollow beam with a multimode fiber. , 2008, , .		1
352	Generation of a high-quality partially coherent dark hollow beam with a multimode fiber. Optics Letters, 2008, 33, 1389.	3.3	84
353	Experimental generation of a partially coherent flat-topped beam. Optics Letters, 2008, 33, 1795.	3.3	63
354	Evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity. Optics Letters, 2008, 33, 2266.	3.3	59
355	Scintillation of astigmatic dark hollow beams in weak atmospheric turbulence. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 1497.	1.5	55
356	Experimental observation of truncated fractional Fourier transform for a partially coherent Gaussian Schell-model beam. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 2001.	1.5	28
357	State of polarization of a stochastic electromagnetic beam in an optical resonator. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 2710.	1.5	21
358	Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere. Optics Express, 2008, 16, 7665.	3.4	125
359	An alternative theoretical model for an anomalous hollow beam. Optics Express, 2008, 16, 15254.	3.4	34
360	Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere. Optics Express, 2008, 16, 15834.	3.4	100

#	Article	IF	CITATIONS
361	Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle. , 2008, , .		0
362	Scintillation properties of non-circular flat-topped beams. Journal of Optics, 2008, 10, 075003.	1.5	18
363	<title>Incoherent sinusoidal-Gaussian and annular beam scintillations</title> ., 2007, , .		6
364	Lensless imaging with partially coherent light. Optics Letters, 2007, 32, 205.	3.3	31
365	Lensless imaging with partially coherent light: erratum. Optics Letters, 2007, 32, 1359.	3.3	2
366	Scintillation index of elliptical Gaussian beam in turbulent atmosphere. Optics Letters, 2007, 32, 2405.	3.3	94
367	Model for an anomalous hollow beam and its paraxial propagation. Optics Letters, 2007, 32, 3179.	3.3	81
368	Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 1937.	1.5	82
369	Paraxial propagation of a partially coherent Hermite-Gaussian beam through aligned and misaligned ABCD optical systems. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 2394.	1.5	27
370	Complex degree of coherence for partially coherent general beams in atmospheric turbulence. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 2891.	1.5	61
371	Second-harmonic generation by an astigmatic partially coherent beam. Optics Express, 2007, 15, 15480.	3.4	64
372	Analytical formulas for a circular or non-circular flat-topped beam propagating through an apertured paraxial optical system. Optics Communications, 2007, 269, 39-46.	2.1	22
373	Analytical formula for a decentered elliptical Gaussian beam propagating in a turbulent atmosphere. Optics Communications, 2007, 271, 509-516.	2.1	12
374	Propagation of Bessel and Bessel–Gaussian beams through an unapertured or apertured misaligned paraxial optical systems. Optics Communications, 2007, 274, 1-7.	2.1	39
375	Off-axis Gaussian Schell-model beam and partially coherent laser array beam in a turbulent atmosphere. Optics Communications, 2007, 278, 157-167.	2.1	88
376	Modified hollow Gaussian beam and its paraxial propagation. Optics Communications, 2007, 278, 34-41.	2.1	51
377	Partially coherent circular and elliptical dark hollow beams and their paraxial propagations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 369, 157-166.	2.1	42
378	Propagation of various flat-topped beams in a turbulent atmosphere. Journal of Optics, 2006, 8, 537-545.	1.5	115

#	Article	IF	CITATIONS
379	Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere. Applied Physics Letters, 2006, 89, 041117.	3.3	205
380	Average intensity and spreading of an elliptical Gaussian beam propagating in a turbulent atmosphere. Optics Letters, 2006, 31, 568.	3.3	124
381	Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams through an apertured astigmatic optical system. Optics Letters, 2006, 31, 685.	3.3	84
382	Lensless optical implementation of the coincidence fractional Fourier transform. Optics Letters, 2006, 31, 2278.	3.3	17
383	Coincidence subwavelength fractional Fourier transform. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 835.	1.5	7
384	Propagation of hollow Gaussian beams through apertured paraxial optical systems. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 1410.	1.5	85
385	Partially coherent flattened Gaussian beam and its paraxial propagation properties. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 2623.	1.5	42
386	Coherent and partially coherent dark hollow beams with rectangular symmetry and paraxial propagation properties. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1398.	2.1	61
387	Propagation of various dark hollow beams in a turbulent atmosphere. Optics Express, 2006, 14, 1353.	3.4	270
388	Experimental observation of coincidence fractional Fourier transform with a partially coherent beam. Optics Express, 2006, 14, 6999.	3.4	20
389	Reply to comment on "Partially coherent flat-topped beam and its propagation". Applied Optics, 2006, 45, 369.	2.1	3
390	Propagation of a decentered elliptical Gaussian beam through apertured aligned and misaligned paraxial optical systems. Applied Optics, 2006, 45, 5758.	2.1	27
391	Propagation of various dark hollow beams through an apertured paraxial ABCD optical system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 357, 72-80.	2.1	45
392	Analytical formula for a circular flattened Gaussian beam propagating through a misaligned paraxial ABCD optical system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 360, 394-399.	2.1	21
393	Propagation of a hollow Gaussian beam through a paraxial misaligned optical system. Optics Communications, 2006, 265, 607-615.	2.1	59
394	Four-beamlets laser array and its propagation. Optics and Laser Technology, 2005, 37, 483-489.	4.6	4
395	Coincidence fractional Fourier transform with entangled photon pairs and incoherent light. Applied Physics Letters, 2005, 86, 021112.	3.3	22
396	Ghost imaging with incoherent and partially coherent light radiation. Physical Review E, 2005, 71, 056607.	2.1	233

#	Article	IF	CITATIONS
397	Coincidence fractional Fourier transform implemented with partially coherent light radiation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2005, 22, 1798.	1.5	14
398	Second-order fractional Fourier transform with incoherent radiation. Optics Letters, 2005, 30, 388.	3.3	12
399	A partially coherent elliptical flattened Gaussian beam and its propagation. Journal of Optics, 2004, 6, 1061-1066.	1.5	18
400	The fractional Fourier transform for a partially coherent pulse. Journal of Optics, 2004, 6, 307-311.	1.5	17
401	Partially coherent flat-topped multi-Gaussian–Schell-model beam and its propagation. Optics Communications, 2004, 239, 33-41.	2.1	18
402	Propagation of partially polarized Gaussian Schell-model beams in dispersive and absorbing media. Optics Communications, 2004, 229, 93-98.	2.1	8
403	Light beams with elliptical flat-topped profiles. Journal of Optics, 2004, 6, 390-395.	1.5	62
404	Propagation of partially polarized Gaussian Schell-model beams in anomalously dispersive media. Optik, 2004, 115, 305-310.	2.9	0
405	Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2004, 21, 1058.	1.5	115
406	Partially coherent flat-topped beam and its propagation. Applied Optics, 2004, 43, 4732.	2.1	34
407	Ghost interference with partially coherent radiation. Optics Letters, 2004, 29, 2716.	3.3	165
408	Focusing properties of partially coherent twisted anisotropic Gaussian–Schell model beams. Optics Communications, 2003, 215, 239-245.	2.1	12
409	Fractional Fourier transform for elliptical Gaussian beams. Optics Communications, 2003, 217, 7-13.	2.1	37
410	Propagation of elliptical Hermite–Gaussian beam through misaligned optical system. Optics Communications, 2003, 224, 13-19.	2.1	10
411	Properties of a flattened Gaussian beam in the fractional Fourier transform plane. Journal of Optics, 2003, 5, 272-275.	1.5	59
412	Fractional Fourier transform for elliptical Gaussian beam in spatial-frequency domain. Optik, 2003, 114, 433-436.	2.9	4
413	Hollow Gaussian beams and their propagation properties. Optics Letters, 2003, 28, 1084.	3.3	347
414	Decentered elliptical Hermite–Gaussian beam. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 1111.	1.5	38

#	Article	IF	CITATIONS
415	Transformation and spectrum properties of partially coherent beams in the fractional Fourier transform plane. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 1528.	1.5	36
416	Fractional Fourier transform for partially coherent and partially polarized Gaussian–Schell model beams. Journal of Optics, 2003, 5, 453-459.	1.5	38
417	Spectral shift of partially coherent twisted anisotropic Gaussian–Schell-model beams focused by a thin lens. Journal of Optics, 2003, 5, 397-401.	1.5	15
418	Tensor ABCD law for partially coherent twisted anisotropic Gaussian–Schell model beams. Optics Letters, 2002, 27, 216.	3.3	223
419	Fractional Fourier transform for partially coherent Gaussian–Schell model beams. Optics Letters, 2002, 27, 1672.	3.3	76
420	Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams in dispersive and absorbing media. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2002, 19, 2036.	1.5	36
421	Decentered elliptical Gaussian beam. Applied Optics, 2002, 41, 4336.	2.1	44
422	Elliptical flattened Gaussian beam analyzed by the tensor ABCD law. Optik, 2002, 113, 167-170.	2.9	3
423	Propagation of elliptical Gaussian beam through misaligned optical systems in spatial domain and spatial-frequency domain. Optics and Laser Technology, 2002, 34, 415-421.	4.6	27
424	Spectral shift of partially coherent twisted anisotropic Gaussian Schell-model beams in free space. Optics Communications, 2002, 204, 17-23.	2.1	27
425	The elliptical Hermite–Gaussian beam and its propagation through paraxial systems. Optics Communications, 2002, 207, 139-147.	2.1	35
426	Propagation of partially coherent twisted anisotropic Gaussian–Schell model beams through misaligned optical systems. Optics Communications, 2002, 211, 1-8.	2.1	25
427	Partially Coherent Vortex Beam: From Theory to Experiment. , 0, , .		8
428	Mitigating orbital angular momentum crosstalk in an optical communication uplink channel using cylindrical vector beams. Waves in Random and Complex Media, 0, , 1-12.	2.7	3
429	Self-focusing propagation characteristics of radially-polarized beam in nonlinear media. Optics Express, 0, , .	3.4	1
430	Polarization-resolved Scintillations in Young's Experiment. Optics Express, 0, , .	3.4	0