Xiaoqun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8827711/publications.pdf Version: 2024-02-01

XIAOOUN WANC

#	Article	IF	CITATIONS
1	A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature, 2018, 555, 524-528.	27.8	551
2	COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell, 2021, 184, 1895-1913.e19.	28.9	512
3	A new subtype of progenitor cell in the mouse embryonic neocortex. Nature Neuroscience, 2011, 14, 555-561.	14.8	432
4	Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature, 2009, 461, 947-955.	27.8	409
5	Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature, 2009, 458, 501-504.	27.8	298
6	Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biology, 2020, 18, e3000705.	5.6	202
7	Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis. Cell Research, 2018, 28, 730-745.	12.0	179
8	Single-Cell Analysis of Human Retina Identifies Evolutionarily Conserved and Species-Specific Mechanisms Controlling Development. Developmental Cell, 2020, 53, 473-491.e9.	7.0	170
9	Decoding the development of the human hippocampus. Nature, 2020, 577, 531-536.	27.8	141
10	The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. ELife, 2016, 5, .	6.0	126
11	Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein and Cell, 2017, 8, 823-833.	11.0	124
12	OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease. Current Opinion in Neurobiology, 2012, 22, 747-753.	4.2	120
13	Diverse Behaviors of Outer Radial Clia in Developing Ferret and Human Cortex. Journal of Neuroscience, 2014, 34, 2559-2570.	3.6	104
14	The Primate-Specific Gene TMEM14B Marks Outer Radial Glia Cells and Promotes Cortical Expansion and Folding. Cell Stem Cell, 2017, 21, 635-649.e8.	11.1	102
15	Single-cell transcriptome analysis reveals cell lineage specification in temporal-spatial patterns in human cortical development. Science Advances, 2020, 6, eaaz2978.	10.3	88
16	MRGPRX4 is a bile acid receptor for human cholestatic itch. ELife, 2019, 8, .	6.0	86
17	Mouse and human share conserved transcriptional programs for interneuron development. Science, 2021, 374, eabj6641.	12.6	75
18	LSD1 co-repressor Rcor2 orchestrates neurogenesis in the developing mouse brain. Nature Communications, 2016, 7, 10481.	12.8	51

2

XIAOQUN WANG

#	Article	IF	CITATIONS
19	Rapid and Efficient Conversion of Human Fibroblasts into Functional Neurons by Small Molecules. Stem Cell Reports, 2019, 13, 862-876.	4.8	51
20	Cellular and molecular properties of neural progenitors in the developing mammalian hypothalamus. Nature Communications, 2020, 11, 4063.	12.8	50
21	Transcriptome dynamics of hippocampal neurogenesis in macaques across the lifespan and aged humans. Cell Research, 2022, 32, 729-743.	12.0	48
22	Chromatin accessibility analysis reveals regulatory dynamics of developing human retina and hiPSC-derived retinal organoids. Science Advances, 2020, 6, eaay5247.	10.3	47
23	In vivo chemical reprogramming of astrocytes into neurons. Cell Discovery, 2021, 7, 12.	6.7	46
24	Role of <i>Wdr45b</i> in maintaining neural autophagy and cognitive function. Autophagy, 2020, 16, 615-625.	9.1	41
25	CRISPR/Cas9-mediated genome engineering of the ferret. Cell Research, 2015, 25, 1372-1375.	12.0	40
26	The Dynamics of Neuronal Migration. Advances in Experimental Medicine and Biology, 2014, 800, 25-36.	1.6	37
27	Vertical Transmission of the Zika Virus Causes Neurological Disorders in Mouse Offspring. Scientific Reports, 2018, 8, 3541.	3.3	36
28	Cenpj Regulates Cilia Disassembly and Neurogenesis in the Developing Mouse Cortex. Journal of Neuroscience, 2019, 39, 1994-2010.	3.6	36
29	Telomere-dependent and telomere-independent roles of RAP1 in regulating human stem cell homeostasis. Protein and Cell, 2019, 10, 649-667.	11.0	35
30	Transcriptomic encoding of sensorimotor transformation in the midbrain. ELife, 2021, 10, .	6.0	27
31	A single-cell transcriptome atlas of the aging human and macaque retina. National Science Review, 2021, 8, nwaa179.	9.5	26
32	Questions about NgAgo. Protein and Cell, 2016, 7, 913-915.	11.0	24
33	The critical role of ASD-related gene CNTNAP3 in regulating synaptic development and social behavior in mice. Neurobiology of Disease, 2019, 130, 104486.	4.4	22
34	Structure, gating, and pharmacology of human CaV3.3 channel. Nature Communications, 2022, 13, 2084.	12.8	22
35	Interrogation of the microenvironmental landscape in spinal ependymomas reveals dual functions of tumor-associated macrophages. Nature Communications, 2021, 12, 6867.	12.8	19
36	Visualization and correction of social abnormalities-associated neural ensembles in adult MECP2 duplication mice. Science Bulletin, 2020, 65, 1192-1202.	9.0	17

XIAOQUN WANG

#	Article	IF	CITATIONS
37	Modeling brain development and diseases with human cerebral organoids. Current Opinion in Neurobiology, 2021, 66, 103-115.	4.2	15
38	Deciphering the spatial-temporal transcriptional landscape of human hypothalamus development. Cell Stem Cell, 2022, 29, 328-343.e5.	11.1	15
39	Calstabin 2: An important regulator for learning and memory in mice. Scientific Reports, 2016, 6, 21087.	3.3	14
40	Integrative analysis of in vivo recording with single-cell RNA-seq data reveals molecular properties of light-sensitive neurons in mouse V1. Protein and Cell, 2020, 11, 417-432.	11.0	13
41	FTO stabilizes MIS12 and counteracts senescence. Protein and Cell, 2022, 13, 954-960.	11.0	13
42	Recent advances in tissue stem cells. Science China Life Sciences, 2021, 64, 1998-2029.	4.9	12
43	Neuronal stem cells in the central nervous system and in human diseases. Protein and Cell, 2012, 3, 262-270.	11.0	11
44	PET imaging of metabolic changes after neural stem cells and GABA progenitor cells transplantation in a rat model of temporal lobe epilepsy. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2392-2397.	6.4	10
45	Early Excitatory Activity-Dependent Maturation of Somatostatin Interneurons in Cortical Layer 2/3 of Mice. Cerebral Cortex, 2019, 29, 4107-4118.	2.9	9
46	Comparison of chromatin accessibility landscapes during early development of prefrontal cortex between rhesus macaque and human. Nature Communications, 2022, 13, .	12.8	7
47	Morphological and Physiological Characteristics of Ebf2-EGFP-Expressing Cajal-Retzius Cells in Developing Mouse Neocortex. Cerebral Cortex, 2019, 29, 3864-3878.	2.9	6
48	Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases. Protein and Cell, 2013, 4, 415-424.	11.0	5
49	Abundant Self-Amplifying Intermediate Progenitors in the Subventricular Zone of the Chinese Tree Shrew Neocortex. Cerebral Cortex, 2020, 30, 3370-3380.	2.9	5
50	Loss of the centrosomal protein Cenpj leads to dysfunction of the hypothalamus and obesity in mice. Science China Life Sciences, 2021, 64, 419-433.	4.9	5
51	Thymic Egress Is Regulated by T Cell-Derived LTβR Signal and via Distinct Thymic Portal Endothelial Cells. Frontiers in Immunology, 2021, 12, 707404.	4.8	2