

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8827657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A complete reference of the analytical synchrotron external shock models of gamma-ray bursts. New Astronomy Reviews, 2013, 57, 141-190.	12.8	175
2	THE MILLISECOND MAGNETAR CENTRAL ENGINE IN SHORT GRBs. Astrophysical Journal, 2015, 805, 89.	4.5	173
3	A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor. Nature Communications, 2018, 9, 447.	12.8	125
4	A COMPREHENSIVE ANALYSIS OF <i>FERMI</i> GAMMA-RAY BURST DATA. II. <i>E</i> _p EVOLUTION PATTERNS AND IMPLICATIONS FOR THE OBSERVED SPECTRUM-LUMINOSITY RELATIONS. Astrophysical Journal, 2012, 756, 112.	4.5	116
5	HYPERACCRETING BLACK HOLE AS GAMMA-RAY BURST CENTRAL ENGINE. I. BARYON LOADING IN GAMMA-RAY BURST JETS. Astrophysical Journal, 2013, 765, 125.	4.5	110
6	Evolution characteristics of the central black hole of a magnetized accretion disc. Monthly Notices of the Royal Astronomical Society, 2002, 335, 655-664.	4.4	109
7	LORENTZ-FACTOR–ISOTROPIC-LUMINOSITY/ENERGY CORRELATIONS OF GAMMA-RAY BURSTS AND THEIR INTERPRETATION. Astrophysical Journal, 2012, 751, 49.	4.5	96
8	MAGNETICALLY TORQUED NEUTRINO-DOMINATED ACCRETION FLOWS FOR GAMMA-RAY BURSTS. Astrophysical Journal, 2009, 700, 1970-1976.	4.5	79
9	GIANT X-RAY BUMP IN GRB 121027A: EVIDENCE FOR FALL-BACK DISK ACCRETION. Astrophysical Journal Letters, 2013, 767, L36.	8.3	67
10	CONSTRAINTS ON THE PHOTON MASS WITH FAST RADIO BURSTS. Astrophysical Journal Letters, 2016, 822, L15.	8.3	61
11	Magnetic Coupling of a Rotating Black Hole with Its Surrounding Accretion Disk. Astrophysical Journal, 2003, 595, 109-119.	4.5	57
12	BLACK HOLE SPIN IN Sw J1644+57 and Sw J2058+05. Astrophysical Journal Letters, 2011, 740, L27.	8.3	49
13	Hyperaccreting Black Hole as Gamma-Ray Burst Central Engine. II. Temporal Evolution of the Central Engine Parameters during the Prompt and Afterglow Phases. Astrophysical Journal, 2017, 849, 47.	4.5	49
14	Constraining the Type of Central Engine of GRBs with Swift Data. Astrophysical Journal, Supplement Series, 2018, 236, 26.	7.7	43
15	Transfer of energy and angular momentum in the magnetic coupling between a rotating black hole and the surrounding accretion disc. Monthly Notices of the Royal Astronomical Society, 2003, 342, 851-860.	4.4	38
16	A model of the light curves of gamma-ray bursts. Astronomy and Astrophysics, 2007, 468, 563-569.	5.1	37
17	FRAME DRAGGING, DISK WARPING, JET PRECESSING, AND DIPPED X-RAY LIGHT CURVE OF Sw J1644+57. Astrophysical Journal, 2013, 762, 98.	4.5	36
18	RADIAL ANGULAR MOMENTUM TRANSFER AND MAGNETIC BARRIER FOR SHORT-TYPE GAMMA-RAY-BURST CENTRAL ENGINE ACTIVITY. Astrophysical Journal, 2012, 760, 63.	4.5	35

W-H Lei

#	Article	IF	CITATIONS
19	Signature of a Newborn Black Hole from the Collapse of a Supra-massive Millisecond Magnetar. Astrophysical Journal, 2017, 849, 119.	4.5	33
20	Compton scattering of self-absorbed synchrotron emission. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2520-2531.	4.4	29
21	IGR J12580+0134: THE FIRST TIDAL DISRUPTION EVENT WITH AN OFF-BEAM RELATIVISTIC JET. Astrophysical Journal, 2016, 816, 20.	4.5	29
22	QUASI-PERIODIC VARIATIONS IN X-RAY EMISSION AND LONG-TERM RADIO OBSERVATIONS: EVIDENCE FOR A TWO-COMPONENT JET IN Sw J1644+57. Astrophysical Journal, 2014, 788, 32.	4.5	28
23	Bright Merger-nova Emission Powered by Magnetic Wind from a Newborn Black Hole. Astrophysical Journal Letters, 2018, 852, L5.	8.3	25
24	A Toy Model for Gammaâ€Ray Bursts in Type lb/c Supernovae. Astrophysical Journal, 2005, 619, 420-426.	4.5	24
25	Lorentz factor — Beaming corrected energy/luminosity correlations and GRB central engine models. Journal of High Energy Astrophysics, 2017, 13-14, 1-9.	6.7	24
26	THE BLACK HOLE CENTRAL ENGINE FOR ULTRA-LONG GAMMA-RAY BURST 111209A AND ITS ASSOCIATED SUPERNOVA 2011KL. Astrophysical Journal, 2016, 826, 141.	4.5	23
27	The extension of variability properties in gamma-ray bursts to blazars. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 455, L1-L5.	3.3	20
28	Determining the Lorentz Factor and Viewing Angle of GRB 170817A. Astrophysical Journal Letters, 2018, 852, L1.	8.3	20
29	Screw Instability of the Magnetic Field Connecting a Rotating Black Hole with Its Surrounding Disk. Astrophysical Journal, 2004, 601, 1031-1037.	4.5	18
30	Variability of the giant X-ray bump in GRB 121027A and its possible origin. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2375-2379.	4.4	18
31	Catching jetted tidal disruption events early in millimetre. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3375-3384.	4.4	18
32	Hyperaccretion after the Blandford-Znajek Process: A New Model for GRBs with X-Ray Flares Observed in Early Afterglows. Research in Astronomy and Astrophysics, 2008, 8, 404-410.	1.1	17
33	An analytic model of a rotating hotspot and kilohertz quasi-periodic oscillations in X-ray binaries. Monthly Notices of the Royal Astronomical Society, 2003, 344, 473-480.	4.4	15
34	NUMERICAL AND ANALYTICAL SOLUTIONS OF NEUTRINO-DOMINATED ACCRETION FLOWS WITH A NON-ZERO TORQUE BOUNDARY CONDITION AND ITS APPLICATIONS IN GAMMA-RAY BURSTS. Astrophysical Journal, 2016, 833, 129.	4.5	15
35	A two-component jet model based on the Blandford-Znajek and Blandford-Payne processes. Research in Astronomy and Astrophysics, 2012, 12, 817-828.	1.7	14
36	Testing the Einstein's equivalence principle with polarized gamma-ray bursts. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 469, L36-L38.	3.3	14

W-H Lei

#	Article	IF	CITATIONS
37	What Can We Learn about GRB from the Variability Timescale Related Correlations?. Astrophysical Journal, 2017, 838, 143.	4.5	12
38	The Second Plateau in X-Ray Afterglow Providing Additional Evidence for Rapidly Spinning Magnetars as the GRB Central Engine. Astrophysical Journal, 2020, 896, 42.	4.5	10
39	An MAD explanation for the correlation between bulk Lorentz factor and minimum variability time-scale. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3525-3529.	4.4	9
40	Giant X-Ray and Optical Bump in GRBs: Evidence for Fallback Accretion Model. Astrophysical Journal, 2021, 906, 60.	4.5	9
41	Screw Instability of Magnetic Field and Gammaâ€Ray Bursts in Type Ib/c Supernovae. Astrophysical Journal, 2006, 643, 1047-1056.	4.5	8
42	An Analytic Model of Black Hole Evolution and Gammaâ€Ray Bursts. Astrophysical Journal, 2002, 580, 358-367.	4.5	7
43	Effects of Magnetic Fields on Neutrino-dominated Accretion Model for Gamma-ray Bursts. Research in Astronomy and Astrophysics, 2007, 7, 685-692.	1.1	7
44	A model of magnetically induced disc-corona for black hole binaries. Monthly Notices of the Royal Astronomical Society, 2009, 394, 2310-2320.	4.4	7
45	A Further Study of the of GRBs: Rest-frame Properties, External Plateau Contributions, and Multiple Parameter Analysis. Astrophysical Journal, 2017, 845, 51.	4.5	7
46	A Unified Model of Magnetic Extraction of Spin Energy from a Black Hole. Chinese Physics Letters, 2002, 19, 605-607.	3.3	6
47	Search for the signatures of a new-born black hole from the collapse of a supra-massive millisecond magnetar in short GRB light curves. Monthly Notices of the Royal Astronomical Society, 2018, 475, 266-276.	4.4	6
48	Magnetic Coupling of a Rotating Black Hole with the Surrounding Accretion Disc. Chinese Physics Letters, 2001, 18, 1150-1152.	3.3	4
49	Effects of Magnetic Coupling on Temperature Profile of Black-Hole Accretion Disc. Chinese Physics Letters, 2002, 19, 276-279.	3.3	3
50	Coexistence of Two Mechanisms for Extracting Energy from a Rotating Black Hole. Chinese Physics Letters, 2003, 20, 1644-1647.	3.3	3
51	Two Mechanisms for Extracting Energy and Angular Momentum from a Rotating Black Hole. General Relativity and Gravitation, 2002, 34, 619-632.	2.0	2
52	Effects of Magnetic Coupling on Profile of Emission Lines and Images of an Accretion Disc Around a Black Hole. Chinese Physics Letters, 2004, 21, 2316-2319.	3.3	2
53	A New Model for Gamma-Ray Burst Powered by the Blandford-Znajek Process. Research in Astronomy and Astrophysics, 2005, 5, 279-283.	1.1	2
54	A toy model for magnetized neutrino-dominated accretion flows. Science China: Physics, Mechanics and Astronomy, 2010, 53, 98-101.	5.1	2

W-H Lei

#	Article	IF	CITATIONS
55	Extending the correlation ofLRâ^'LXto gamma-ray bursts. Research in Astronomy and Astrophysics, 2015, 15, 617-622.	1.7	2
56	A New Approach to Evolution of Black Hole Accretion Disks. Chinese Physics Letters, 2000, 17, 853-855.	3.3	1
57	Investigation on the Quasi-Cycle of Black Hole Spin. Chinese Physics Letters, 2001, 18, 466-468.	3.3	1
58	Cycle of Black Hole Spin due to Disc Accretion Alternating with Magnetic Transfer. Chinese Physics Letters, 2003, 20, 1895-1898.	3.3	1
59	Effects of Screw Instability on Extracting Energy from a Rotating Black Hole. Chinese Physics Letters, 2005, 22, 1813-1816.	3.3	1
60	A Toy Model for Magnetic Field Configurations in Black Hole Accretion Discs. Chinese Physics Letters, 2008, 25, 2327-2330.	3.3	1
61	Revisiting gamma-ray burst afterglows with time-dependent parameters. Research in Astronomy and Astrophysics, 2018, 18, 018.	1.7	1
62	A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor. , 0, .		1
63	Some Interesting Behaviour of Accreting Particles in the Gap Region of Black Hole Accretion Discs. Chinese Physics Letters, 2001, 18, 705-707.	3.3	0
64	Temperature Profile of Black Hole Accretion Disc with Magnetic Coupling. Communications in Theoretical Physics, 2002, 38, 247-252.	2.5	0
65	Parameter Space for Evolution of Black Hole Systems and Gamma-Ray Bursts. Chinese Physics Letters, 2002, 19, 1730-1733.	3.3	0
66	The evolution and efficiency of energy release of magnetized black-hole accretion disks. Chinese Astronomy and Astrophysics, 2002, 26, 386-397.	0.3	0
67	A Toy Model for Advection Dominated Accretion Flows. Chinese Physics Letters, 2003, 20, 965-968.	3.3	0
68	Electromagnetic Quantities in Black Hole Magnetosphere. Chinese Physics Letters, 2004, 21, 764-766.	3.3	0
69	Energy dissipation and angular momentum transfer within a magnetically torqued accretion disc. Science China: Physics, Mechanics and Astronomy, 2010, 53, 106-109.	5.1	0
70	The Influence of Magnetic Braking on Neutrino-dominated Accretion Disk. , 2008, , .		0

5