Joanna Koziel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8825995/publications.pdf Version: 2024-02-01

Ιολνινά Κοζιεί

#	Article	IF	CITATIONS
1	Mechanism of MyD88S mediated signal termination. Cell Communication and Signaling, 2022, 20, 10.	6.5	6
2	Macrophage-Specific MCPIP1/Regnase-1 Attenuates Kidney Ischemia-Reperfusion Injury by Shaping the Local Inflammatory Response and Tissue Regeneration. Cells, 2022, 11, 397.	4.1	5
3	Pros and cons of causative association between periodontitis and rheumatoid arthritis. Periodontology 2000, 2022, 89, 83-98.	13.4	19
4	Proteolytic Activity-Independent Activation of the Immune Response by Gingipains from Porphyromonas gingivalis. MBio, 2022, 13, e0378721.	4.1	5
5	Imaging of Clear Cell Renal Carcinoma with Immune Checkpoint Targeting Aptamer-Based Probe. Pharmaceuticals, 2022, 15, 697.	3.8	7
6	MCPIP-1 Restricts Inflammation via Promoting Apoptosis of Neutrophils. Frontiers in Immunology, 2021, 12, 627922.	4.8	12
7	Murine myeloid cell MCPIP1 suppresses autoimmunity by regulating B-cell expansion and differentiation. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	11
8	Deletion of Mcpip1 in Mcpip1fl/flAlbCre mice recapitulates the phenotype of human primary biliary cholangitis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166086.	3.8	12
9	Subversion of Lipopolysaccharide Signaling in Gingival Keratinocytes via MCPIP-1 Degradation as a Novel Pathogenic Strategy of Inflammophilic Pathobionts. MBio, 2021, 12, e0050221.	4.1	7
10	Role of Mcpip1 in obesityâ€induced hepatic steatosis as determined by myeloid and liverâ€specific conditional knockouts. FEBS Journal, 2021, 288, 6563-6580.	4.7	4
11	Small but potent: GTPases as novel players on the neutrophils autophagy market. Journal of Leukocyte Biology, 2021, 110, 613-615.	3.3	0
12	Citrullination-Resistant LL-37 Is a Potent Antimicrobial Agent in the Inflammatory Environment High in Arginine Deiminase Activity. International Journal of Molecular Sciences, 2020, 21, 9126.	4.1	7
13	Proteolysis of Gingival Keratinocyte Cell Surface Proteins by Gingipains Secreted From Porphyromonas gingivalis – Proteomic Insights Into Mechanisms Behind Tissue Damage in the Diseased Gingiva. Frontiers in Microbiology, 2020, 11, 722.	3.5	12
14	Candida albicans Shields the Periodontal Killer Porphyromonas gingivalis from Recognition by the Host Immune System and Supports the Bacterial Infection of Gingival Tissue. International Journal of Molecular Sciences, 2020, 21, 1984.	4.1	29
15	Peptidylarginine Deiminase of Porphyromonas gingivalis Modulates the Interactions between Candida albicans Biofilm and Human Plasminogen and High-Molecular-Mass Kininogen. International Journal of Molecular Sciences, 2020, 21, 2495.	4.1	8
16	The Bactericidal Activity of Temporin Analogues Against Methicillin Resistant Staphylococcus aureus. International Journal of Molecular Sciences, 2019, 20, 4761.	4.1	9
17	IFN Regulatory Factor 4 Controls Post-ischemic Inflammation and Prevents Chronic Kidney Disease. Frontiers in Immunology, 2019, 10, 2162.	4.8	16
18	Triggering NETosis via protease-activated receptor (PAR)-2 signaling as a mechanism of hijacking neutrophils function for pathogen benefits. PLoS Pathogens, 2019, 15, e1007773.	4.7	46

JOANNA KOZIEL

#	Article	IF	CITATIONS
19	Discovery of Novel Potential Reversible Peptidyl Arginine Deiminase Inhibitor. International Journal of Molecular Sciences, 2019, 20, 2174.	4.1	37
20	Adhesive protein-mediated cross-talk between Candida albicans and Porphyromonas gingivalis in dual species biofilm protects the anaerobic bacterium in unfavorable oxic environment. Scientific Reports, 2019, 9, 4376.	3.3	44
21	A Novel Biological Role for Peptidyl-Arginine Deiminases: Citrullination of Cathelicidin LL-37 Controls the Immunostimulatory Potential of Cell-Free DNA. Journal of Immunology, 2018, 200, 2327-2340.	0.8	27
22	The activity of bacterial peptidylarginine deiminase is important during formation of dual-species biofilm by periodontal pathogen Porphyromonas gingivalis and opportunistic fungus Candida albicans. Pathogens and Disease, 2018, 76, .	2.0	34
23	Conjugate of Enkephalin and Temporin Peptides as a Novel Therapeutic Agent for Sepsis. Bioconjugate Chemistry, 2018, 29, 4127-4139.	3.6	9
24	Aristolochic acid I determine the phenotype and activation of macrophages in acute and chronic kidney disease. Scientific Reports, 2018, 8, 12169.	3.3	24
25	The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nature Reviews Rheumatology, 2017, 13, 606-620.	8.0	301
26	Immunomodulatory Molecule IRAK-M Balances Macrophage Polarization and Determines Macrophage Responses during Renal Fibrosis. Journal of Immunology, 2017, 199, 1440-1452.	0.8	22
27	Inactive Gingipains from P. gingivalis Selectively Skews T Cells toward a Th17 Phenotype in an IL-6 Dependent Manner. Frontiers in Cellular and Infection Microbiology, 2017, 7, 140.	3.9	24
28	Inhibition of CDK9 as a therapeutic strategy for inflammatory arthritis. Scientific Reports, 2016, 6, 31441.	3.3	25
29	MCPIP-1, Alias Regnase-1, Controls Epithelial Inflammation by Posttranscriptional Regulation of IL-8 Production. Journal of Innate Immunity, 2016, 8, 564-578.	3.8	36
30	The impact of lactoferrin with different levels of metal saturation on the intestinal epithelial barrier function and mucosal inflammation. BioMetals, 2016, 29, 1019-1033.	4.1	26
31	Citrullination in the periodontium—a possible link between periodontitis and rheumatoid arthritis. Clinical Oral Investigations, 2016, 20, 675-683.	3.0	80
32	Successful therapy of Clostridium difficile infection with fecal microbiota transplantation. Journal of Physiology and Pharmacology, 2016, 67, 859-866.	1.1	39
33	Mirolase, a novel subtilisin-like serine protease from the periodontopathogen Tannerella forsythia. Biological Chemistry, 2015, 396, 261-275.	2.5	29
34	The Janus Face of a-Toxin: A Potent Mediator of Cytoprotection in Staphylococci-Infected Macrophages. Journal of Innate Immunity, 2015, 7, 187-198.	3.8	17
35	Emerging role of fecal microbiota therapy in the treatment of gastrointestinal and extra-gastrointestinal diseases. Journal of Physiology and Pharmacology, 2015, 66, 483-91.	1.1	86
36	Citrullination Alters Immunomodulatory Function of LL-37 Essential for Prevention of Endotoxin-Induced Sepsis. Journal of Immunology, 2014, 192, 5363-5372.	0.8	59

JOANNA KOZIEL

#	Article	IF	CITATIONS
37	Peptidylarginine deiminase from <i>Porphyromonas gingivalis</i> contributes to infection of gingival fibroblasts and induction of prostaglandin E ₂ â€signaling pathway. Molecular Oral Microbiology, 2014, 29, 321-332.	2.7	28
38	A pathogenic trace of <i>Tannerella forsythia</i> – shedding of soluble fully active tumor necrosis factor α from the macrophage surface by karilysin. Molecular Oral Microbiology, 2014, 29, 294-306.	2.7	16
39	The Link Between Periodontal Disease and Rheumatoid Arthritis: An Updated Review. Current Rheumatology Reports, 2014, 16, 408.	4.7	176
40	Differential Regulation by Toll-Like Receptor Agonists Reveals That <i> MCPIP1</i> Is the Potent Regulator of Innate Immunity in Bacterial and Viral Infections. Journal of Innate Immunity, 2013, 5, 15-23.	3.8	20
41	Protease-armed bacteria in the skin. Cell and Tissue Research, 2013, 351, 325-337.	2.9	77
42	The Role of Mcl-1 inS. aureus-Induced Cytoprotection of Infected Macrophages. Mediators of Inflammation, 2013, 2013, 1-12.	3.0	16
43	Porphyromonas gingivalis Facilitates the Development and Progression of Destructive Arthritis through Its Unique Bacterial Peptidylarginine Deiminase (PAD). PLoS Pathogens, 2013, 9, e1003627.	4.7	212
44	Inactivation of Epidermal Growth Factor by Porphyromonas gingivalis as a Potential Mechanism for Periodontal Tissue Damage. Infection and Immunity, 2013, 81, 55-64.	2.2	46
45	NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus. Microbiology (United Kingdom), 2011, 157, 2206-2219.	1.8	85
46	Proteolytic Inactivation of LL-37 by Karilysin, a Novel Virulence Mechanism of <i>Tannerella forsythia</i> . Journal of Innate Immunity, 2010, 2, 288-293.	3.8	50
47	Phagocytosis of Staphylococcus aureus by Macrophages Exerts Cytoprotective Effects Manifested by the Upregulation of Antiapoptotic Factors. PLoS ONE, 2009, 4, e5210.	2.5	146
48	A Potential New Pathway for Staphylococcus aureus Dissemination: The Silent Survival of S. aureus Phagocytosed by Human Monocyte-Derived Macrophages. PLoS ONE, 2008, 3, e1409.	2.5	374