Hernán A Burbano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8824636/publications.pdf

Version: 2024-02-01

34 papers

9,087 citations

28 h-index 35 g-index

53 all docs

53 docs citations

times ranked

53

11863 citing authors

#	Article	IF	CITATIONS
1	A Draft Sequence of the Neandertal Genome. Science, 2010, 328, 710-722.	12.6	3,588
2	A draft genome of Yersinia pestis from victims of the Black Death. Nature, 2011, 478, 506-510.	27.8	619
3	A Complete Neandertal Mitochondrial Genome Sequence Determined by High-Throughput Sequencing. Cell, 2008, 134, 416-426.	28.9	503
4	DNA analysis of an early modern human from Tianyuan Cave, China. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2223-2227.	7.1	484
5	Ancient gene flow from early modern humans into Eastern Neanderthals. Nature, 2016, 530, 429-433.	27.8	392
6	Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 2014, 345, 1074-1079.	12.6	343
7	The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. ELife, 2013, 2, e00731.	6.0	339
8	Neandertal and Denisovan DNA from Pleistocene sediments. Science, 2017, 356, 605-608.	12.6	329
9	Targeted Investigation of the Neandertal Genome by Array-Based Sequence Capture. Science, 2010, 328, 723-725.	12.6	255
10	Patterns of coding variation in the complete exomes of three Neandertals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6666-6671.	7.1	223
11	The Neandertal genome and ancient DNA authenticity. EMBO Journal, 2009, 28, 2494-2502.	7.8	170
12	Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science, 2017, 357, 512-515.	12.6	169
13	Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana. Nature Ecology and Evolution, 2018, 2, 352-358.	7.8	157
14	Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature, 2019, 573, 126-129.	27.8	148
15	A Robust Framework for Microbial Archaeology. Annual Review of Genomics and Human Genetics, 2017, 18, 321-356.	6.2	144
16	African genomes illuminate the early history and transition to selfing in <i>Arabidopsis thaliana</i> Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5213-5218.	7.1	142
17	Using herbaria to study global environmental change. New Phytologist, 2019, 221, 110-122.	7.3	140
18	nQuire: a statistical framework for ploidy estimation using next generation sequencing. BMC Bioinformatics, 2018, 19, 122.	2.6	128

#	Article	IF	CITATIONS
19	The rate and potential relevance of new mutations in a colonizing plant lineage. PLoS Genetics, 2018, 14, e1007155.	3.5	116
20	Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens. Royal Society Open Science, 2016, 3, 160239.	2.4	108
21	The origins and adaptation of European potatoes reconstructed from historical genomes. Nature Ecology and Evolution, 2019, 3, 1093-1101.	7.8	73
22	Mining Herbaria for Plant Pathogen Genomes: Back to the Future. PLoS Pathogens, 2014, 10, e1004028.	4.7	72
23	Reinforcing plant evolutionary genomics using ancient DNA. Current Opinion in Plant Biology, 2017, 36, 38-45.	7.1	65
24	Extraction of ultrashort DNA molecules from herbarium specimens. BioTechniques, 2017, 62, 76-79.	1.8	53
25	Genomic rearrangements generate hypervariable mini-chromosomes in host-specific isolates of the blast fungus. PLoS Genetics, 2021, 17, e1009386.	3.5	46
26	Differential loss of effector genes in three recently expanded pandemic clonal lineages of the rice blast fungus. BMC Biology, 2020, 18, 88.	3.8	45
27	Comparative Population Genomics of the Ejaculate in Humans and the Great Apes. Molecular Biology and Evolution, 2013, 30, 964-976.	8.9	40
28	Analysis of Human Accelerated DNA Regions Using Archaic Hominin Genomes. PLoS ONE, 2012, 7, e32877.	2.5	38
29	The Earth BioGenome project: opportunities and challenges for plant genomics and conservation. Plant Journal, 2020, 102, 222-229.	5.7	35
30	Contesting the presence of wheat in the British Isles 8,000 years ago by assessing ancient DNA authenticity from low-coverage data. ELife, 2015, 4, .	6.0	31
31	Hybridization ddRADâ€sequencing for population genomics of nonmodel plants using highly degraded historical specimen DNA. Molecular Ecology Resources, 2020, 20, 1228-1247.	4.8	19
32	Isolation, Library Preparation, and Bioinformatic Analysis of Historical and Ancient Plant DNA. Current Protocols in Plant Biology, 2020, 5, e20121.	2.8	14
33	Mining ancient microbiomes using selective enrichment of damaged DNA molecules. BMC Genomics, 2020, 21, 432.	2.8	6
34	Multiple Sources of Introduction of North American <i>Arabidopsis thaliana</i> from across Eurasia. Molecular Biology and Evolution, 2021, 38, 5328-5344.	8.9	6