
Margit Focke-Tejkl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8824534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Allergen Genes to Allergy Vaccines. Annual Review of Immunology, 2010, 28, 211-241.	21.8	202
2	B cell–derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. Journal of Allergy and Clinical Immunology, 2007, 120, 1418-1424.	2.9	171
3	Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future. Journal of Allergy and Clinical Immunology, 2016, 137, 351-357.	2.9	154
4	Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy. Journal of Allergy and Clinical Immunology, 2015, 135, 1207-1217.e11.	2.9	115
5	Mechanisms, safety and efficacy of a B cell epitope-based vaccine for immunotherapy of grass pollen allergy. EBioMedicine, 2016, 11, 43-57.	6.1	109
6	Der p 11 Is a Major Allergen for House Dust Mite-Allergic Patients Suffering from Atopic Dermatitis. Journal of Investigative Dermatology, 2015, 135, 102-109.	0.7	93
7	A hypoallergenic cat vaccine based on Fel d 1–derived peptides fused to hepatitis B PreS. Journal of Allergy and Clinical Immunology, 2011, 127, 1562-1570.e6.	2.9	92
8	Reassessing the role of hyaluronidase in yellow jacket venom allergy. Journal of Allergy and Clinical Immunology, 2010, 125, 184-190.e1.	2.9	86
9	Safety and efficacy of immunotherapy with the recombinant B-cell epitope–based grass pollen vaccine BM32. Journal of Allergy and Clinical Immunology, 2018, 142, 497-509.e9.	2.9	84
10	Recombinant allergens: What does the future hold?. Journal of Allergy and Clinical Immunology, 2011, 127, 860-864.	2.9	83
11	Mapping of Conformational IgE Epitopes with Peptide-Specific Monoclonal Antibodies Reveals Simultaneous Binding of Different IgE Antibodies to a Surface Patch on the Major Birch Pollen Allergen, Bet v 1. Journal of Immunology, 2011, 186, 5333-5344.	0.8	82
12	Allergen Extracts for InÂVivo Diagnosis and Treatment of Allergy: Is There a Future?. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 1845-1855.e2.	3.8	81
13	Molecular Aspects of Allergens and Allergy. Advances in Immunology, 2018, 138, 195-256.	2.2	81
14	A Combination Vaccine for Allergy and Rhinovirus Infections Based on Rhinovirus-Derived Surface Protein VP1 and a Nonallergenic Peptide of the Major Timothy Grass Pollen Allergen Phl p 1. Journal of Immunology, 2009, 182, 6298-6306.	0.8	80
15	Conversion of Der p 23, a New Major House Dust Mite Allergen, into a Hypoallergenic Vaccine. Journal of Immunology, 2014, 192, 4867-4875.	0.8	69
16	Allergen Peptides, Recombinant Allergens and Hypoallergens for Allergen-Specific Immunotherapy. Current Treatment Options in Allergy, 2014, 1, 91-106.	2.2	67
17	Inconsistent Results of Diagnostic Tools Hamper the Differentiation between Bee and Vespid Venom Allergy. PLoS ONE, 2011, 6, e20842.	2.5	66
18	Past, present, and future of allergen immunotherapy vaccines. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 131-149.	5.7	66

#	Article	IF	CITATIONS
19	Cloning, Expression, and Mapping of Allergenic Determinants of αS1-Casein, a Major Cow's Milk Allergen. Journal of Immunology, 2009, 182, 7019-7029.	0.8	62
20	A Nonallergenic Birch Pollen Allergy Vaccine Consisting of Hepatitis PreS–Fused Bet v 1 Peptides Focuses Blocking IgG toward IgE Epitopes and Shifts Immune Responses to a Tolerogenic and Th1 Phenotype. Journal of Immunology, 2013, 190, 3068-3078.	0.8	57
21	Molecular determinants of allergen-induced effector cell degranulation. Journal of Allergy and Clinical Immunology, 2007, 119, 384-390.	2.9	54
22	Visualization of clustered IgE epitopes on α-lactalbumin. Journal of Allergy and Clinical Immunology, 2010, 125, 1279-1285.e9.	2.9	48
23	Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy. Journal of Allergy and Clinical Immunology, 2017, 139, 1897-1905.e1.	2.9	48
24	Misdirected antibody responses against an Nâ€ŧerminal epitope on human rhinovirus VP1 as explanation for recurrent RV infections. FASEB Journal, 2012, 26, 1001-1008.	0.5	46
25	Neutralization of SARSâ€CoVâ€2 requires antibodies against conformational receptorâ€binding domain epitopes. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 230-242.	5.7	45
26	lgE epitope proximity determines immune complex shape and effector cell activation capacity. Journal of Allergy and Clinical Immunology, 2016, 137, 1557-1565.	2.9	42
27	Staphylococcus aureus fibronectin-binding protein specifically binds IgE from patients with atopic dermatitis and requires antigen presentation for cellular immune responses. Journal of Allergy and Clinical Immunology, 2011, 128, 82-91.e8.	2.9	41
28	Skin test evaluation of a novel peptide carrier–based vaccine, BM32, in grass pollen–allergic patients. Journal of Allergy and Clinical Immunology, 2015, 136, 1101-1103.e8.	2.9	41
29	Hypoallergenic derivatives of the major birch pollen allergen Bet v 1 obtained by rational sequence reassembly. Journal of Allergy and Clinical Immunology, 2010, 126, 1024-1031.e8.	2.9	40
30	Allergen microarray detects high prevalence of asymptomatic IgE sensitizations to tropical pollen-derived carbohydrates. Journal of Allergy and Clinical Immunology, 2014, 133, 910-914.e5.	2.9	40
31	Non–IgE-mediated chronic allergic skin inflammation revealed with rBet v 1 fragments. Journal of Allergy and Clinical Immunology, 2008, 121, 528-530.e1.	2.9	36
32	Dissection of the IgE and T-cell recognition of the major group 5 grass pollen allergen Phl p 5. Journal of Allergy and Clinical Immunology, 2014, 133, 836-845.e11.	2.9	36
33	Altered IgE epitope presentation: A model for hypoallergenic activity revealed for Bet v 1 trimer. Molecular Immunology, 2011, 48, 431-441.	2.2	33
34	Safety of engineered allergen-specific immunotherapy vaccines. Current Opinion in Allergy and Clinical Immunology, 2012, 12, 555-583.	2.3	33
35	A hypoallergenic peptide mix containing T cell epitopes of the clinically relevant house dust mite allergens. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2461-2478.	5.7	32
36	Molecular, Structural and Immunological Characterization of Der p 18, a Chitinase-Like House Dust Mite Allergen. PLoS ONE, 2016, 11, e0160641.	2.5	30

#	Article	IF	CITATIONS
37	Genetic Engineering of the Major Timothy Grass Pollen Allergen, Phl p 6, to Reduce Allergenic Activity and Preserve Immunogenicity. Journal of Immunology, 2007, 179, 1730-1739.	0.8	27
38	A Hypoallergenic Vaccine Obtained by Tail-to-Head Restructuring of Timothy Grass Pollen Profilin, Phl p 12, for the Treatment of Cross-Sensitization to Profilin. Journal of Immunology, 2007, 179, 7624-7634.	0.8	27
39	Skin test diagnosis of grass pollen allergy with a recombinant hybrid molecule. Journal of Allergy and Clinical Immunology, 2007, 120, 315-321.	2.9	25
40	Allergen-Specific Immunotherapy: Towards Combination Vaccines for Allergic and Infectious Diseases. Current Topics in Microbiology and Immunology, 2011, 352, 121-140.	1.1	24
41	Biochemical, Biophysical and IgE-Epitope Characterization of the Wheat Food Allergen, Tri a 37. PLoS ONE, 2014, 9, e111483.	2.5	24
42	Molecular Evolution of Hypoallergenic Hybrid Proteins for Vaccination against Grass Pollen Allergy. Journal of Immunology, 2015, 194, 4008-4018.	0.8	23
43	Critical and direct involvement of the CD23 stalk region in IgE binding. Journal of Allergy and Clinical Immunology, 2017, 139, 281-289.e5.	2.9	22
44	Two years of treatment with the recombinant grass pollen allergy vaccine BM32 induces a continuously increasing allergen-specific IgG4 response. EBioMedicine, 2019, 50, 421-432.	6.1	22
45	Specific Antibodies for the Detection of <i>Alternaria</i> Allergens and the Identification of Cross-Reactive Antigens in Other Fungi. International Archives of Allergy and Immunology, 2016, 170, 269-278.	2.1	21
46	Comparison of the immunogenicity of BM32, a recombinant hypoallergenic B cell epitope–based grass pollen allergy vaccine with allergen extract–based vaccines. Journal of Allergy and Clinical Immunology, 2017, 140, 1433-1436.e6.	2.9	21
47	Allergen immunotherapy with the hypoallergenic Bâ€cell epitopeâ€based vaccine BM32 modifies ILâ€10―and ILâ€5â€secreting T cells. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 450-453.	5.7	20
48	Unusual sensitization to parvalbumins from certain fish species. Annals of Allergy, Asthma and Immunology, 2014, 113, 571-572.e3.	1.0	19
49	Flexible IgE epitope-containing domains of Phl p 5 cause high allergenic activity. Journal of Allergy and Clinical Immunology, 2017, 140, 1187-1191.	2.9	19
50	Resistance of parvalbumin to gastrointestinal digestion is required for profound and longâ€lasting prophylactic oral tolerance. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 326-335.	5.7	19
51	From Allergen Molecules to Molecular Immunotherapy of Nut Allergy: A Hard Nut to Crack. Frontiers in Immunology, 2021, 12, 742732.	4.8	17
52	Gal d 7—a major allergen in primary chicken meat allergy. Journal of Allergy and Clinical Immunology, 2020, 146, 169-179.e5.	2.9	15
53	Comparison of the Specificities of IgG, IgG-Subclass, IgA and IgM Reactivities in African and European HIV-Infected Individuals with an HIV-1 Clade C Proteome-Based Array. PLoS ONE, 2015, 10, e0117204.	2.5	14
54	Cell Therapy for Prophylactic Tolerance in Immunoglobulin E-mediated Allergy. EBioMedicine, 2016, 7, 230-239.	6.1	14

#	Article	IF	CITATIONS
55	Tracing antigen signatures in the human IgE repertoire. Molecular Immunology, 2010, 47, 2323-2329.	2.2	13
56	Different modes of IgE binding to CD23 revealed with major birch allergen, Bet v 1â€specific monoclonal IgE. Immunology and Cell Biology, 2013, 91, 167-172.	2.3	13
57	lgE Epitopes of the House Dust Mite Allergen Der p 7 Are Mainly Discontinuous and Conformational. Frontiers in Immunology, 2021, 12, 687294.	4.8	13
58	Clustering of conformational IgE epitopes on the major dog allergen Can f 1. Scientific Reports, 2017, 7, 12135.	3.3	12
59	Rational design of a hypoallergenic Phl p 7 variant for immunotherapy of polcalcin-sensitized patients. Scientific Reports, 2019, 9, 7802.	3.3	12
60	Usefulness of recombinant γ-gliadin 1 for identifying patients with celiac disease and monitoring adherence to a gluten-free diet. Journal of Allergy and Clinical Immunology, 2015, 136, 1607-1618.e3.	2.9	11
61	A B Cell Epitope Peptide Derived from the Major Grass Pollen Allergen Phl p 1 Boosts Allergen-Specific Secondary Antibody Responses without Allergen-Specific T Cell Help. Journal of Immunology, 2017, 198, 1685-1695.	0.8	11
62	The Molecular Allergen Recognition Profile in China as Basis for Allergen-Specific Immunotherapy. Frontiers in Immunology, 2021, 12, 719573.	4.8	11
63	Detection of genuine grass pollen sensitization in children by skin testing with a recombinant grass pollen hybrid. Pediatric Allergy and Immunology, 2019, 30, 59-65.	2.6	10
64	Quantification, epitope mapping and genotype cross-reactivity of hepatitis B preS-specific antibodies in subjects vaccinated with different dosage regimens of BM32. EBioMedicine, 2020, 59, 102953.	6.1	10
65	Molecular characterization of a fungal cyclophilin allergen Rhi o 2 and elucidation of antigenic determinants responsible for IgE–cross-reactivity. Journal of Biological Chemistry, 2020, 295, 2736-2748.	3.4	10
66	Isolation of nanobodies with potential to reduce patients' IgE binding to Bet v 1. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1751-1760.	5.7	9
67	Preventive Administration of Non-Allergenic Bet v 1 Peptides Reduces Allergic Sensitization to Major Birch Pollen Allergen, Bet v 1. Frontiers in Immunology, 2021, 12, 744544.	4.8	8
68	A combined biochemical, biophysical and immunological approach towards the identification of celiac disease-specific wheat antigens. Amino Acids, 2013, 45, 889-900.	2.7	7
69	Microarray Technology May Reveal the Contribution of Allergen Exposure and Rhinovirus Infections as Possible Triggers for Acute Wheezing Attacks in Preschool Children. Viruses, 2021, 13, 915.	3.3	7
70	Expression of a Major Plant Allergen as Membrane-Anchored and Secreted Protein in Human Cells with Preserved T Cell and B Cell Epitopes. International Archives of Allergy and Immunology, 2011, 156, 259-266.	2.1	6
71	Allergen Microarray Indicates Pooideae Sensitization in Brazilian Grass Pollen Allergic Patients. PLoS ONE, 2015, 10, e0128402.	2.5	6
72	Individuals with IgE antibodies to αâ€Gal and CCD show specific IgG subclass responses different from subjects nonâ€sensitized to oligosaccharides. Clinical and Experimental Allergy, 2020, 50, 1107-1110.	2.9	6

#	Article	IF	CITATIONS
73	Features of the Human Antibody Response against the Respiratory Syncytial Virus Surface Glycoprotein G. Vaccines, 2020, 8, 337.	4.4	5
74	Molecular allergy diagnosis: A potential tool for the assessment of severity of grass pollenâ€induced rhinitis in children. Pediatric Allergy and Immunology, 2019, 30, 852-855.	2.6	4
75	Expression and characterization of recombinant Par j 1 and Par j 2 resembling the allergenic epitopes of Parietaria judaica pollen. Scientific Reports, 2019, 9, 15043.	3.3	4
76	Identification of <i>Ulocladium chartarum</i> as an important indoor allergen source. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3202-3206.	5.7	4
77	Dissociation of the respiratory syncytial virus F protein-specific human IgG, IgA and IgM response. Scientific Reports, 2021, 11, 3551.	3.3	3
78	The emerging pathogen <i>Paecilomyces variotii</i> ―a novel and important fungal allergen source. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1045-1048.	5.7	3
79	Allergenic activity and ability to induce T cell and cytokine responses of different infant milk formulas. World Allergy Organization Journal, 2015, 8, A253.	3.5	1
80	Engineering combination vaccines for allergic and infectious asthma. World Allergy Organization Journal, 2007, &NA, S151.	3.5	0
81	Development and characterization of allergen-specific monoclonal antibodies and their inhibitory effects on allergic patients' IgE binding to the major birch pollen allergen Bet v 1. World Allergy Organization Journal, 2007, &NA, S237-S238.	3.5	0
82	The crystal structure of the major olive pollen allergen Ole eâ€1. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e74-e74.	0.1	0